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ABSTRACT 

The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni 
convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for an upper 
free/adiabatic and lower rigid/isothermal boundaries. The microrotation is assumed to vanish at the boundaries. A linear 
stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on 
the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and their 
comparative influence on onset is discussed. 
 
Keywords: Rayleigh-Bénard-Marangoni; Non-Uniform Temperature Gradient; Electric Field; Micropolar Fluid;  
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1. Introduction 

Convection due to variations of densities between two 
parallel plates caused by temperature difference and va- 
riations of temperature dependence surface tension in a 
horizontal fluid layer is of great importance because of 
its applications in science and engineering. Such convec- 
tion in literature is known as Rayleigh-Bénard and Bé- 
nard-Maangoni convection. The developments of con- 
vection and corresponding heat transfer are examples of 
the physical phenomena to be encountered in these types 
of problems. The flow associated with Rayleigh-Bénard 
convection and Marangoni convection has been exten- 
sively reviewed in the literature. Particularly, Marangoni 
convection is found to be of importance in crystal growth 
melts and nucleate boiling. The problem of onset of con- 
vection driven by the combined effect of buoyancy and 
surface tension is also important in understanding many 
practical problems.  

Pearson [1] was the first person to give a detailed 
mathematical analysis for the onset of convection driven 
by surface tension gradients. Nield [2] studied the prob- 
lem of onset of convection driven by the combined effect 
of buoyancy and surface tension. Later many authors, 
Rudraiah [3], Maekawa and Tanasawa [4] studied the  

onset of convection in a horizontal layer of Newtonian 
fluid driven by both surface tension variations and 
buoyancy force by considering the non-deformable sur- 
faces. The corresponding problem with deformable boun- 
daries is studied by Sarma [5,6], Takashima [7], Wilson 
[8,9], Hashim and Wilson [10].  

The application of strong electric field in a poorly conduct- 
ing fluid can induce bulk motions. This phenomenon is 
known as Electro convection. In recent years, the study of 
the interaction of electromagnetic fields with fluid stated gain 
attention with the promise of new applications. Onset of na- 
tural convection in the presence of external electric field had 
been studied by Turnbull [11], Turnbull and Melcher [12], 
Takashima and Aldridge [13], Stiles [14], Stiles et al. [15], 
Siddheshwar [16], Siddheshwar and Abraham [17,18], Sidd- 
heshwar and Chan [19], Shivakumara et al. [20], Rudraiah et 
al. [21] and Siddheshwar and Radhakrishna [22]. 

Most of the previous studies were concerned with convec- 
tion in Newtonian fluids. However, very less work has been 
done on convection in micropolar fluid with electric fields. 
The theory of micropolar fluids, developed by Eringen [23] is 
the best established theory of fluid with microstructure. 
Physically, the micropolar fluid consists of small, rigid, cylin- 
drical suspended particles. Many classical flows were re- 
examined using the micropolar fluid to study the effect of 
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fluid microstructures. Thermal convection in micropolar flu- 
ids with uniform and non-uniform temperature gradients was 
studied by many authors (Datta and Sastry [24], Siddheshwar 
and Pranesh [25-27] Pranesh and Riya Baby [28], Pranesh 
and Arun Kumar [29]). The main result of all these studies is 
that the micropolar fluid heated from below is more stable 
compared to the fluid without suspended particles. To the best 
of our knowledge not much work is done in this field, except 
the above mentioned. 

The main objective of this paper is to provide the theoreti- 
cal framework for studying the thermo capillary instabilities 
in the presence of buoyancy instability in earth laboratories 
for electrically conducting micropolar fluid layers under an 
AC electric field and non-uniform temperature gradients. Ei- 
gen value of the problem is obtained using single term Gal- 
erkin method. 

