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ABSTRACT 

Due to its importance in security, syntax analysis has found usage in many high-level programming languages. The Lisp 
language has its share of operations for evaluating regular expressions, but native parsing of Lisp code in this way is 
unsupported. Matching on lists requires a significantly more complicated model, with a different programmatic ap- 
proach than that of string matching. This work presents a new automata-based approach centered on a set of functions 
and macros for identifying sequences of Lisp S-expressions using finite tree automata. The objective is to test that a 
given list is an element of a given tree language. We use a macro that takes a grammar and generates a function that 
reads off the leaves of a tree and tries to parse them as a string in a context-free language. The experimental results in- 
dicate that this approach is a viable tool for parsing Lisp lists and expressions in the abstract interpretation framework. 
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1. Introduction 

There have been many studies on how to generate a tree 
parser over Lisp lists, so that the existence of a list as an 
element of a regular language can be determined through 
equality checks [1]. Matching on lists using Automate- 
based approach requires a significantly more complicated 
model, with a different programmatic approach than that 
of string matching which is studied in [2]. We present 
that one must abandon the use of regular expressions, for 
list pattern matching, in favor of tree parsers. Regular 
expressions are convenient in string matching because of 
the relative simplicity and predictability of string struc- 
tures and their straightforward representation [3,4]. In the 
realm of trees, the closest we come to this is in compari- 
sons at tree nodes. Rather, to conclude that a tree is a 
member of a regular tree language, we must represent it 
in a useful format for our purposes or else require each 
“cons” cell in the tree to have its own production. 

Another requirement of this approach is to provide a 
certain malleability in the interface—the ability for a pro- 
grammer to define his or her own transition rules (or re- 
write rules) on-the-fly—in the make-tree-matcher Figure 
1 function call, for example. We made sure the code 
would run on Common Lisp as well as on different Lisp 
implementations. This required some bending of the con- 
straints of Lisp, like redefinition of Boolean symbols out 
of utility, and working around the organization of nested 
lists. 

The inability to use regular expressions in a simple 
format was perhaps the biggest hurdle. We will use stan- 
dard definitions, but we give some of these for conven- 
ience of the reader. 
 Analytic grammar—A set of rules for parsing and 

returning of truth values confirming a string as either 
consistent or inconsistent with the rules of a formal 
language. 

 Context-free grammar—A set of rules over an alpha- 
bet, defined by a quad-tuple G = (Vt, Vn, P, S), where 
P is a set of production rules; 
Vn is a set of non-terminals; 
Vt is a set of terminals; and 
S is a starting non-terminal and an element of Vn. 

 Context-free language—All strings which can be 
generated by a context-free grammar. 

 Finite automaton—A set of states and transitions, 
commonly expressed in a flow diagram. Also called a 
finite state machine. 

 Finite state machine: a model of computation com- 
posed of states, a transition function, and an input 
alphabet. 

 Transition function: describes a condition that would 
need to be fulfilled to enable the transition. 

 input alphabet: input recognized by the finite state 
machine 

 Formal grammar—A description of a set of rules for 
a given alphabet over which a set of finite strings can 
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(defparameter *falsehood* '*falsehood*) 
 
(defun nonterminal? (x) 
  (and (symbolp x) 
       (let* ((str (symbol-name x)) 
       (fr (char str 0)) 
       (ls (char str (- (length str) 1)))) 
  (and 
   (char= fr #\<) 
   (char= ls #\>))))) 
 
 
(defun yield (tree) 
  (cond 
   ((null tree) nil) 
   ((atom tree) (list tree)) 
   (t (append (yield (car tree)) (yield (cdr tree)))))) 
 
;; Use a special symbol rather than nil for false.   
;(defmacro n-and (&rest conjuncts) 
; `(and ,@(mapcar #'(lambda (x) `(if (eq ,x *falsehood*) nil ,x)) 
conjuncts) t)) 
 
(defun n-and (&rest conjuncts) 
 (if (eq (car conjuncts) *falsehood*) 
  *falsehood* 
  (if (eq (cdr conjuncts) nil) 
   (car conjuncts) 
   (apply #'n-and (cdr conjuncts))))) 
 
