
Intelligent Control and Automation, 2013, 4, 309-312
http://dx.doi.org/10.4236/ica.2013.43036 Published Online August 2013 (http://www.scirp.org/journal/ica)

An Automata-Based Approach to Pattern Matching

Ali Sever
Pfeiffer University, Misenheimer, USA

Email: ali.sever@pfeiffer.edu

Received January 21, 2013; revised March 4, 2013; accepted March 11, 2013

Copyright © 2013 Ali Sever. This is an open access article distributed under the Creative Commons Attribution License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Due to its importance in security, syntax analysis has found usage in many high-level programming languages. The Lisp
language has its share of operations for evaluating regular expressions, but native parsing of Lisp code in this way is
unsupported. Matching on lists requires a significantly more complicated model, with a different programmatic ap-
proach than that of string matching. This work presents a new automata-based approach centered on a set of functions
and macros for identifying sequences of Lisp S-expressions using finite tree automata. The objective is to test that a
given list is an element of a given tree language. We use a macro that takes a grammar and generates a function that
reads off the leaves of a tree and tries to parse them as a string in a context-free language. The experimental results in-
dicate that this approach is a viable tool for parsing Lisp lists and expressions in the abstract interpretation framework.

Keywords: Computation and Automata Theory; Pattern Matching; Regular Languages

1. Introduction

There have been many studies on how to generate a tree
parser over Lisp lists, so that the existence of a list as an
element of a regular language can be determined through
equality checks [1]. Matching on lists using Automate-
based approach requires a significantly more complicated
model, with a different programmatic approach than that
of string matching which is studied in [2]. We present
that one must abandon the use of regular expressions, for
list pattern matching, in favor of tree parsers. Regular
expressions are convenient in string matching because of
the relative simplicity and predictability of string struc-
tures and their straightforward representation [3,4]. In the
realm of trees, the closest we come to this is in compari-
sons at tree nodes. Rather, to conclude that a tree is a
member of a regular tree language, we must represent it
in a useful format for our purposes or else require each
“cons” cell in the tree to have its own production.

Another requirement of this approach is to provide a
certain malleability in the interface—the ability for a pro-
grammer to define his or her own transition rules (or re-
write rules) on-the-fly—in the make-tree-matcher Figure
1 function call, for example. We made sure the code
would run on Common Lisp as well as on different Lisp
implementations. This required some bending of the con-
straints of Lisp, like redefinition of Boolean symbols out
of utility, and working around the organization of nested
lists.

The inability to use regular expressions in a simple
format was perhaps the biggest hurdle. We will use stan-
dard definitions, but we give some of these for conven-
ience of the reader.
 Analytic grammar—A set of rules for parsing and

returning of truth values confirming a string as either
consistent or inconsistent with the rules of a formal
language.

 Context-free grammar—A set of rules over an alpha-
bet, defined by a quad-tuple G = (Vt, Vn, P, S), where
P is a set of production rules;
Vn is a set of non-terminals;
Vt is a set of terminals; and
S is a starting non-terminal and an element of Vn.

 Context-free language—All strings which can be
generated by a context-free grammar.

 Finite automaton—A set of states and transitions,
commonly expressed in a flow diagram. Also called a
finite state machine.

 Finite state machine: a model of computation com-
posed of states, a transition function, and an input
alphabet.

 Transition function: describes a condition that would
need to be fulfilled to enable the transition.

 input alphabet: input recognized by the finite state
machine

 Formal grammar—A description of a set of rules for
a given alphabet over which a set of finite strings can

Copyright © 2013 SciRes. ICA

A. SEVER 310

(defparameter *falsehood* '*falsehood*)

(defun nonterminal? (x)
 (and (symbolp x)
 (let* ((str (symbol-name x))
 (fr (char str 0))
 (ls (char str (- (length str) 1))))
 (and
 (char= fr #\<)
 (char= ls #\>)))))

(defun yield (tree)
 (cond
 ((null tree) nil)
 ((atom tree) (list tree))
 (t (append (yield (car tree)) (yield (cdr tree))))))

