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ABSTRACT 

To elucidate pathways in bladder inflammation, we 
employed our physiologically relevant LL-37 induced 
cystitis model. Based on inflammatory studies involv- 
ing other organ systems implicating the receptor for 
advanced glycation end-products (RAGE), we first 
hypothesized that RAGE is critically involved in 
LL-37 induced cystitis. We further hypothesized that 
a common RAGE ligand high mobility group box 1 
(HMGB1) is up-regulated in bladders challenged with 
LL-37. Finally, we hypothesized that NF-κB depend-
ent inflammatory genes are activated in LL-37 in-
duced cystitis. Testing our first hypothesis, C57Bl/6 
mice were challenged with either saline (control) or 
320 µM of LL-37 intravesically for 1 hr. After 12 or 
24 hours, tissues were examined with immunohisto- 
chemistry (IHC) for RAGE, and both mRNA and 
protein isolation for respective qRT-PCR and West- 
ern Blot analysis. Our second hypothesis was tested 
by employing HMGB1 IHC. Testing our final hy- 
pothesis, qRT-PCR was performed investigating five 
genes: TNFα, IL-6, IL-1β, GM-CSF, COX-2. In con- 
trol and LL-37 challenged tissues, IHC for RAGE 
revealed similar qualitative expression. Evaluation 
with qRT-PCR and Western Blot for RAGE revealed 
diminished expression at the mRNA and protein level 
within LL-37 challenged bladders. IHC for HMGB1 
revealed a moderate qualitative increase within 
LL-37 challenged tissues. Finally, with the exception 
of TNFα, all NF-κB dependent inflammatory genes 
yielded substantial up-regulation. We have employed 
our LL-37 induced cystitis model to gain insight to- 
wards a possible mechanistic pathway involved in 

bladder inflammation. This work provides data for 
future studies involving the inflammatory ligand 
HMGB1, RAGE, and receptor pathways that activate 
NF-κB. 
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1. INTRODUCTION 

In order for the bladder to store urine it must be com- 
pliant (pliable). It is imperative that it can hold urine at 
low pressures. Failure of this results in elevated bladder 
pressure, transmitting urine to the kidney resulting in 
glomerular injury, renal parenchymal fibrosis and failure. 
Deposition of extracellular matrix (ECM) within the 
bladder wall is the main reason for loss of bladder wall 
pliability. What leads to excess ECM deposition and re- 
sultant fibrosis remains unclear, but accumulated evi- 
dence suggests that inflammatory cascades play a signi- 
ficant role. In response to inflammatory insult, bladder 
fibrosis occurs as part of a wound healing process and 
the accumulation of ECM proteins (collagen types I and 
III) [1]. Also, during chronic tissue damage fibroblasts 
undergo a process of activation and conversion to myofi- 
broblasts that proliferate and produce ECM [2,3]. The 
end result is a non-compliant fibrotic bladder. Myelome- 
ningocele (MMC)/spina bifida (SB) and interstitial cysti- 
tis (IC)/painful bladder syndrome (PBS) are both disease 
states that affect the urinary bladder. In both, chronic in- 
flammation can lead to fibrosis and bladder non-com- 
pliance, further perpetuating the disease state. The un- 
derlying physiology involves inflammation, yet the exact 
mechanism is elusive; as a result, current treatment op- 
tions are suboptimal [4-7]. 
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We have previously published a novel murine model 
of inflammatory bladder disease using the human cathe- 
licidin LL-37 peptide to induce physiologic bladder in- 
flammation [8]. The exact inflammatory mechanism of 
action for LL-37 is not completely understood and re- 
sponses are elicited through the activation of a number of 
cell-surface receptors and signaling pathways, depending 
on the cell type being studied and the responses being 
assessed. In addition to the important antimicrobial role 
of the cathelicidin LL-37, it also demonstrates immuno- 
modulatory properties and triggers inflammation via the 
promotion of leukocyte chemotaxis, stimulation of mast 
cell degranulation, enhanced neutrophil function, induc- 
tion of chemokines including IL-8, regulation of inflam- 
matory responses (in part via NF-κB signaling), angioge- 
nesis, and the increased expression of extracellular ma- 
trix components [9,10]. Relatively low concentrations of 
LL-37 (13 - 25 µM) can be cytotoxic against several eu- 
karyotic cells, and pose a significant risk to human cells 
upon exposure [11]. We hypothesized that LL-37 in- 
duced bladder inflammation involves the receptor for 
advanced glycation end-products (RAGE) and a common 
RAGE ligand high mobility group box 1 (HMGB1), 
resulting in the activation of NF-κB dependent inflam- 
matory genes. 