 
;(defmacro n-or (&rest disjuncts) 
; `(or ,@(mapcar #'(lambda (x) `(if (eq ,x *falsehood*) nil ,x)) dis-
juncts) nil)) 
 
(defmacro n-not-null (v) 
 (if (null v) 
  *falsehood* 
  v)) 
 
 
(defun n-or (&rest disjuncts) 
 (if (null disjuncts) *falsehood* 
  (if (eq (car disjuncts) *falsehood*) 
   (apply #'n-or (cdr disjuncts)) 
   (car disjuncts)))) 
 
(defmacro make-tree-matcher (name start &body rules) 
  (labels 
      ((gencall (right) 
  (format t “generating expansion for ~A~%” right) 
  `(if (or (null y) (eq *falsehood* y)) *falsehood* 
    (let ((l (copy-list y))) 
      (if (not (eq *falsehood* (n-and ,@(mapcar 
#'(lambda (x) 
          (if (nonter-
minal? x) 
              `(if 
(null l) *falsehood* 
         (setf l (,x 
l))) 
              `(if 
(null l) *falsehood* 
         (if (eql 
(quote ,x) (pop l)) 
             l 
             
*falsehood*))))  
             right)))) 
   l 

   *falsehood*)))) 
        
  (genproduction (p) 
         (let ((name (car p)) 
        (rules (cdr p))) 
     (format t “Genproduction:~%   name is: 
~A~%   rules is/are: ~A~%~%” name rules) 
    `(,name (y) 
     (n-or ,@(mapcar #'gencall rules)))))) 
       (format t “Defining function named ~a~%” name) 
      `(defun ,name (y) 
  (labels ,(mapcar #'genproduction (car rules)) 
    (not (eq (,start (yield y)) *falsehood*)))))) 
 
(defmacro tst () 
 (make-tree-matcher plusone <plus> 
  ((<plus> (+ <num>)) 
   (<num> (1 <num>) (1))))) 
 
(defun ld () (load “tyield.lisp”)) 
 
(make-tree-matcher booleval <true> 
  ((<true> (and <true> <true>) 
    (not <false>) 
    (or <false> <true>) 
    (or <true> <false>) 
    (or <true> <true>) 
    (1)) 
   (<false> (and <false> <false>) 
     (and <true> <false>) 
     (and <false> <true>) 
     (or <false> <false>) 
     (not <true>) 
     (0)))) 
 
(defun add-match-tracers () 
  (trace n-and) 
  (trace n-or)) 

Figure 1. The make-tree-matcher function. 
 

be defined. 
 Kleene closure/Kleene star—The set of all possible 

combinations of non-terminals of a regular language. 
Specifically, the superset of a set of strings containing 
the empty string ε and closed on the string concate- 
nation function. Every string that is part of a regular 
language can be found in its Kleene expansion. 

 Parse tree—A description of the syntax of a string 
within a formal grammar. 

 Parser—A method or algorithm or its implementa- 
tion which examines the application of a given string 
within an analytic grammar. 

 Regular tree language—The set of trees accepted by 
a finite tree automaton. 

 Terminal—A constant, indivisible value that cannot 
be further reduced to a more simplified form within 
its own grammar. 

 Tree automaton—While finite automata typically 
act on strings, tree automata are used for tree expres- 
sions. 

 Yield—The string pattern formed from a tree’s leaves 
as encountered in an ordered traversal. 
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2. Analysis 

Finite tree automata are much more difficult to imple- 
ment than finite automata, and regular tree languages do 
not have a nice compact notation like regular (string) 
languages do. Instead of reading only one next symbol, 
finite state machines that are used to recognize regular 
expressions can read any finite number of next symbols. 
Each of these next symbols can have any finite number 
of next states. Since parse trees are not generally unique, 
we do not know anything about the structure of the tree 
when we decide it’s a member of the regular tree lan- 
guage by parsing its yield. We know it’s a parse tree for a 
string in the grammar, but there can be more than one, 
and we don’t know which it is. 

Although our initial vision involved the usage of regu- 
lar expressions, which would be appropriate for normal 
strings [5,6], the nested form of S-expressions required a 
more iterative and comprehensive method. Traversing a 
Lisp list involves the usage of a parse tree. Through this 
application, one can back trace the sequence of an ex- 
pression through the parent nodes that generated each 
step [7]. 

