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ABSTRACT 
Superconductivity is one of the most important 
phenomena in solid state physics. Its theoretical  
framework at low critical temperature  is  cT

based on Bardeen, Cooper and Schrieffer theory  
(BCS). But at high  above 135, this theory suf-  cT

fers from some setbacks. It cannot explain how 
the resistivity abruptly drops to zero below ,  cT

besides the explanation of the so called pseudo 
gap, isotope and pressure effect, in addition to 
the phase transition from insulating to super- 
conductivity state. The models proposed to cure 
this drawback are mainly based on Hubbard mo- 
del which has a mathematical complex frame- 
work. In this work a model based on quantum 
mechanics besides generalized special relativity 
and plasma physics. It is utilized to get new mo- 
dified Schrödinger equation sensitive to tempe- 
rature. An expression for quantum resistance is 
also obtained which shows existence of critical 
temperature beyond which the resistance drops 
to zero. It gives an expression which shows the  
relation between the energy gap and . These  cT

expressions are mathematically simple and are 
in conformity with experimental results. 
 
Keywords: Superconductivity; High Critical 
Temperature; Tight Binding Approximation 

1. INTRODUCTION 

Superconductivity (SC) was discovered in 1911 in the 
Leiden laboratory of Kamerlingh Onnes when a so called 
“blue boy” (local high school student recruited for the 
tedious job of monitoring experiments) noticed that the 

resistivity of Hg metal vanished abruptly at about 4 K. 
Although phenomenological models with predictive 
power were developed in the 30’s and 40’s of the last 
century [1], F and H London developed the successful 
phenomenological approach in 1935 describing the be-
havior of superconductors in the external magnetic field. 
Ogg Jr. proposed a root to high-temperature supercon- 
ductivity (HTSC) introducing electron pairs in 1946 and 
Ginzburg and Landau proposed the phenomenological 
theory of the superconducting phase transition in 1950 
providing a comprehensive understanding of the elec- 
tromagnetic properties below Tc [2]. The microscopic 
mechanism underlying superconductivity was not dis- 
covered until 1957 by Bardeen Cooper and Schrieffer 
(BCS) [1]. Superconductors have been studied inten-
sively for their fundamental interest and for the promise 
of technological applications which would be possible if 
a material which superconducts at room temperature was 
discovered. Until 1986, critical temperatures (Tc’s) at 
which resistance disappears were always less than about 
23 K. 

In 1986, Bednorz and Mueller published a paper, sub-
sequently recognized with the 1987 Nobel Prize, for the 
discovery of a new class of materials called (HTSC) 
which currently include members with Tc’s of about 135 
Kor more. Enormous numbers of studies have been car-
ried out to clarify the mechanism of the high temperature 
superconductivity (HTSC) beyond the conventional BCS 
theory Figure 1. 

One of the important HTSC is the cuprate compounds. 
The cuprate systems show not only high temperature 
superconductivity but also show various unusual behav- 
iors when doped with holes where it is converted from an 
insulator to a superconductor [1]. The transition-metal 
oxides have been extensively investigated in recent years 
as materials that can be converted to superconductors. 
Understanding the nature of superconductors has been  
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Figure 1. History of superconductivity. 
 
the most challenging issue in condensed matter physics 
due to the difficulties inherent in the many-body interac- 
tions. 

Although BCS theory explains several superconduc- 
tors phenomena specially at low critical temperature Tc, 
but there are many setbacks associated with Bardeen, 
Cooper and Schrieffer BCS theory for high critical tem- 
perature , which was observed in some com- 135cT 
pounds specially CuO and Fe compounds.  

There are many problems need to be solved. First of 
all, one observes that, till now, there is no well estab- 
lished theoretical expression in most celebrated SC mod- 
els which shows how the resistance drops abruptly to 
zero below the critical temperature. The existence of an 
energy gap well above Tc with pressure and the substitu- 
tion of O16 by its isotope O18 affecting Tc also need to be 
explained by a simple model also.  

The aim of this work is to construct quantum me-
chanical model based on plasma equation to construct a 
quantum model which explains why the resistance van-
ishes below critical temperature. It also aimed to find a 
useful expression for the energy gap. These contribution 
are exhibited in Sections (5) and (6). Section (2) is de-
voted for the theoretical plasma equation.  

