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ABSTRACT 

This paper describes an experimental, theoretical model, and a numerical study of concentrated vortex flow past a ball 
in a hydraulic check valve. The phenomenon of the rotation of the ball around the axis of the device, through which 
liquid flows, has been found. That is, vibration is caused by the rotation of the ball in the check valve. We observe the 
rotation of the ball around the longitudinal axis of the check valve. This rotation is induced by vortex shedding from the 
ball. We will discuss computational simulation and experimental investigations of this strong ball rotation. The fre- 
quency of the ball vibration and interaction with the check valve wall has been measured as a function of a wide range 
of Reynolds numbers. The validity of the computational simulation and of the assumptions on which it is based has 
been proved experimentally. This study demonstrates the possibility of controlling the vibrations in a hydraulic system 
and proves to be a very effective suppression of the self-excited vibration. 
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1. Introduction 

Internal flows in hydraulic systems have been studied ex- 
tensively because of their practical applications. Many of 
these studies, for example, evaluate ball check valves and 
other devices in hydraulic systems. It is known that the 
process of fluid flow around a bluff body (such as a 
sphere or cylinder) is accompanied by a periodic vortex 
trail (often illustrated by the Karman vortex street) [1-3]. 
These vortex trails can induce vibrations, with the result- 
ing forces acting on the bluff body in a direction trans- 
verse to that of the flow. The growth and movement of 
these vortices creates a fluctuating lift and drag force on 
the body [3,4]. It is known that flow in hydraulic devices 
is related to turbulence and that it sets up chaotic vibra- 
tion [2-4]. There is a growing body of evidence that an 
understanding of exploitation of vibration may be desira- 
ble or beneficial for the operation of some hydromecha- 
nical systems.  

Understanding and subsequent exploitation or avoid- 
ance of fluid turbulence is one of the major problems in 
many fields.  

We reveal the phenomenon of the vibration and rota- 
tion of the ball around the axis of the inner surfaces of 
the check valve in the flow. This phenomenon was inves- 
tigated by experimental device and by computational 

simulation. 
Applications of computational fluid dynamics (CFD) 

to industry continue to grow as this advanced technology 
takes advantage of the increasing speed of computers. In 
the last two decades, different areas of flow modeling, 
including grid generation techniques, solution algorithms, 
turbulence modeling, and computer hardware capabilities 
have under gone remarkable growth. In view of these 
developments, computational fluid dynamics can offer a 
cost-effective solution to many engineering problems. 
Various researchers have used turbulence modeling to si- 
mulate flow around axisymmetric bodies.  

In this study we used ANSYS Fluent (a fluid dynamics 
computer simulation software product) to model the flow 
around a ball in a check valve, when the flow is turbulent. 
Prediction of flows that exhibit substantial separation re- 
mains one of the principal challenges of CFD. The main 
interest of the present study is to calculate the turbulent 
flow over a ball at high Reynolds numbers. 

The nature of the flow around a ball in a valve changes 
as the Reynolds number of the flow increases, according 
to [5,6]. 

The aims of this study were: the experimental investi- 
gation of the stability and instability of the vibration of 
the ball in fluid flow inside a check valve; derivation of a 



L. GRINIS, V. HASLAVSKY 

Copyright © 2013 SciRes.                                                                                 ENG 

686 

simplified analytical expression for the stability of the 
vibration motion of the ball rotating in a valve under con- 
ditions of fluid flow; validation of the mathematical mo- 
del and computational simulation versus experimental 
results; illustration of the possibility to exploit this phe- 
nomenon. 

2. Experimental Apparatus 

A schematic description of the experimental setup is pre- 
sented in Figure 1(a). 

The system consists of the following components: 
1) storage tank; 
2) centrifugal pump; 
3) throttle valve; 
4) flow meter; 
5) manometer; 
6) ball check valve; 
7) stroboscope tachometer; 
8) manometer; 
9) spectrum analyzer vibration meter. 