To our knowledge, the RAGE pathway has not been 
described or implicated in inflammatory diseases of the 
bladder. RAGE is primarily involved in homeostasis and 
inflammation and is one of the primary receptors for high 
mobility group box 1 (HMGB1) [12]. RAGE, a multi- 
ligand receptor of the immunoglobulin (Ig) superfamily 
[13], is expressed on multiple cell types including poly- 
morphonuclear leukocytes (PMNs), monocytes/macro- 
phages, T and B lymphocytes, DC, EC, and mucosal 
epithelial cells [14]. There have been studies that impli- 
cate RAGE as a protective pathway in processes invol- 
ving pulmonary fibrosis, specifically loss of RAGE sig- 
naling was found to yield more prominent fibrotic tissue 
responses [15-17]. Although most studies suggest that 
ligand activation of RAGE transmits cell surface signals 
to various intracellular pathways including NF-κB, a he- 
terodimeric protein complex is responsible for a multi- 
tude of transcriptional programs that produce proinflam- 
matory cytokines and enzymes such as TNFα, IL-1β, 
IL-6, and COX-2 [18-24]. The expression of RAGE also 
is controlled by the transcription factor activity of NF-κB 
[21] and activation results in increased cell surface ex- 
pression of RAGE. This leads to amplification of the ori- 
ginal signal, further exacerbating inflammation [25,26]. 
Despite studies identifying the role of NF-κB in the 
RAGE signaling pathway, the cellular effectors and mo- 
lecular mechanisms of such activation remain unknown. 

In the lower urinary tract, HMGB1 is ubiquitously 
expressed in urothelial cells and extracellularly liberated 

into urine [27]. During episodes of bladder tissue insult, 
high urinary levels of HMGB1 have been identified [27] 
signifying necrotic tissue injury. HMGB1 was first iden- 
tified as a non-histone chromosomal protein involved in 
DNA binding [28] and later recognized as a pro-inflam- 
matory cytokine mediating endotoxin lethality in mice 
[29]. It is predominantly a nuclear protein present in 
most eukaryotic cells where it stabilizes nucleosome for- 
mation and facilitates transcription [30-32]. However, 
others have reported that HMGB1 also functions extra- 
cellularly [29,33-36], although it lacks a classical secre- 
tion signal. HMGB1 can be liberated via two routes, 
either from necrotic cell death with passive leakage from 
the cell [37] and/or active secretion from activated mo- 
nocytes, macrophages [29,38], mature dendritic cells 
[31], NK cells [39], and endothelial cells [34]. RAGE 
was first identified as the receptor for HMGB1. Thus, 
HMGB1 activation could both initiate and sustain a pro- 
inflammatory phenotype.  

In this study we propose that LL-37 induced bladder 
inflammation involves RAGE, a common RAGE ligand 
HMGB1, and ultimately converges on NF-κB signaling. 
We investigated whether activation of these pathways in 
the bladder could be responsible for the sustained, pro- 
inflammatory phenotype.  