2. Mathematical Formulation  

Consider an infinite horizontal layer of a Boussinesquian 
micropolar fluid layer of depth “d”. The uniform electric 
field is directed along z-axis (see Figure 1). A Cartesian 
coordinate system is taken with the origin in the lower 
boundary and z-axis vertically up-wards. Let  be the 
temperature difference between lower and upper bounda- 
ries of the fluid. The interface at the upper boundary has 
a temperature dependent surface tension 

T

 T . Ex- 
panding  by Taylor series about T0, we get  T

  0 1 0T T     T                    (1) 

where, 
0

1

d

d TT

    
 

 and . The form of 

 in Equation (1) was used by Pearson. 

 0 T  0

 T
The governing equations for the problem are: 
Equation of continuity: 

0 q                    (2) 

Conservation of Linear Momentum: 

 

   

0

2ˆ 2

t

p gk



   

    

         

q
q q

q P ,E

  (3) 
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Figure 1. Schematic diagram of Rayleigh-Bénard situation 
for a fluid with suspended particles. 

Conservation of Angular Momentum: 

 

       2 2 ,

o I
t



   

    
           

q

q

 

  
   (4) 

Conservation of Energy: 

2
0 1 ,VE

o v

T
C T

t C




  
          

q  K T

.o

   (5) 

Equation of State: 

 1o T T                  (6) 

Equation of State for Dielectric Constant: 

 0
0 ,r r e T T                  (7) 

Faraday’s Law: 

0, ,   E E           (8) 

Equation of Polarization Field: 

   0, 1o o       rE P P E          (9) 

where,  is the velocity, q   is the spin,  is the hy- 
drodynamic pressure, T is the temperature o

p
  is the 

density of the fluid at a reference temperature 0T T , 
  is the coupling viscosity coefficient,   is the shear 
kinematic viscosity coefficient, I is the moment of inertia, 
  and   are bulk and shear spin viscosity coeffi- 
cients,   is a Micropolar heat conduction coefficient, 

 is the specific heat, vc   is the thermal conductivity, 
  is the coefficient of thermal expansion, E is the 
electric field, is the dielectric polarization, oP   is the 
electric permeability of free space and r  is the dielec- 
tric constant.  

The “Equations (2)-(9)” are solved subject to contain- 
ment conditions appropriate for a rigid and thermally 
perfect conducting wall on the underside and a free sur- 
face on the upper side. This free surface is adjacent to a 
non-conducting medium and subject to a constant heat 
flux. Further, the no-spin boundary condition is assumed 
for micro-rotation. Since the shear stress for a non-clas- 
sical fluid with suspended particles is no different from 
that of classical fluids, the boundary conditions for flat 
free boundaries used by Nield [2] in respect of Newto- 
nian fluids are appropriate for micropolar fluids also. 

In the quiescent state the velocity , the spin q  , the 
temperature T, the electric field E , the pressure , the 
density 

p
 , the dielectric polarization  have the fol- 

lowing solution:  
P

   

 

ˆ0, 0, ( ), , ,

d

d

b b b

b

p p z E z k T T z

Td
f z

T z

    



 
 

q E

  

(10) 
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where  f z  is a non-dimensional basic temperature  

gradient, satisfying the condition .  1

0
d 1f z x 

Since the aim of the present study is to understand 
control of convection in a micropolar fluid layer by dif- 
ferent basic temperature profiles, the various non-uni- 
form basic temperature gradients considered in this study 
are represented in Table 1. 

This type of basic temperature gradients arises due to 
sudden heating or cooling, radiation, through flow, etc. 

In order to investigate the stability of the basic solution, 
infinitesimal disturbances are introduced in the form:  

 
 

1 3

1 3

, , , ,

, , , .

b b b b

b b b

p p p E E

T T T P P  

            , 


         

q q q E E

P P

  

(11)

    where the primes indicate that the quantities are infini- 
tesimal perturbations assumed to be small and subscript 
‘b’ indicates basic state value. 