The fluid (in our case, water) was circulated from the 
storage tank (1) through the ball check valve (6) by the 
centrifugal pump (2). The flow rate was controlled by the 
throttle valve (3) and measured by the flow meter (4). 
The fluid (which was replaced) passed through the gap 
between the ball’s surface and the wall of the valve. 

The frequency of the vibration was measured by a type 
SR 760 fast Fourier transform (FFT) spectrum analyzer 
vibration meter (9). A Bruel & Kjaer type 4375 Vaccele- 
ration sensor was also used. When we used a valve body 
made of transparent material, the rotation speed of the 
ball was also measured by the stroboscope tachometer 
(7). 

The size of the ball in combination with the inner dia- 
meter of the valve was examined for certain flow rate 
values in the following ranges: ball diameter 0.012 m; 
inner diameter of the valve 0.015 m, and flow rate up to  
 

 
(a)                         (b) 

Figure 1. Experimental setup. 

1 × 10−3 m3/s. 

3. Mathematical Model 

A schematic description of the device used in this study 
is given in Figure 1(b). The device, which is essentially 
spherical in shape, is introduced into a valve through 
which liquid is flowing.  

From experimental analysis of fluid flow around a 
sphere [7], it is known that vortices form in the wake of 
the sphere and subsequently break away from it in a pe- 
riodic process. 

This phenomenon is called a “Karman vortex street”. 
Vortex shedding can produce self-excited oscillations of 
the ball. This oscillation is characterized by the fre- 
quency, which depends on the flow conditions. 

Assuming that the distance between the ball and the 
valve surface is constant, we can regard this ball as a 
pendulum or rotor of length L and mass m. The point of 
support of this pendulum or rotor is caused to vibrate 
with amplitude A0 along the Y axis of the valve, as des- 
cribed in the following equation:  

0siny A t                (1) 

Such a system can be made clear by means of a classic 
example of a pendulum with a vibrating axis [8]. The 
movement of the ball can be expressed by the following 
differential equation: 

2 2
0cos cos sinmgL k mLA t m             (2) 

In the preceding equation, k  represents the damp- 
ing, which is present in all physical systems.   

Assuming that 

t                    (3) 

In the preceding equation,   is a slowly varying 
function of time, and substituting Equation (3) into Equa- 
tion (2) we obtain differential equation of motion of the 
system. 

The differential equations have been studied by [8,9]. 
The relation of the ball in a synchronous regime proceeds 
according to the following equation: 

0

2
1

k

mLA 
                (4) 

Under steady state conditions, the ball will vibrate and 
also rotate around the central axis of the valve at an an- 
gular velocity, which is given by the following equation: 
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   (5) 

In the preceding equation,  —kinematic viscosity of 
the water, Re—Reynolds number, and cf, cp, cv—hydro- 
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dynamic friction coefficient. This equation was obtained 
with used solution based on forces and driving moments 
of balance that act in this system. Substituting Equation 
(5) into Equation (4), we obtain the condition for stable 
vibration as well as the rotation of the ball, as a function 
of the system parameters: 

 

  0

π π 1
4 1 cos

8 4 6 2
1

f p

v v

e

c c
kr R r

c c

m R r A R

       
   


      (6) 

Using the above condition for stability of rotation of 
the ball in a valve with fluid flow, it is possible to deter- 
mine the influence of the system parameters on the ball’s 
rotation and define the conditions limiting its rotational 
motion. 

4. Experimental Results 

The experimental apparatus allows us to explore the 
sphere and valve’s wall interactions for different condi- 
tions. The results of the measurement dimensionless fre- 
quency vibration of the ball versusthe Reynolds number 
are presented in Figure 2. 