2. PLASMA EQUATION 

According to plasma equation, a fluid of particles of 
mass m, number density n, velocity , force F and pres-
sure P is given by 

ν

v
mn v. v F P

t

      
          (1) 

If F is a field force then  
F n V    

Where V is the potential of one particle. In one dimen-
sion 

dV dP
mn n V P n

t x dx dx

             
 

d dt
t x

   
 
 

dx  

d dx

dt t x dt t x

      
   


   

      (2) 

Thus according to Equation (1), in one dimension  

dv dv dp
mn n

dt dx dx
               (2’) 

3. SCHRÖDINGER TEMPERATURE 
DEPENDENT EQUATION 

Schrodinger equation can be derived by using new ex- 
pression of energy obtained from the plasma equation to 
do this one can use (2) to get  

d dx dV dP
mn n

dx dt dx dx


    

Multiplying both sides by dx and integrating yields  

mn d n dV dP        

Considering the pressure to be p nkT  in general, 
thus  

2

2

v
mn nV P nV nkT       

Hence  
2

2

v
m V kT const    

This constant conserved quantity looks like the ordi-
nary energy beside the ordinary thermal energy term 

kT . 
2

2

p
E V k

m
   T              (3) 

To find Schrödinger equation for it, consider the ordi-
nary wave function  

 i px EtAe    

Differentiating both sides by t and x yields  

i
E i E

t t

   
   

 



 

2 2
2 2 2

2 2

p
p

x

  
     





        (4) 

Multiplying both sides of Equation (3) by   yields 
2

2

p
E V

m
kT        

Substituting Equation (4), one gets 
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2
2

2
i V

t m


kT   

    


  

This equation represents Schrödinger equation when 
thermal motion is considered. The solution for time free 
potential can be  

 i Et i
e u E

t

  
   





 

2
2

2
E V

m
kT        


 

The time independent Schrödinger equation thus takes 
the form  

2
2

2
Eu u Vu kTu

m
    


         (5) 

For constant potential, the solution can be 
ikxu e ,  oV V

Inserting this solution in Equation (5) yields 
2 2

2 o

k
Eu u V u kTu

m
  


 

2 2

2 o

k
E V

m
kT  


 

If one set the kinetic term to be 
2 2

2o

k
E

m



, one can  

thus write the energy in the form  

o oE E V kT                 (6) 

This quantum energy expression involves a thermal 
term beside kinetic and potential term. 

4. QUANTUM RESISTANCE 

The resistance, z, per unit length (L = 1) per unit area 
(A = 1) can be found from the ordinary definition of, z. 
The resistance z is defined to be the ratio of the potential, 
u, to the current per unit area, J, i.e. 

u u u u mu
z

I JA J ne nep
               (7) 

With n and e standing for the free hole or electron den- 
sity and charge respectively, while p represents the mo- 
mentum of electron of mass m, where P m . 

This resistance (it actually stands for resistivity) can 
be found by using the laws of quantum mechanics for a 
free charge which are responsible for generating the 
electric current, where the wave function takes the form 

ikxAe                   (8) 

This selection of   comes from the fact that the re- 
sistance property comes from the motion of the free 

charges. The potential u is related to the Hamiltonian H 
through the relation 

H eu  
Thus for freely moving charge one gets: 

2 2
2 21

2 2 2

p̂
Ĥ eu m

m m
    


  

In view of Equation (8) and according to the corre-
spondence principle V takes the form 

2

2 2 2 2

2

2 2

ˆ ˆH ˆH dx p dx
u

e e me

k k
dx

me me

   



  

 

 


 

        (9) 

While P becomes 

ˆ ˆp p p dx k dr k            (10) 

Thus inserting Equations (9), (10) in (7) one obtains  
2 2

2 2

2 1

22 2 2

m k k h
Z

me kn e n e n


 

       
  

 
 2

 

2 2 2 22 2 2 2 2

hfh hf hf
z

e n f e n e n e n e n2

  
  

    
 

(11) 

where the expression f   for velocity is found by as- 
suming charges to be waves, then following the electro- 
magnetic theory (EMT), the speed of the waves is af- 
fected by electric permittivity   and magnetic perme- 
ability through the relation 

1
f 


                  (12) 

where the effect of medium changes the wave length,  , 
while the frequency, f, is unchanged. Thus assuming the 
charge density, n, to be constant, the only change of, Z, 
can be caused by   and  . 