2. MATERIALS AND METHODS 

2.1. Bladder Inflammation and Tissue Collection 

Experiments were performed in accordance with the In- 
stitutional Animal Care and Use Committee (IACUC) of 
the University of Utah. LL-37 induced bladder inflam- 
mation was performed as previously described [8,40]. 
Briefly, 8 to 12-week old female C57BL/6 mice were 
catheterized, bladders emptied, then washed with 150 µL 
of 0.9% sodium chloride and emptied. After washing, 
320 µM of LL-37 or saline (controls) were infused 
slowly and left indwelling for 1 hour. Tissues were har- 
vested at either 12 or 24 hours and the bladders were 
split longitudinally. One section was fixed in 4% parafor- 
maldehyde for histology and the other was either snap 
frozen in liquid nitrogen then stored at −80˚C for protein 
extraction, or placed in RNAlater (QIAGEN, German- 
town, MD, USA) overnight at 4˚C then proceeded to 
RNA isolation or stored at −80˚C for future use. 

2.2. Immunohistochemistry (IHC) for RAGE 
and HMGB1 

5 µm sections were deparaffinized then rehydrated 
through xylene and graded alcohols. Endogenous pero- 
xidase activity was blocked with 1% Hydrogen peroxide 
in TBST for 20’ and washed 3X in TBST for 3’. Antigen 
retrieval was performed (Vector laboratories, Burlin- 
game, CA., Lot# V0421). To minimize non-specific anti- 
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body binding, sections were incubated for 60’ in 5% FBS 
in TBS with 0.3% Triton X-100. Sections were incubated 
overnight at 4˚C with primary antibody (Goat-Anti Mou- 
se RAGE 1:200 in blocking solution, R&D, Minneapolis, 
MN, Lot# AF1179; or Rabbit-Anti Mouse HMGB1, 
1:1000 in blocking solution, Abcam, Cambridge, MA, 
Lot# ab18256). Following O/N incubation, slides were 
washed 3X in TBST for 3’. Sections were then incubated 
for 60’ with biotinylated secondary antibody 1:2000, 
followed by Vectastatin Elite ABC Reagent (Vector 
Laboratories, Lot# PK-6100) diluted in TBST for 30’. 
Between incubations, sections were washed 3X for 3’ in 
TBST. For visualization of immunoreactivity sections 
were incubated in DAB peroxidase substrate for 20 - 40 
sec. Sections were washed in ddH2O, counterstained, and 
dehydrated. Negative controls included incubation with 
TBST in place of the primary antibody and no immuno- 
reactivity was observed.  

2.3. Protein Isolation and Western Blot 

Bladder tissues stored at −80˚C were homogenized in 
ice-cold RIPA lysis buffer (Thermo Scientific, Rockford, 
IL) with the addition of protease inhibitor (Sigma Ald- 
rich) and phosphatase inhibitor (Thermo Scientific, 
Rockford, IL) using a Mini-Bead Beater homogenizer 
(BioSpec Products, Inc. Bartlesville, OK, USA). Isolated 
total protein was quantified using the BCA method 
(PIERCE, Rockford, IL). Equal amounts of protein were 
electrophoresed on a 4% - 12% SDS-polyacrylamide gel 
(InVitrogen) and subsequently transferred to a nitrocellu- 
lose membrane (0.45 m, InVitrogen). The membrane was 
blocked in washing solution (0.1% Tween 20 in PBS) 
containing 5% nonfat dry milk. The same primary anti- 
body utilized for RAGE IHC was utilized for the Wes- 
tern Blot experiments. Secondary antibodies were incu- 
bated at room temperature for 1 hour in blocking solution. 
Proteins were visualized via ECLplus chemilumines- 
cence reagents (GE healthcare life sciences, Pittsburgh, 
PA). 

2.4. RNA Preparation and Real-Time qRT-PCR  

Tissues were homogenized on ice with a hand homo- 
genizor, then total RNA was purified according to manu- 
facturer’s instructions (Qiagen RNeasy fibrous mini kit, 
Germantown, MD, USA). cDNA synthesis was per- 
formed following manufacturer instructions (ABI, Foster 
City, CA). Primer’s for all genes of interest (RAGE, 
TNFα, IL-6, IL-1β, GM-CSF, COX-2) were synthesized 
and purchased from Applied Biosystems (Foster City, 
CA). Gene expression was quantified using the Taqman 
Gene Expression Assay (ABI, Foster City, CA) on an 
Applied Biosystems 7900 HT instrument. The data sets 
were analyzed with normalization, variance stabilization, 

and log2 transformation. The 2−∆∆Ct method was utilized 
in the analysis for differences in relative gene expression 
[41].  