    

 

We assume the principal of exchange of stability to be 
valid and hence deal with only stationary convection. 
Introducing the electric potential   and substituting 
“(11)” into “(2)-(9)” and using the basic state solution 
(10), we get linearized equation governing the infini- 
tesimal perturbations in the form: 

0  q                (12) 

  

   

2ˆ 2

,

o

b b

p gk
t

    
            

   

q
q

P E P E


 (13) 

       2 2 ,

o I
t



   

 
  
              q


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  (14) 

 
o v

T T
f z

t d c




       
q  

 ,       (15) 

oT   
.                 

(16) 

 
Table 1. Non-uniform basic temperature gradient profile. 

Model Basic temperature gradients f(z)
 

1 Linear 1 

2 Heating from below 
1 0

0 1

z

z

 


  


 
 

3 Cooling from above 1

0 0 1

1 1

z

z


 

  


  

4 Step function  z   

5 Inverted Parabolic  2 1 z  

6 Parabolic 2z  

The perturbation “(12)-(15)” are non-dimensionalised 
using the following definitions: 

   
 

   

 

2 2

3
0

, ,
*, *, * , ,

, ,

, .

1 e

x y z W
x y z W

d d

t T
t T

Td d

eE Td d




 







  

 




 
  



,
  

   
 

    
  
    

w

      (17) 

Using “(16)” in “(13)”, operating curl twice on the re- 
sulting equation, operating curl on “(14)” and non-di- 
mensionalising the two resulting equations and also 
“(15)”, we get  

 

     

2 4 2
1 1 1

2 2
1 1

1

0,

zR T N W N

L Tf z L f z
z



      


    


        (18) 

2 2
3 1 12zN N W N 0z       ,         (19) 

   2
5 0zT W N f z     ,          (20) 

2 0
T

z
 

  


.                 (21) 

where the non-dimensional parameters N1, N3, N5, R and 
L are given by : 

1N


 



 

(Coupling Parameter), 
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N
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(Couple Stress Parameter), 
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N
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
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(Micropolar Heat Conduction Parameter), 

 
3

o g Td
R
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  





 

(Rayleigh number), 
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1 1
o o

o e

e E T
L

g h


  





 The infinitesimal perturbations W, Ωz, T and ϕ are as- 

sumed to be periodic waves and hence these permits and 
normal mode solution in the following form: 

(Electric Rayleigh number). 

   
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z
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0,

where l and m are the horizontal components of the wave 
number . a 2 2

0, at 0.

0, at 1.

W DW T G z

W D W a MT DT G z

     
      

   (27) 

We substituting “(22)” into “(18)-(21)”, then we get 

    
   

22 2 2 2 2
1 1

2 2

1

0,

N D a W Ra T N D a G

La Tf z La D f z

    

  
   (23) 

where M  is the Marangoni number. 
“(27)” indicates the use of rigid, isothermal lower 

boundary and upper, free, thermally insulating boundary 
(with respect to perturbation). The condition on G is 
spin-vanishing boundary condition.  

   2 2 2 2
3 1 12N D a G N G N D a W        (24) We now use the single term Galerkin expansion tech- 

nique to find the critical eigenvalue. Multiplying “(23)” 
by W, “(24)” by G, “(25)” by T and “(26)” by  , inte- 
grating the resulting equations by parts with respect to z 
from 0 to 1, using the boundary conditions “(27)” and 
using W = AW1, G = BG1, T = CT1 and 1E 

 
in which 

A,B,C and E are constants and W1, G1, T1 and 1  are 
trial functions, yield the following equation for the Ma- 
rangoni number M: 

     2 2
5 0D a T W N G f z   

,
      (25) 

 2 2 0D a DT   ,          (26) 

where 
d

d
D

z
  and . 2 2a l m  2

In “(23)-(26)”, the asterisks have been omitted. 