Figure 2 represents the results of the measurements 
and numerical calculations. It can be seen that the fre- 
quency of vortex shedding is directly proportional to the 
flow rate (the graph shows the frequency dependence of 
the Reynolds number) in the valve. The experiment re- 
sults (square points) showed that the frequency of the 
sphere rotation is also directly proportional to the flow 
rate. It was also found that the ball reached steady state 
rotation speed only at Reynolds numbers above 11,000. 
The linear relationships between ball rotation and the 
Reynolds number that were found experimentally coin- 
cided very well with the theoretical calculation (triangle 
points) represented by Equation (5). There was also qua- 
 

 

Figure 2. Vibration frequencies in experiment (curve 1), 
theoretical calculation (triangle points), and numerical cal- 
culation (curves 3, 4, and 5), versus the Reynolds number. 

litative agreement with the result of the computational 
simulation (curves 3, 4 and 5). Numerical calculations 
were introduced for different diameters of the ball. 

Findings that were related to vibration indicated that 
the frequency of vibration also depends upon the flow 
rate. The experiments also showed that the frequency of 
vibration of the ball is directly proportional to the angular 
velocity of its rotation. The regimes of the stable and un- 
stable vibration of the ball for other conditions of the 
device were also found. 

The dependency of changing the frequency vibrations 
of the ball from different diameters of the ball and Rey- 
nolds numbers is shown in Figure 3. 

The experiments carried out here show an increase of 
the frequency vibrations of the ball for different diame- 
ters with an increase the Reynolds number. 

5. Simulation Overview 

A computational model of unsteady, periodically sepa- 
rated, high Reynolds number flow in the hydraulic ball 
check valve is developed using computational fluid dy- 
namic software (ANSYS Fluent 14). The code solves 
time-dependent equations for conservation of mass, mo- 
mentum using second-order accurate, cell-centered finite 
volume method on unstructured grids. The computation 
domain is divided into 128,960 grid elements of edge 
size ~1 mm. There is a strong smoothing region around 
the ball and a medium smoothing region in the pipe after 
the ball (that is, in the ball-wake region), as shown Fig- 
ure 4. 

The simulations include large-eddy simulation (LES) 
turbulence modeling based on a wall-adapted local eddy- 
viscosity (WALE) sub-grid-scale model. Due to the high 
Reynolds number simulations, wall shear stress of the 
ball is modeled by using the instantaneous logarithmic 
law of the wall. Because the simulated flow is assumed 
 

 

Figure 3. Vibration frequencies for different Reynolds num- 
bers and diameters of the ball. 
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to be fully turbulent, the turbulence model is active over 
the entire surface of the ball using the Switch P-V Cou- 
 

 

Figure 4. Perspective view of computational domain. 

pling Scheme (Coupled), Bounded Central Differencing 
for spatial discretization of the momentum equation, and 
Switch Spatial Discretization Scheme for pressure (PRE- 
STO!). The calculations were run for 10,000 time steps 
with 1E-3 seconds time step size, yielding 50 iterations 
per time step. At the outer surfaces inflow-outflow con- 
ditions are used and on the sphere and pipe surfaces non- 
slip boundary conditions are imposed. The validation of 
the numerical approach was performed through compari- 
son of the drag coefficients against empirical results and 
published results for the flow past a sphere in the peri- 
odic vortex-shedding regime.  

The periodical nature of the flow over the ball is con- 
sidered to be due to periodical shedding of vortexes. To 
observe the vortexes shedding we present the iso-con- 
tours of plane velocity magnitude (Figure 5) and stream- 
lines in the XY-plane (Figure 6) at four representing 
times per one shedding period.  
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Figure 5. Mid-section (XZ-plane) velocity field (m/s) during one period of oscillation for d = 12 mm, Re = 3.4 × 104. 
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Figure 6. Streamlines of the flow in the XY-plane during one period of oscillation d = 12 mm, Re = 3.4 × 104. 
 

The development of vortexes is apparent in the ve- 
locity field, where a large number of smaller-scale eddies 
are merged into the stream wise wake. Figure 5 shows 
that the wake is rather narrow immediately behind the 
ball (due to the delayed onset of flow separation in the 
boundary layer). The wake width increases with distance 
from the separation point further downstream. Figures 
5(a) and (b) shows that at the first stages the wake is 
sloped down relative to the axis of symmetry. 