Generalized nondeterministic finite automata can be 
defined as the 5-tuple (S, Σ, δ, s, a), where: 

S = A complete set of states; 
Σ = A finite alphabet; 
δ = A transition function (δ: (S − {a}) × (S − {s}) → 

R); 
s = A start state; and 
a = A accept state; 

where R is the set of all regular expressions over Σ 
(“Automata”). 

This can be similarly migrated to tree parsing. Recog- 
nizing trees as elements of a regular language only al- 
lows us to say that the input is part of the language, or set 
of all possible elements of the regular grammar. This is 
done through Boolean comparisons in a top-down tree 
automaton context. Such automata can be represented 
with the four-tuple (Q, F, Qf, Δ), where: 

Q = A set of states; 
F = A ranked alphabet; 
Qf = A subset of terminal states in Q; and 
Δ = A set of transition rules [8,9]. 
As our implementation uses a nondeterministic push- 

down approach, we can only test for the presence of a 
list in a regular tree language. As the language can have 
any number of similarly organized tree structures, we 
cannot tell with our algorithm which one of them has 
been found—only that the pattern in question is present 
in the language. 

Using a finite tree automaton to match a Lisp list 
would require every cons cell in the pattern to have its 
own production, all labeled “cons”. 

Theorem 1. A regular tree language is the set of parse 

trees for a context-free grammar [10]. 
We parse the yield of the tree to show that it’s a mem- 

ber of the context-free language, and use the theorem 1 to 
conclude that it’s a member of the regular tree language. 
This does not provide us any information about the struc- 
ture of the original tree, but we do know whether it is a 
member of the tree language we defined. If it is a mem- 
ber, then we know that it matches the pattern we are 
looking for. 

3. Experiments 

Parsing the string allowed us to test whether it was a 
member of a given string language. A language is a set of 
sentences (strings and trees are “sentences” in the sense 
that we use them in formal language theory). A context- 
free language is the set of all strings that can be gener- 
ated by its grammar. We also know because of the theo- 
rem that there is a regular tree language composed of all 
its parse trees. 

We test whether that tree is in the regular tree lan- 
guage by testing whether the string is a parse tree of the 
context-free language. 

Our tree pattern matching implementation allows for 
parsing of a tree structure as a string for subsequent com- 
parison. By seeing that a given list is a parse tree ac- 
cepted by a finite tree automaton, we know, by the gen- 
eral theorem which states “A regular tree language is the 
set of parse trees for a context-free grammar”. That means 
the list in question is a member of the regular language 
tested by the automaton. The use of tree yield functions 
simplified this step. Conceptually, trees consist of parent 
nodes, where child nodes extend from the right leaf of 
each node, with the outermost levels on the left side of 
the graph. Our custom yield function generates usable 
strings from tree inputs. With the make-tree-matcher 
function, the yield of a given tree is produced, and recur- 
sive-descent parsing is performed on the value by the 
same function Figure 1. 

We experimented and provided the results with the 
make-tree-matcher function in Figures 2 and 3. Notice 
that the BOOLEVALUATION function is the language 
of all true Boolean expressions without variables using 
efficient implementations of automata operations. 

From the definition of a context-free language, we 
know that a regular tree language is the set of all parse 
trees of this language’s grammar. Therefore, a tree is in 
the regular tree language if its yield is in the context-free 
language. 

4. Conclusion 

We proposed a symbolic approach for pattern matching 
on LISP programs. We use a symbolic automata repre- 
sentation and implement set of functions and macros for 
identifying sequences of Lisp S-expressions using finite 
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(make-tree-matcher boolevaluation <true> 
  ((<true> (and <true> <true>) 
    (not <false>) 
    (or <false> <true>) 
    (or <true> <false>) 
    (or <true> <true>) 
    (1)) 
   (<false> (and <false> <false>) 
     (and <true> <false>) 
     (and <false> <true>) 
     (or <false> <false>) 
     (not <true>) 
     (0)))) 

Figure 2. The make-tree-matcher implementation of auto- 
mata. 
 