It is also important to note that, in superconductors, 
the current can flow without the aid of deriving potential 
u. the role of u is confined only in enabling electrons to 
gain kinetic energy through the relations  

21

2
eu m k                 (13) 

where this potential can be applied between any two ar-
bitrary points in the superconductors then remove it. The 
role of resistive force is neglected here as done in deriv-
ing London equations.  

The expression for Z can also be found by inserting 
Equation (13) in to get  

2

2 2 22 2 2 2

u u m m p h
Z

J ne ne ne ne ne

 
  
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2

 

 
2 2 2 2

1

2 2 2 2
ohfhf hf

Z
fe n e n e n e n

  
 


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
(14) 
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It is important to note that this quantum resistance ex-
pression resembles the ones found by Tsui [3] where one 
uses De Broglie hypothesis [4], i.e. p h  . 

2

o o

o o o
o

mv Bev kT n
e E

E E E
E eN

m


 



 
   

   

5. CALCULATION HTSC BY ELECTRIC 
SUSCEPTIBILITY 2

o
o o

o o

mveN
Bev kT n eE

m E


 
     
 

   (19) 

Consider holes in a conductor having resistive force Fr, 
magnetic force Fm and pressure force Fp, beside the elec-
tric force Fe, the equation motion then becomes [3]: 

The electric flux density assumes the following relation  

 1o o o oD E E E E P E             

OPEN ACCESS 

r m e pF F F F F     The electric permittivity is given by 

1o                 (20) where 

, , , i t
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m
F P F F Be F eE eE e  


        

The electric permittivity is thus given according to 
Equation (20) to be 

 

2

1

1

o

o
o o

o

mveN
Bev kT n eE

m E

  




 P, x, m,  ,  , B, e and E stands for the pressure, 
displacement, mass, velocity, relaxation time, magnetic 
flux density, electron charge and electric field intensity 
respectively. Thus the equation of motion takes the form 

o

         
  

 (21) 

The resistance Z can be found by inserting (21) in (14) 
to get: 

m
mx Be eE P
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
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 The solution of this equation can be suggested to be: 
i t

ox x e   
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
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
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 Inserting (16) in (15) yields 
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


 
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
      (17) Thus the critical temperature is given by  
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c
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T
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
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mv Bev kT n
e E

E E E
x

m




 
   

   If the internal field B results from No atoms each hav-
ing a verge flux density B  then: [5]. 

B oB N                 (24) This expression of x can be utilized in the formula 
which relates the electric polarization vector P to the 
susceptibility   on one hand and to the number of at-
oms N via the following relation 

Therefore Tc can take the form 

   2
o oB o o

c
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T
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


 

 
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oP E eNx                (18) 

Motivated by the important role of holes in HTSC, 
displacement can be assumed to result from the motion 
of holes or positive nuclear charges, thus inserting Equa-
tion (17) in (18) yields 

6. TIGHT BINDING CRITICAL 
TEMPERATURE AND ENERGY GAP  

In tight binding model [5] the energy of electrons in  
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the crystal is given by 

1 2 coso ka                   (26) 

where 0  is the energy in the absence of crystal field,  

while the other terms describe the effect of the crystal  
field. The energy 0  can split into two terms the kinetic  

part which can describe the thermal motion in the form  

2
of kT  beside the potential term  for attractive 

force or bounded particle.  

oV

Thus one can write  
2 2

2 2
o o

o

k f
kT V

m
   


o              (27) 

2 2

2
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E kT
m

  


V  

2
o

o o

f
kT V o     

2 2

2o

k

m
 


 

of  represents the degrees of freedom. 