;; Use a special symbol rather than nil for false.
;(defmacro n-and (&rest conjuncts)
; `(and ,@(mapcar #'(lambda (x) `(if (eq ,x *falsehood*) nil ,x))
conjuncts) t))

(defun n-and (&rest conjuncts)
 (if (eq (car conjuncts) *falsehood*)
 falsehood
 (if (eq (cdr conjuncts) nil)
 (car conjuncts)
 (apply #'n-and (cdr conjuncts)))))

;(defmacro n-or (&rest disjuncts)
; `(or ,@(mapcar #'(lambda (x) `(if (eq ,x *falsehood*) nil ,x)) dis-
juncts) nil))

(defmacro n-not-null (v)
 (if (null v)
 falsehood
 v))

(defun n-or (&rest disjuncts)
 (if (null disjuncts) *falsehood*
 (if (eq (car disjuncts) *falsehood*)
 (apply #'n-or (cdr disjuncts))
 (car disjuncts))))

(defmacro make-tree-matcher (name start &body rules)
 (labels
 ((gencall (right)
 (format t “generating expansion for ~A~%” right)
 `(if (or (null y) (eq *falsehood* y)) *falsehood*
 (let ((l (copy-list y)))
 (if (not (eq *falsehood* (n-and ,@(mapcar
#'(lambda (x)
 (if (nonter-
minal? x)
 `(if
(null l) *falsehood*
 (setf l (,x
l)))
 `(if
(null l) *falsehood*
 (if (eql
(quote ,x) (pop l))
 l

falsehood))))
 right))))
 l

 falsehood))))

 (genproduction (p)
 (let ((name (car p))
 (rules (cdr p)))
 (format t “Genproduction:~% name is:
~A~% rules is/are: ~A~%~%” name rules)
 `(,name (y)
 (n-or ,@(mapcar #'gencall rules))))))
 (format t “Defining function named ~a~%” name)
 `(defun ,name (y)
 (labels ,(mapcar #'genproduction (car rules))
 (not (eq (,start (yield y)) *falsehood*))))))

(defmacro tst ()
 (make-tree-matcher plusone <plus>
 ((<plus> (+ <num>))
 (<num> (1 <num>) (1)))))

(defun ld () (load “tyield.lisp”))

(make-tree-matcher booleval <true>
 ((<true> (and <true> <true>)
 (not <false>)
 (or <false> <true>)
 (or <true> <false>)
 (or <true> <true>)
 (1))
 (<false> (and <false> <false>)
 (and <true> <false>)
 (and <false> <true>)
 (or <false> <false>)
 (not <true>)
 (0))))

(defun add-match-tracers ()
 (trace n-and)
 (trace n-or))

Figure 1. The make-tree-matcher function.

be defined.
 Kleene closure/Kleene star—The set of all possible

combinations of non-terminals of a regular language.
Specifically, the superset of a set of strings containing
the empty string ε and closed on the string concate-
nation function. Every string that is part of a regular
language can be found in its Kleene expansion.

 Parse tree—A description of the syntax of a string
within a formal grammar.

 Parser—A method or algorithm or its implementa-
tion which examines the application of a given string
within an analytic grammar.

 Regular tree language—The set of trees accepted by
a finite tree automaton.

 Terminal—A constant, indivisible value that cannot
be further reduced to a more simplified form within
its own grammar.

 Tree automaton—While finite automata typically
act on strings, tree automata are used for tree expres-
sions.

 Yield—The string pattern formed from a tree’s leaves
as encountered in an ordered traversal.

Copyright © 2013 SciRes. ICA

A. SEVER 311

2. Analysis

Finite tree automata are much more difficult to imple-
ment than finite automata, and regular tree languages do
not have a nice compact notation like regular (string)
languages do. Instead of reading only one next symbol,
finite state machines that are used to recognize regular
expressions can read any finite number of next symbols.
Each of these next symbols can have any finite number
of next states. Since parse trees are not generally unique,
we do not know anything about the structure of the tree
when we decide it’s a member of the regular tree lan-
guage by parsing its yield. We know it’s a parse tree for a
string in the grammar, but there can be more than one,
and we don’t know which it is.