At later stages, shown on Figures 5(c) and (d), it is 
sloped up. Further time evolution of the wake is charac- 
terized by up and down shifting behind the ball. This re- 
gular motion of the wake about the stream wise axis is 
associated with inducing periodical force primarily in the 
span wise direction (or lifting force). The asymmetry is 
largest in the plane corresponding to the maximum in- 
stantaneous lift force.  

More comprehension about the shedding mechanism, 
especially in the near-ball region, can be provided by ex- 
amination of the distribution of the instantaneous stream- 
lines over the ball. Figure 6 shows that the boundary 
layer before separation remains laminar and transition 
takes place at separation point developing into a number 

of vortexes. These vortexes are periodically separating 
and are expanding downstream of the sphere, an effect 
that leads, as was already pointed out, to a mean lift force. 
With increasing Reynolds numbers the separation point 
moves downstream and the vortex patches are more dif- 
fused. In addition, isocontours of the second invariant of 
the deformation tensor (or normalized Q-criterion) are 
presented to give a deeper insight into the vortical struc- 
tures in the wake (Figure 7). According to [10], Q-me- 
thod is one of the most appropriate methods of identify- 
ing a vortex in a turbulent flow, where Q is the positive 
second invariant of the deformation tensor. Figure 7 
clearly shows that shear layer separating from the ball 
surface rolls up into a turbulent vortical structure to form 
a pair of strong stream wise vortices in the far wake. 
Zones of very low vorticity exist in the region immedi- 
ately behind the ball. The large-scale vortexes are origi- 
nating mainly from the separated shear layers where the 
vortexes are forming. The present simulation points to a 
mechanism of producing the lifting forces on the ball in 
which the large-scale coherent eddies are shed periodi- 
cally into the wake. Prediction of the shedding frequen- 
cies yields good agreement with experimental measure-  
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Figure 7. Streamwise vortices in the wake (vortex identifi- 
cation by Q-criterion). 
 
ments (Figure 2). Wake frequencies were obtained by 
calculation of the power spectrum of the span wise lift 
coefficient. Figure 8(b) shows that there is a clear do- 
minant power peak that is associated with the major vor- 
tex-shedding frequency. The main peaks also appear for 
other Reynolds numbers similar to the experimental re- 
sults.   

In Figure 8(a) the history of lift coefficient, Cl, ob- 
tained from numerical simulations, is presented and a 
“non-chaotic” nature of the flow resulting from vortex 
shedding around the ball is illustrated. That is qualita- 
tively evidenced that the process is not random. Another 
proof of this is shown in Figure 9, which represents 
measurements of the lift coefficient (curve 1, numerical 
simulation, same as in Figure 8(a)) and changes in am- 
plitude vibration of ball in the valve (curve 2, experiment) 
as function of the time. These measurements confirmed 
the regularity of the ball vibration, and the qualitative 
similarity of the frequency oscillations in both the ex- 
periment and the calculations. 

6. Conclusions 

The following results were obtained in this study: 
The stability and instability of the vibration of the ball 

in a valve were studied by an experimental method; 
We received a criterion for rotational stability of the 

ball and described the main relationships that govern the 
rotation process; 

The model in ANSYS Fluent was used to predict the 
flow over a ball in the valve for a range of Reynolds 
numbers up to 104; 

Comparison of the present results with experimental 
data and empirical correlations showed that the predic-  

 

 

Figure 8. Time series (left) and Power spectrum (right) of 
CL for mass rate flow of 0.5 kg/sec. 
 

 

Figure 9. Oscillations lift coefficient (curve 1) and ball 
vibration (curve 2) versus time. 
 
tions obtained by CFD software successfully reproduced 
most of the flow features associated with the vortex 
shedding; 
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This study demonstrates that it’s possible to control 
vibration in a hydraulic system. 
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