The terms describing the effect of the crystal force are  

1 m cry mĤ  
 

j cry mĤ  
            (28) 

1o     

In view of Equations (26) and (27)  

2 cos
2

o
o

f
kT V ka              (29) 

Here cryH  stands for the crystal force Hamiltonian 

part, while m  and j are the states of particles located  

at the site m and j respectively.  
The superconductor is characterized by the existence 

of energy gap. This gap can be under stood here in two 
ways. If the electrons or holes are not free. This requires 
E to negative. Thus Equations (27) and (26) needs  

2 cos 0
2

o
o

f
kT V ka              (30) 

Or the max value of   where  is less 
than zero, i.e. 

cos 1ka  

2 cos 0
2

o
max o

f
kT V ka            (31) 

2
2
o

o

f
kT V      

For constant attractive crystal force  

cry cryH V   

1 m cry m m cry m cry mmH V V           

0j cry m cry j m cry jmV V V             (32) 

Thus  

2
o

o

f
kT V    

Thus the critical temperature is given by  

2
o

c o

f
kT V                (33) 

Substituted Equation (33) beside Equation (32) in 
Equation (30) one gets  

2 2
o o

c

f f
kT kT                (34) 

The energy gap  s equal to the difference between 
zero energy in conduction band and the negative energy 
in the valence band. Thus  

Δ

Δ 0
2 2
o o

c

f f
kT kT     

Since this relation holds for  one can neglect T  cT T
since it is small to get 

Δ
2
o

c

f
kT  

Equation (30) can also be utilized to get the forbidden 
energy states which characterizes superconductors, 
where  

2cos
2

o
o

f
kT V

ka
 


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The energy is forbidden when  cos 1ka 

2 1
2

o
o

f
kT V 


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2
2
o

o

f
kT V       

2
2
o

o

f
kT V        

2
2
o
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f
kT V       

Thus the critical temperature  

2
2
o

c o

f
kT V               (35) 

The forbidden energy is thus related to the critical 
temperature through the relation  

2
2
o

c o

f
kT V               (36) 
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If the particle has a 4—degree of freedom, 3—transla-
tional and one vibration. 

2 2c okT V               (37) 

In view of Equations (32) and (28), since Plank con-
stant is very small and for very small crystal field and for 
bound force 2 ckT  , since the energy gap ∆ is the dif-
ference between bound valence energy E, and mini- 
mum free conduction electron energy zero. Thus  

Δ 0 2 cE k   T               (38) 

Which shows linear relation between ∆ and Tc, thus it 
resembles the empirical relations. Where the energy gap  
is found to be  [6]. Δ 1 75 c~ . kT

7. DISCUSSION 

This model predicts that Schrödinger equation can be 
derived by using a new expression of energy obtained 
from the plasma equation. This expression includes 
thermal energy beside kinetic and potential energy ac-
cording to Equation (6) It is very striking to note that this 
expression resembles the expression of the thermody-
namic internal energy. A useful quantum expression for 
resistivity is also obtained in Equation (11) this expres-
sion resembles those obtained by Aharonove, Bohm and 
Berry as pointed out at the end of section 4. The model 
predicts that the resistivity of low and high Tc supercon-
ductors it drop abruptly when Z1 = real = zero according 
to Equation (8). It also finds the critical temperature Tc 
beyond which the resistivity vanish according to Equa-
tions (23) and (24). A useful expression for the energy 
gap which is dependent on Tc is also obtained. This ex-
pression is in agreement with the empirical relation.   

8. CONCLUSIONS 

The plasma equation is utilized to derive new energy 
expression in which thermal energy is added to the ordi- 

nary kinetic and potential energy. This quantum equation 
which is temperature dependent within the framework of 
this equation uses tight binding approximation besides 
the quantum impedance expression, and it is very easy to 
explain why resistance vanishes below a certain critical 
temperature and why the empirical relation between the 
energy gap and the critical temperature is linear. 

This raises a hope that Schrodinger quantum tempera- 
ture dependent model can be utilized, if a frictional effect 
can be incorporated in it, to construct a general theoreti- 
cal frame work capable of describing Schrodinger phe- 
nomena. The result obtained indicates that the quantum 
plasma model can improve the theoretical model to ex- 
plain some of the phenomena associated with the HTSC. 
Strictly speaking it can explain why the resistance drops 
abruptly below Tc, besides explaining some important 
effects like the relation between energy gap and critical 
temperature. 
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