Although our initial vision involved the usage of regu-
lar expressions, which would be appropriate for normal
strings [5,6], the nested form of S-expressions required a
more iterative and comprehensive method. Traversing a
Lisp list involves the usage of a parse tree. Through this
application, one can back trace the sequence of an ex-
pression through the parent nodes that generated each
step [7].

Generalized nondeterministic finite automata can be
defined as the 5-tuple (S, Σ, δ, s, a), where:

S = A complete set of states;
Σ = A finite alphabet;
δ = A transition function (δ: (S − {a}) × (S − {s}) →

R);
s = A start state; and
a = A accept state;

where R is the set of all regular expressions over Σ
(“Automata”).

This can be similarly migrated to tree parsing. Recog-
nizing trees as elements of a regular language only al-
lows us to say that the input is part of the language, or set
of all possible elements of the regular grammar. This is
done through Boolean comparisons in a top-down tree
automaton context. Such automata can be represented
with the four-tuple (Q, F, Qf, Δ), where:

Q = A set of states;
F = A ranked alphabet;
Qf = A subset of terminal states in Q; and
Δ = A set of transition rules [8,9].
As our implementation uses a nondeterministic push-

down approach, we can only test for the presence of a
list in a regular tree language. As the language can have
any number of similarly organized tree structures, we
cannot tell with our algorithm which one of them has
been found—only that the pattern in question is present
in the language.

Using a finite tree automaton to match a Lisp list
would require every cons cell in the pattern to have its
own production, all labeled “cons”.

Theorem 1. A regular tree language is the set of parse

trees for a context-free grammar [10].
We parse the yield of the tree to show that it’s a mem-

ber of the context-free language, and use the theorem 1 to
conclude that it’s a member of the regular tree language.
This does not provide us any information about the struc-
ture of the original tree, but we do know whether it is a
member of the tree language we defined. If it is a mem-
ber, then we know that it matches the pattern we are
looking for.

3. Experiments

Parsing the string allowed us to test whether it was a
member of a given string language. A language is a set of
sentences (strings and trees are “sentences” in the sense
that we use them in formal language theory). A context-
free language is the set of all strings that can be gener-
ated by its grammar. We also know because of the theo-
rem that there is a regular tree language composed of all
its parse trees.

We test whether that tree is in the regular tree lan-
guage by testing whether the string is a parse tree of the
context-free language.

Our tree pattern matching implementation allows for
parsing of a tree structure as a string for subsequent com-
parison. By seeing that a given list is a parse tree ac-
cepted by a finite tree automaton, we know, by the gen-
eral theorem which states “A regular tree language is the
set of parse trees for a context-free grammar”. That means
the list in question is a member of the regular language
tested by the automaton. The use of tree yield functions
simplified this step. Conceptually, trees consist of parent
nodes, where child nodes extend from the right leaf of
each node, with the outermost levels on the left side of
the graph. Our custom yield function generates usable
strings from tree inputs. With the make-tree-matcher
function, the yield of a given tree is produced, and recur-
sive-descent parsing is performed on the value by the
same function Figure 1.

We experimented and provided the results with the
make-tree-matcher function in Figures 2 and 3. Notice
that the BOOLEVALUATION function is the language
of all true Boolean expressions without variables using
efficient implementations of automata operations.

From the definition of a context-free language, we
know that a regular tree language is the set of all parse
trees of this language’s grammar. Therefore, a tree is in
the regular tree language if its yield is in the context-free
language.

4. Conclusion

We proposed a symbolic approach for pattern matching
on LISP programs. We use a symbolic automata repre-
sentation and implement set of functions and macros for
identifying sequences of Lisp S-expressions using finite

Copyright © 2013 SciRes. ICA

A. SEVER

Copyright © 2013 SciRes. ICA

312

(make-tree-matcher boolevaluation <true>
 ((<true> (and <true> <true>)
 (not <false>)
 (or <false> <true>)
 (or <true> <false>)
 (or <true> <true>)
 (1))
 (<false> (and <false> <false>)
 (and <true> <false>)
 (and <false> <true>)
 (or <false> <false>)
 (not <true>)
 (0))))

Figure 2. The make-tree-matcher implementation of auto-
mata.