    
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1 3 1 1 2 4 2 5

2
1 1 1 21 1 1
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M
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

     

(28) “(23)” and “(26)” are solved subject to the following 
boundary conditions: 
 
where,  
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  

 

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

,

 

 
3. Result and Discussion In “(28)”,    denotes integration with respect to 

 between  and . z 0z  1z 
As per the motivation stated in the introduction to the 
paper we consider the effects of electric Rayleigh num- 
ber, micropolar fluid parameters and non-uniform basic 
temperature distribution on the onset of Rayleigh-Bé- 
nard-Marangoni convection in a micropolar fluid layer. 
These three effects are respectively represented by the L, 
(N1, N3 and N5) and f(z) in the Eigen value “(28)”. Due to 
the thermodynamics restrictions the following values of 
N1, N3 and N5 are chosen:   

 1 1 1 1, , ,M W G T   in “(28)” is a functional and Euler- 
Lagrange equations for the extremisation of M “(23)- 
(26)”.  

The trial functions satisfying “(27)” are 

 
 
 
 

2 2
1

1

1

2 2
1

1 ,

2 ,

1 ,

3 2 .

W z z

T z z

G z z

z z z

 

  


  
  

            (29) 

1 30 1; 0 ; 0N N m N5 n       

where, m and n are finite, positive real numbers (see 
Siddheshwar and Pranesh [29]) and the values of L are 
those chosen for Newtonian fluid problems. One linear 
and five non-linear basic temperature gradients are con- 
sidered in the study (see Table 1). The results obtained 
in the study are depicted by the Figures 2-5. It is observ- 

such that they satisfy all the boundary conditions “(27)” 
except the one given by 2 2 0D W a MT   at 1z  , but 
the residual from this is included in the residual from the 
differential equations. Substituting “(29)” in “(28)” and 
performing the integration, we can calculate the critical 
Marangoni number Mc which attains its minimum at . 2

ca
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ed that for the critical Marangoni number, Mc, the fol- 
lowing inequality holds for the six models chosen in the 
study: 

4 3 6 2 1c c c c c 5cM M M M M M     , 

i.e., step function is the most destabilizing temperature 
profile and inverted parabolic temperature is the most 
stabilizing temperature profile. In the case of piecewise 
linear and step function profiles, the critical Marangoni 
number, Mc, depends on the thermal depth, ε, in addition 
to depending on the parameters of the problem. In the  

case of piecewise linear profile heating from below, 
cooling from above and step function profiles, the mini- 
mum value of Mc is attained at ε = 0.95, ε = 0.45 and ε = 
0.75 respectively. With the above background and with 
the motive specified in the introduction we now discuss 
the results presented by the Figures 2-5. 

Figure 2 is the plot of critical Marangoni number Mc 

versus coupling parameter N1 for different non uniform 
temperature gradients and for different electric Rayleigh 
number L. Clearly Mc increases with N1. Increase in N1 
indicates increase in the concentration of micro elements. 
These elements consume the greater part of the energy of  
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Figure 2. Plot of critical Maragoni number Mc versus coupling parameter N1 for different non -uniform temperature gradi- 
ent and different electric Rayleigh Number L. (a) Linear, (b) Heating from below, (c) Cooling from above, (d) Step function, 
(e) Parabolic, (f) Inverted parabolic. 
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Figure 3. Plot of critical Maragoni number Mc versus coupling parameter N3 for different non-uniform temperature gradient 
and different Electric Rayleigh number L. (a) Linear, (b) Heating from below, (c) Cooling from above, (d) Step function, (e) 
Parabolic, (f) Inverted parabolic. 
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Figure 4. Plot of critical Maragoni number Mc versus coupling parameter N5 for different non-uniform temperature gradient 
and different Electric Rayleigh number L. (a) Linear, (b) Heating from below, (c) Cooling from above, (d) Step function, (e) 
Parabolic, (f) Inverted parabolic. 
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Figure 5. Plot of critical Maragoni number Mc versus coupling parameter N1 for different non-uniform temperature gradient 
and different Rayleigh number R. (a) Linear, (b) Heating from below, (c) Cooling from above, (d) Step function, (e) Parabolic, 
(f) Inverted parabolic. 
 
the system in developing the gyrational velocity of the 
fluid and as a result the onset of convection is delayed. 
Therefore, the increase N1 is to stabilize the system. It is 
also observed that increase in electric Rayleigh number 
decreases the Mc. Electric Rayleigh number L is the ratio 
of electric force to gravitational force. Thus, L has a de- 
stabilizing effect on the system. 

