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ABSTRACT 

The harmonic index of a graph  is defined as G  
     

2

uv E G

H G
d u d v


 , where  denotes the degree of a 

vertex  in . In this work, we give another expression for the Harmonic index. Using this expression, we give the 
minimum value of the harmonic index for any triangle-free graphs with order  and minimum degree 

 d u

u G
n k   for 

2k n  and show the corresponding extremal graph is the complete graph ,k nK k . 
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1. Introduction 

All graphs considered in the following will be simple. 
Let  be a graph with vertex set  and edge set 

. The order and size of graph  are the number 
of its vertices and number of its edges, respectively. For 
undefined terminology and notations, we refer the reader 
to [1]. 
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For a graph G , the harmonic index  H G  is 
defined as 
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It has been found that the harmonic index, which is a 
special case of general sum-connectivity index, correlates 
well with the Randić index [2,3] and the -electronic 
energy of benzenoid hydrocarbons [4,5]. In [6], Favaron 
et al. considered the relation between harmonic index 
and the eigenvalues of graphs. Zhong [7] found the mini- 
mum and maximum values of the harmonic index for 
connected graphs and trees, and characterized the corre- 
sponding extremal graphs. Recently, Wu et al. [8] give a 
best possible lower bound for the harmonic index of a 
graph (a triangle-free graph, respectively) with order  
and minimum degree at least two and characterize the 
extremal graphs. In this work, we will give a best  

π

n

possible lower bound for the harmonic index of a tri- 
angle-free graph with order  and minimum degree at 
least . We show the corresponding extremal graph is 
the complete bipartite graph . 

n

K
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2. Another Expression for the Harmonic  
Index 

Before we go forwards to investigate the relationship 
between the Harmonic index and the minimum degree 
 G  of triangle-free graphs, we will give another 

expression for the Harmonic index in this section, which 
is vital in sequel. 

Let  be a graphs with order n  and minimum 
degree 

G
 G k . Denote by ,i jx  , the num- 

ber of edges joining the vertices of degrees  and . 
Denote by  the number of vertices of degree of . 
Then 

 ,i jx 0
i j

iin

  ,
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H G
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1 1 .k k nn n n n                 (2) 

By counting the edges that incident to a vertex of 
degree , i , , 1i k n  , one obtains 

1 1

, , , ,

1
2 ,    . .   2 .
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x x in i e n x x
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      (3) 
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Substituting Equation (3) back into Equation (2) and 
performing appropriate rearrangements, we get 
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Now, rewriting Equation (1) as 
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and combining Equations (4) and (5) so as to eliminate 
the term  ii x i , we arrive at 
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Remark 2.1 From (7), we see that  
2

n
H G   for  

-n
G

vertex graph  and the equality holds if and only if 
 is regular. 

G

3. Main Results 

First, we give a lower bound for any triangle-free graph 
with order  and size .  n m

Lemma 3.1 For any triangle-free graph G  with 
order  and size , then n m

  2
,

m
H G

n
  

where equality holds if and only if  is of the form 
 for some natural numbers , and  

m
=m p n p  p

,p n pG K .  

Proof. For any edge  of G , we have  
, or it would contain triangle(s). By (1), 

we have 
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equality holds if and only if  for every 
. Thus, if we denote  for an edge 

, then each of the  neighbors, including v , of  
should has degree . Similarly, each of the 
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neighbors of  has degree . Therefore, v p  pm p n   
and . ,k n kG K
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Theorem 3.3 Let  be a triangle-free graph with 
order  and the minimum degree   

G
n  G k 

 2k n . Then 
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where equality holds if and only if .  ,k n kG K 
GProof. Assume  is the size of graph . We divide 

the proof into the following two cases. 
m

Case 1.  m k n k  . The result follows by Lemma 
3.1. 

Case 2.  m k n k  . Note that the maximum degree 
 G n k    for graph , or it would contain 

triangle(s). By (6) and Lemma 3.2, we have 
G

 

 

 

,
1

,

,

,

1 1 1 4

2 2

1 1 1 4

2 2

1 1 1 4

2 2

1 1 1 4

2 2

1 1 4

2 2

1 1 4

2 2

2

i j
k i j n

i j
k i j n k

i j
k i j n k

i j
k i j n k

n
H G x

i j i j

n
x

i j i j

n
x

k n k n

n
x

k n k n

n m

k n k n

k n kn

k n k n

k n k

n

   

   

   

   

 
     

 
     

      

      

      
       












.

 

For equalities to hold above, we must have  
  ,k n km k n k x    , which means that ,k n kG K  . 
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