3. RESULTS 

3.1. RAGE Immunohistochemistry Comparing 
Saline Control versus LL-37 Challenged 
Bladders 

To establish if baseline RAGE expression was present in 
normal bladders and to test for potential changes in 
RAGE expression after LL-37 challenge, both saline 
control and those exposed to LL-37 were subjected to 
RAGE IHC. Saline instilled control bladders harvested 
after 12 and 24 hours are demonstrated in Figures 1A 
and B (U—urothelium, SBM—submucosa, LP—lamina 
propria, SMC—smooth muscle cell layer). 

LL-37 instilled bladders harvested after 12 and 24 
hours are demonstrated in Figures 1C and D. In saline 
controls, strong RAGE immunoreactivity (brown stain) 

 
12 hour harvest            24 hour harvest

Saline
 
 
 
 
 
 
 
 
 
LL-37

 

Figure 1. RAGE IHC comparing saline control vs. LL-37 
challenged bladders. Saline controls after 12 h (A) and 24 h (B). 
LL-37 challenged bladders harvested after 12 h (C) and 24 h 
(D). U—urothelium, SBM—submucosa, LP—lamina propria, 
SMC—smooth muscle cell layer. In saline control bladders (A) 
& (B), strong RAGE immunoreactivity (brown stain) was 
observed along the umbrella cells, with moderate intensity 
within the cytoplasmic regions in the urothelial (U) layer. No 
RAGE signal was observed in the SBM layer and LP, except 
for the arteriolar vessels had a moderate signal (rectangle). 
RAGE was detectable in the SMC layer. In LL-37 instilled 
bladders (C) and (D), similar RAGE expression patterns were 
observed compared to saline control tissues except for a 
qualitative loss of RAGE signal along superficial umbrella cells, 
but increased RAGE detection in the endothelium lining 
venules (D) (rectangle). In addition, numerous acute inflam- 
matory cells were RAGE positive in both (C) and (D). Images 
reduced from × 10, scale bar panel A represents 75 µM. 
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was observed along the umbrella cells, with moderate 
intensity within the cytoplasmic regions in the urothelial 
(U) layer. No RAGE signal was observed in the SBM 
layer and LP, except for the arteriolar vessels had a 
moderate signal (rectangle). RAGE was detectable in the 
SMC layer. In LL-37 instilled bladders, similar RAGE 
expression patterns were observed compared to saline 
control tissues except for a qualitative loss of RAGE 
signal along superficial umbrella cells, but increased 
RAGE detection in the endothelium lining venules (Fig- 
ure 1D—rectangle). In addition, numerous acute inflam- 
matory cells were RAGE positive. 

3.2. HMGB1 Immunohistochemistry Comparing 
Saline Control versus LL-37 Challenged 
Bladders 

To help understand the impact of HMGB1 on LL-37 
induced bladder inflammation, IHC was employed to de- 
termine HMGB1 expression patterns in both saline con- 
trol versus LL-37 challenged bladders (Figure 2). In sa- 
line controls, HMGB1 immunoreactivity was apparent 
(brown stain) in all nuclei of the urothelium, myofibro- 
blasts in the submucosa, endothelial cells of arterioles 
and venules, fibroblasts in the lamina propria, and  
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Figure 2. HMGB1 IHC comparing saline control versus LL-37 
instilled bladders. Saline instilled control bladders harvested 
after 12 h (A) and 24 h (B). LL-37 instilled bladders harvested 
after 12 h (C) and 24 h (D). U—urothelium, SBM—submucosa, 
LP—lamina propria, SMC—smooth muscle cell layer. In saline 
control bladders (A) & (B), HMGB1 immunoreactivity was 
apparent (brown stain) in all nuclei of the urothelium (U), 
myofibroblasts in the SBM, endothelial cells of both arterioles 
and venules, fibroblasts in the LP, and smooth muscle cells. In 
LL-37 instilled bladders (C) and (D), similar ubiquitous 
HMGB1 immunoreactivity was observed compared to saline 
control tissues, except for positive detection in all acute 
inflammatory cells (primarily PMNs) within the inflamed 
tissues. Images reduced from × 10, scale bar panel A represents 
75 µM. 

