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ABSTRACT 

We consider a Riemann boundary value problem of non-normal type on the infinite straight line. By using the method 
of complex functions, we investigate the method for solving this Riemann boundary value problem of non-normal type 
and give the general solutions and the solvable conditions for it. 
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1. Introduction 

Various kinds of Riemann boundary value problems 
(BVPs) for analytic functions on closed curves or on open 
arc, doubly periodic Riemann BVPs, doubly quasi-peri- 
odic Riemann BVPs, and BVPs for polyanalytic functions 
have been widely investigated in [1-8]. The main ap- 
proach is to use the decomposition of polyanalytic func- 
tions and their generalization to transform the boundary 
value problems to their corresponding boundary value 
problems for analytic functions. Recently, inverse Rie- 
mann BVPs for generalized analytic functions or biana- 
lytic functions have been investigated in [9-12].  

In this paper, we consider a kind of Riemann BVP of 
non-normal type on the infinite straight line and discuss 
the solvable conditions and the general solution for it.  

2. A Riemann Boundary Value  
Problem of Non-Normal Type on  
the Infinite Straight Line 

Let X  be the real axis oriented in the positive direction. 
And let Z  , Z   denote the upper half-plane and the 
lower half-plane cut by X . Our objective is to find a 
sectioally holomorphic function  satisfying the 
following boundary condition 
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Without loss of generality, we can consider problem (1) 
in class 0 , that is, the two limits R     and 

    exist as  or  z Z Z   . Clearly, here 
we have          .  

3. Homogeneous Problem 

The homogeneous problem of (1) is as follows  
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It is found that    is required for solving problem 
(2) in class . Here we suppose that 0R   . Let  
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then  and  0
ˆG x H  0 0G x   with  
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and 
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Since , by taking logarithm of  0Ind 0X G x   0G x  
for some branch we obtain a single-valued function 
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  and . And by simple cal- 
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then      0X x G x X x   . Substituting this into (2) 
gives  
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then we get    x x    . Thus  is analytic 
on the whole complex plane and has at most 

 z
   or- 

der at . From [5], we know that  must be an 
arbitrary polynomial  of degree 

  z
P  z    with 

 if . Therefore, the homogeneous 
problem (2) has general solution in class  as follows 
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Considering the requirements that  x  and 
 x  are bounded at  

 , 1, , ; 1, ,j l j m l     n , 

we can let  

       1 2P z z z P z    Ⅱ Ⅱ , 

where  P z   is an arbitrary polynomial of degree 
 -  with  P z   0  if . Now we get the 
general solution in class  for the homogeneous 
problem (2) as follows 
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Thus we get the following results.  
Theorem 3.1. For the homogeneous problem (2) in 

class , the following two cases arise.  0

1) When 
R

  , it is always solvable and its general 
solution is given by (8), where  is an arbitrary 
polynomial of degree 

 P z 
  . 

2) When   , it only has zero-solution. 

4. Nonhomogeneous Problem  

For nonhomogeneous problem (1), the key is to find out 
the special solution. 

Similar to the case in homogeneous problem (2), the 
canonical function  X z  is given by (6) but with  
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By this, problem (1) can be rewritten as 
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We know that 
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with   0  

R

. Similar to the reasoning for (7) for 
problem (2), we know that if problem (1) has solution in 
class 0 , then can easily write out the form. But for 
problem (11), the function 
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is analytic everywhere except at the possible unique pole 
, therefore the following two cases arise. z  i
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is actually the general solution for problem (1) in class 

0 , where . For convenience, we 
deform the function  given by (12) into 
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are satisfied.  
Hence, we get the results that  x  are bounded 
 on X  only when the conditions (14) and (15) are all 

satisfied. While it is troublesome to solve the system 
composed by (14) and (15) for the coefficients of 

 z  .  
Here we aim to determine the 

P
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If we make the Hermite interpolation polynomial of 

degree 
REFERENCES 

[1] M. B. Balk, “Polyanalytic Fu
Berlin, 1991.   

[2] H. Begehr and A. Kumar, “Boundary Value Problems for 
the Inhomogeneous Polyanalytic Equation I,” Analysis: 
International f Analysis and Its 

, the fact that 1    1  (the order of the 
denomi  implies that nator)  z  is unbounded on X , 
which contradicts with the hypothesis that    is z
bounded on X . So it is i a  

ver, 

nfeasible to m ke the Hermite
interpolation polynomial for this. 