Defining function named BOOLEVALUATION
Genproduction:
 name is: <TRUE>
 rules is/are: ((AND <TRUE> <TRUE>) (NOT <FALSE>)
(OR <FALSE> <TRUE>) (OR <TRUE> <FALSE>) (OR
<TRUE> <TRUE>) (1))
generating expansion for (AND <TRUE> <TRUE>)
generating expansion for (NOT <FALSE>)
generating expansion for (OR <FALSE> <TRUE>)
generating expansion for (OR <TRUE> <FALSE>)
generating expansion for (OR <TRUE> <TRUE>)
generating expansion for (1)
Genproduction:
 name is: <FALSE>
 rules is/are: ((AND <FALSE> <FALSE>) (AND <TRUE>
<FALSE>) (AND <FALSE> <TRUE>) (OR <FALSE>
<FALSE>) (NOT <TRUE>) (0))
generating expansion for (AND <FALSE> <FALSE>)
generating expansion for (AND <TRUE> <FALSE>)
generating expansion for (AND <FALSE> <TRUE>)
generating expansion for (OR <FALSE> <FALSE>)
generating expansion for (NOT <TRUE>)
generating expansion for (0)
BOOLEVALUATION

This is the language of all true Boolean expressions (without
variables).
 > (boolevaluation '(or (not 1) (or 1 0)))
 T
 > (boolevaluation '(0))
 NIL
 > (boolevaluation '(1))
 T
 > (boolevaluation '(or 0 1))
 T
 > (boolevaluation '(not 0))
 T
 > (boolevaluation '(and 1 (not 1)))
 NIL

Figure 3. Sample run of “boolevaluation” function.

tree automata. Our experiments demonstrate that the
study has produced a viable tool for parsing Lisp lists
and expressions, and because of the language used, has
the added bonuses of portability, small size, customiza-
bility, and clarity. The study of formal grammar and re-
gular expressions has shown us with those topics the util-
ity, robustness, and sometimes elegance of regular lan-
guages and Lisp. The same approach can also be applied
to variety of other functional programming languages.
Finally, the use of automata as a symbolic representation
for verification has been investigated in other contexts
(e.g., [9]). Therefore, to obtain these kind of particular
but interesting results are of substantial and growing in-
terest for many applied problems in symbolic computa-
tions [10].

REFERENCES
[1] M. Sipser, “Theory of Computation,” 3rd Edition, Course

Technology, 2012.

[2] M. Bojańczyk and T. Colcombet, “Tree-Walking Auto-
mata Cannot Be Determinized,” Theoretical Computer
Science, Vol. 350, No. 2-3, 2006, pp. 164-170.
doi:10.1016/j.tcs.2005.10.031

[3] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jac-
quemard, D. Lugiez, S. Tison and M. Tommasi, “Tree
Automata Techniques and Applications,” 2007.

[4] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jac-
quemard, D. Lugiez, S. Tison and M. Tommasi, “Tree
Automata Techniques and Applications II,” 2007.

[5] C.-H. Chen, “A Neural Network Arhitecture for Syntax
Analysis,” IEEE Transactions of Neural Networks, Vol.
10, No. 1, 1999, pp. 94-114. doi:10.1109/72.737497

[6] J. Power, “Notes on Formal Language Theory and Pars-
ing,” National University of Ireland, Maynooth, Kildare,
2002.

[7] I. Bagrak and O. Shivers, “trx: Regular-Tree Expressions,
Now in Scheme,” Scheme Workshop, September 2004.

[8] F. Yu, et al., “Symbolic String Verification,” SPIN’08 Pro-
ceedings of the 15th International Workshop on Model
Checking Software, pp. 306-324.

[9] A. Bouajjani, B. Johnson, M. Nilsson and T. Touili,
“Regular Model Checking,” Proceedings of the 12th In-
ternational Conference on Computer Aided Verification,
2007, pp. 403-418.

[10] L. Segoufin and V. Vianu, “Validating Streaming XML
Documents,” ACM, 2002, pp. 53-64.

http://dx.doi.org/10.1016/j.tcs.2005.10.031
http://dx.doi.org/10.1109/72.737497