smooth muscle (Figures 2A and B). Analysis of the 
LL-37 instilled bladders showed similar ubiquitous 
HMGB1 immunoreactivity to saline control tissues, 
except for positive detection in all acute inflammatory 
cells (primarily PMNs) within the inflamed tissues, along 
with a qualitative increased staining pattern in the 
smooth muscle cell layer (Figures 2C and D). 

3.3. RAGE qRT-PCR and Western Blot 

In order to quantitate RAGE expression, both qRT-PCR 
and Western Blot methods were employed. In the qRT- 
PCR experiments, total RNA was isolated from both 
saline control and LL-37 inflamed bladders. Tissue and 
RNA isolation was performed 24 hours after either saline 
or LL-37 exposure. LL-37 inflamed tissues demonstrated 
a near 10-fold reduction in RAGE RNA levels (Figure 3, 
red bar) when compared to saline controls (Figure 3, 
blue bar).  

To quantitate the amount of RAGE protein in LL-37 
challenged bladders, Western Blot analysis was per- 
formed (Figure 4). Lung tissue served as our positive 
control (Figure 4, lane A) (based on known robust ex- 
pression levels of RAGE) and we identified diminished 
RAGE protein levels in our LL-37 challenged samples 
(Figure 4, lane B) versus saline instilled controls (Fig- 
ure 4, lane C). Two bands were observed based on our 
antibody profile that detected both membrane-bound 
RAGE (55 kDa) and soluble RAGE (48 kDa). Nor- 
malization was carried out via baseline actin content. The 
diminished RAGE RNA expression patterns observed 
from the qRT-PCR results were further validated with 
decreased RAGE protein expression from our Western 
Blot experiments. Expression patterns observed from the  

 

 

Figure 3. Quantitative RT-PCR of RAGE. Total RNA was 
isolated from both control and LL-37 inflamed bladders. 
Tissue and RNA isolation was performed 24 hrs after either 
saline or LL-37 exposure. LL-37 inflamed tissues demon- 
strated a near 10-fold reduction in RAGE mRNA levels (red 
bar) when compared to saline controls. 
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results. With the exception of TNFα, all genes at both 
time points yielded substantial up-regulation when com- 
pared to controls. 

A   B   C 

55 kDa 
48 kDa 
 
 
Actin 

 

4. DISCUSSION 

Using our previously established model, we created bla- 
dder inflammation using the cathelicidin LL-37 [8,40], 
which has been found to be elevated in urine samples 
obtained from pediatric patients with either cystitis or 
pyelonephritis [42]. Profound bladder inflammation was 
observed after LL-37 exposure yielding global erythema, 
edema, hemorrhage, and hypervascularity. More severe 
tissue inflammation occurred in 24-hour versus 12-hour 
tissues [8]. IHC for RAGE identified expression along 
cytosolic and non-nuclear cellular membrane portions of 
the urothelium and smooth muscle, with strong RAGE 
expression in the acute inflammatory cells within LL-37 
inflamed tissues. Overall RAGE expression, however, 
was down-regulated in LL-37 inflamed tissues. Western 
Blot analysis confirmed basal expression levels for 
RAGE in control tissues, with a moderate RAGE reduce- 
tion in inflamed bladders. As stated earlier, some lung 
studies have shown that a decrease in RAGE expression 
leads to fibrosis [15-17] and this appears to be true in the 
bladder between LL-37 and NF-κB, understanding only 
that LL-37 up-regulates inflammation through pathways 
that converge on NF-κB. We attempted to show that LL- 
37 induced bladder inflammation was connected to the 
signaling through RAGE and its various ligands. 