Defining function named BOOLEVALUATION 
Genproduction: 
   name is: <TRUE> 
   rules is/are: ((AND <TRUE> <TRUE>) (NOT <FALSE>) 
(OR <FALSE> <TRUE>) (OR <TRUE> <FALSE>) (OR 
<TRUE> <TRUE>) (1)) 
generating expansion for (AND <TRUE> <TRUE>) 
generating expansion for (NOT <FALSE>) 
generating expansion for (OR <FALSE> <TRUE>) 
generating expansion for (OR <TRUE> <FALSE>) 
generating expansion for (OR <TRUE> <TRUE>) 
generating expansion for (1) 
Genproduction: 
   name is: <FALSE> 
   rules is/are: ((AND <FALSE> <FALSE>) (AND <TRUE> 
<FALSE>) (AND <FALSE> <TRUE>) (OR <FALSE> 
<FALSE>) (NOT <TRUE>) (0)) 
generating expansion for (AND <FALSE> <FALSE>) 
generating expansion for (AND <TRUE> <FALSE>) 
generating expansion for (AND <FALSE> <TRUE>) 
generating expansion for (OR <FALSE> <FALSE>) 
generating expansion for (NOT <TRUE>) 
generating expansion for (0) 
BOOLEVALUATION 
 
This is the language of all true Boolean expressions (without 
variables). 
 > (boolevaluation '(or (not 1) (or 1 0))) 
 T 
 > (boolevaluation '(0)) 
 NIL 
 > (boolevaluation '(1)) 
 T 
 > (boolevaluation '(or 0 1)) 
 T 
 > (boolevaluation '(not 0)) 
 T 
 > (boolevaluation '(and 1 (not 1))) 
 NIL 
 

Figure 3. Sample run of “boolevaluation” function. 
 
 
 

tree automata. Our experiments demonstrate that the 
study has produced a viable tool for parsing Lisp lists 
and expressions, and because of the language used, has 
the added bonuses of portability, small size, customiza- 
bility, and clarity. The study of formal grammar and re- 
gular expressions has shown us with those topics the util- 
ity, robustness, and sometimes elegance of regular lan- 
guages and Lisp. The same approach can also be applied 
to variety of other functional programming languages. 
Finally, the use of automata as a symbolic representation 
for verification has been investigated in other contexts 
(e.g., [9]). Therefore, to obtain these kind of particular 
but interesting results are of substantial and growing in- 
terest for many applied problems in symbolic computa- 
tions [10]. 

REFERENCES 
[1] M. Sipser, “Theory of Computation,” 3rd Edition, Course 

Technology, 2012. 

[2] M. Bojańczyk and T. Colcombet, “Tree-Walking Auto- 
mata Cannot Be Determinized,” Theoretical Computer 
Science, Vol. 350, No. 2-3, 2006, pp. 164-170. 
doi:10.1016/j.tcs.2005.10.031 

[3] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jac- 
quemard, D. Lugiez, S. Tison and M. Tommasi, “Tree 
Automata Techniques and Applications,” 2007. 

[4] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jac- 
quemard, D. Lugiez, S. Tison and M. Tommasi, “Tree 
Automata Techniques and Applications II,” 2007. 

[5] C.-H. Chen, “A Neural Network Arhitecture for Syntax 
Analysis,” IEEE Transactions of Neural Networks, Vol. 
10, No. 1, 1999, pp. 94-114. doi:10.1109/72.737497 

[6] J. Power, “Notes on Formal Language Theory and Pars- 
ing,” National University of Ireland, Maynooth, Kildare, 
2002. 

[7] I. Bagrak and O. Shivers, “trx: Regular-Tree Expressions, 
Now in Scheme,” Scheme Workshop, September 2004. 

[8] F. Yu, et al., “Symbolic String Verification,” SPIN’08 Pro- 
ceedings of the 15th International Workshop on Model 
Checking Software, pp. 306-324. 

[9] A. Bouajjani, B. Johnson, M. Nilsson and T. Touili, 
“Regular Model Checking,” Proceedings of the 12th In- 
ternational Conference on Computer Aided Verification, 
2007, pp. 403-418. 

[10] L. Segoufin and V. Vianu, “Validating Streaming XML 
Documents,” ACM, 2002, pp. 53-64. 

 
 

http://dx.doi.org/10.1016/j.tcs.2005.10.031
http://dx.doi.org/10.1109/72.737497