Howe we have the following effective treatment 
for this. 

a) Under this situation,  z  may have the que 
pole at z i   In order to eliminate the pole, we should 
put the following restrictions for it

uni

: 
.

if 0   , we only need 

P        0, 0,1,2, , 1j j j    i i     ;   (21) 

if 1 , we only need to put  

 
  

 P i i    ;                

if , apart from (22), the restrictions

or 

(22) 

1      

    0, 1,2, , 1j i j        , 

   
  
2

1
d 0, 1,2, , 1

j

x
x j

i
      


     

x g

Y x x



 

Ⅱ

are necessary. 
 Considering the boundedness of 

(23) 

b)  z  on X , the 
following restrictions are also necessary:  

        0, 0,1, , 1; 1,2, ,s s
j j jP r j        -  m  

(24) 

Thus we get the following results.  
Theorem 4.1. For the nonhomogeneous problem

in class the following two cases arise.  
1) If  problem (1) is always solvable

and i  given by (17); and if 

        0 0,1, , 1, 2 , .s s
l l lP s l n         ,  1; ,  

(25) 

 (1) 

0R , 
0 . 

ts general sol
1   ,

ution is
 

1   , 
if n (19), 
ha

en
h e ns (21

e degree

and only if  Q z  satisfies conditio problem (1) 
s unique solution, given by (16). 
2) Wh  0  , it has unique solution in form (20) 

w t e rhen strictio ) or (22) or (22)-(23), and (24)- 
(25) are satisfied. 

Anyway, th  of freedom of solution for nonho- 
mogeneous problem (1) is 1   . 

nctions,” Akademie Verlag, 

Mathematical Journal o
Application, Vol. 25, No. 1, 2005, pp. 55-71. 

[3] D. Jinyuan and W. Yufeng, “On Boundary Value Prob- 
lems of Polyanalytic Functions on the Real Axis,” Com- 
plex Variables, Vol. 48, No. 6, 2003, pp. 527-542.  
doi:10.1080/0278107031000103412 

[4] B. F. Fatulaev, “The Main Haseman Type Boundary 
Value Problem for Metaanalytic Function in the Case of 
Circular Domains,” Mathematical Modelling and Analy- 
sis, Vol. 6, No. 1, 2001, pp. 68-76. 

[5] J. K. Lu, “Boundary Value Problems for Analytic F
tions,” World Scientific, Singapore Ci

unc- 
ty, 1993. 

[6] A. S. Mshimba, “A Mixed Boundary Value Problem for 
Polyanalytic Function of Order n in the Sobolev Space 
Wn, p(D),” Complex Variables, Vol. 47, No. 12, 2002, pp. 
278-1077. 

[7] N. I. Muskhelishvili, “Singular Integral Equations,” World 
Scientific, Singapore City, 1993. 

[8] W. Yufeng and D. Jinyuan, “Hilbert Boundary Value 
Problems of Polyanalytic Functions on the Unit Circum- 
ference,” Complex Variables and Elliptic Equations, Vol. 
51, No. 8-11, 2006, pp. 923-943.  
doi:10.1080/17476930600667692 

L. Xing, “A Class of Periodic Ri[9] emann Boundary Value 
Inverse Problems,” Proceedings of the Second Asian 
Mathematical Conference, Nakhon Ratchasima, 17-20 
October 1995, pp. 397-400. 

[10] M. H. Wang, “Inverse Riemann B
lems for Generalized Analytic F

oundary Value Prob- 
unctions,” Journal of 

Ningxia University of Natural Resources and Life Sci- 
ences Education, Vol. 27, No. 1, 2006, pp. 18-24. 

[11] X. Q. Wen and M. Z. Li, “A Class of Inverse Riemann 
Boundary Value Problems for Generalized Holomorphic 
Functions,” Journal of Mathematical, Vol. 24, No. 4, 
2004, pp. 457-464. 

[12] L. X. Cao, P.-R. Li and P. Sun, “The Hilbert Boundary 
Value Problem With Parametric Unknown Function on 
Upper Half-Plane,” Mathematics in Practice and Theory, 
Vol. 42, No. 2, 2012, pp. 189-194.  

 
 
 

 

Copyright © 2013 SciRes.                                                                                  AM 