Figure 4. RAGE Western Blot. 
(A)—lung protein isolate (positi- 
ve control), (B)—LL-37 instilled 
tissue harvested after 24 hours, 
(C)—saline instilled control tis- 
sue harvested after 24 hours. Two 
common RAGE bands were de- 
tected at 48 kDa and 55 kDa. A 
moderate reduction in RAGE 
protein levels were observed with- 
in the inflamed LL-37 instilled bla- 
dders (B). Normalization carried 
out via baseline actin content. 

 
qRT-PCR results were further validated with decreased 
RAGE protein expression from our Western Blot ex- 
periments. 

3.4. Downstream NF-κB Dependent Gene 
Expression 

HMGB1 signaling via RAGE can lead to the activation 
of NF-κB. Therefore, we wanted to investigate five com- 
mon downstream genes activated by NF-κB [18-24]. We 
hypothesized that LL-37 challenged tissues would yield 
up-regulation of all five genes (TNFα, IL-6, IL-1β, 
GM-CSF, COX-2) when compared to saline controls. To 
test this hypothesis, we utilized qRT-PCR from mRNA 
isolated in 12 & 24 h tissues, for both LL-37 challenged 
bladders and saline controls. Figure 5 summarizes our  

Unexpectedly, a reduction in RAGE expression was 
noted in inflamed tissues compared to controls. Although, 
IHC for the RAGE ligand HMGB1 demonstrated mo- 
derate differences between control and LL-37 inflamed 
tissues. We mainly observed increased expression pa- 
tterns in the acute inflammatory cells and smooth muscle 
cells within the inflamed samples. Despite diminished  

 

 

Figure 5. Quantitative RT-PCR for TNFα, IL-6, IL-1β, GM-CSF, & COX-2. With the exception of TNFα, all genes at both 12 h and 
24 h time points yielded substantial up-regulation (red bars) when compared to controls (blue bars). 
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RAGE expression, the moderate qualitative increase in 
HMGB1 expression seen in the inflamed tissues would 
suggest alternative receptor pathways are involved in the 
profound activation of NF-κB dependent genes. Again, 
four of five common downstream genes activated by 
NF-κB were substantially up-regulated within our LL-37 
challenged tissues. 

It has been well described that Toll-like receptors 
(TLRs), specifically TLR2 and TLR4, are involved in 
HMGB1 signaling [43-45]. HMGB1 can act as a ligand 
and bind not only the RAGE receptor [46], but TLR2 and 
TLR4. TLRs are a family of conserved proteins that en- 
able cells of the immune system to respond to microbial 
structures. TLR2 has been shown to respond to gram- 
positive components and fungi and TLR4 is the main 
receptor for endotoxin. Both TLR2 and TLR4 have been 
shown to be present in the lower urinary tract and 
bladder urothelium [27] and play a vital role in molecular 
defense mechanisms during urinary tract infection 
[47-49]. TLR2 also has been implicated in inflammatory 
responses in the urinary system and may play a role in 
progressive tissue fibrotic changes [50]. The signaling 
cascades initiated by TLR2 and TLR4 are complex. 
Similar to RAGE activation, the most prominent effect of 
TLR activation is the induction of NF-κB dependent 
gene expression. Overall, HMGB1 activation of TLR2 
and/or TLR4 could both initiate and sustain a pro-inflam- 
matory phenotype, ultimately explaining the increased 
expression of NF-κB dependent genes. With this know- 
ledge, along with our data demonstrating such profound 
up-regulation of NF-κB dependent genes, further studies 
are needed to elucidate the role of TLRs.  

5. CONCLUSION 

We have innovatively employed our reproducible LL-37 
induced cystitis model to gain further insight towards a 
possible mechanistic pathway involved in bladder in- 
flammation. This work opens the door for future studies 
involving the inflammatory ligand HMGB1, RAGE, and 
the corresponding receptor signaling pathways that im- 
plicate NF-κB. 
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