Figure 3 is the plot of Mc versus coupling stress pa- 
rameter N3 for different non uniform temperature gradi- 
ents and for different electric number L. Clearly Mc de- 
creases with increase in N3. Increase in N3, decreases the 
couple stress of the fluid which causes a decrease in mi- 

crorotation and hence makes the system more unstable. 
Figure 4 is the plot of Mc versus micropolar heat con- 

duction parameter N5 for different non uniform tempera- 
ture profiles and for different electric number L. Clearly 
Mc increases with N5. When N5 increases, the heat in- 
duced in the fluid due to these microelements also in- 
creases which reduces the heat transfer from bottom to 
top. The decrease in heat transfer is responsible for de- 
laying the onset of instability. Thus increase in N5 is to 
stabilize the system. 

Figure 5 is the plot of Mc versus coupling parameter 
N1 for different non uniform temperature gradients and 
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for different Rayleigh number R. Clearly Mc increases 
with N1. It is also observed that the increase in R de- 
creases the Mc and ultimately we get the case of convec- 
tion dominated by buoyancy force. 

From the Table 2 it is clear that with an increase in N1, 
Mc becomes zero for higher values of R compared to 
Newtonian fluids. Similar results have been obtained in 
respect to the influences of N3 and N5. Treating Maran- 
goni number as the critical parameter we find from the 
Table 3 that any particular infinitesimal disturbance can 
be destabilized with electric field. The results of the Ta- 
ble 3 are in respect of linear temperature gradient. This 
general observation on the destabilizing influence of 
electric field, however holds good for the other five tem- 
perature gradients as well. From Table 3 as well as Ta- 

ble 2, we also note that as R increases Mc decreases. 
From Table 4, it is found that the critical wave number is 
in general insensitive to the changes in the micropolar 
parameters but is influenced by the electric field. This 
indicates that, the convection cell at the onset increases 
in size with the increase in electric field. In the limit L 
tends to zero, we recover the results of Siddheshwar and 
Pranesh [29] for Chandrasekhar number tends to zero 
from the present study. 

The above result indicates that externally applied elec- 
tric field is an effective means of controlling, Rayleigh- 
Bénard-Marangoni convection in mircopolar fluids. The 
result also suggests that Rayleigh-Bénard-Marangoni 
convection in Newtonian fluids may be delayed by add- 
ing micron sized suspended particles. Further by creating  

 
Table 2. Critical Marangoni number (Mc)j (j = 1 to 6 ) for different values of L, R and N1, L = 100, N3 = 2.0, N5 = 1.0. 

N1 R Mc1 Mc2 Mc3 Mc4 Mc5 Mc6 

0.5 0 94.4581 83.1598 69.7583 17.9915 148.788 66.3832 

 100 90.8073 79.509 75.8051 14.3407 145.137 62.7324 

 492.78 76.4677 65.1694 61.4655 0.001156 130.797 48.3928 

 500 76.2042 64.9058 61.2019 −0.26243 130.534 48.1292 

 1000 57.9502 46.6518 42.9479  112.28 29.8753 

 1818.29 28.0761 16.7778 13.0738  82.4057 0.001178 

 2176.39 15.0026 3.70426 0.0003483  69.3322  

 2277.85 11.2985 0.000167   65.6281  

 2500 3.18829    57.5179  

 2587.32 0.0004127    54.33  

 4075.47     0.0007194  

        

1.0 0 126.791 117.888 111.67 32.9602 228.56 85.6961 

 100 124.053 115.15 108.932 30.2221 225.822 82.958 

 500 113.101 104.197 97.9798 19.2698 214.87 72.0056 

 1000 99.4104 90.5069 84.2893 5.57929 201.179 58.3151 

 1203.75 93.8315 84.9281 78.7105 0.000422 195.601 52.7363 

 2500 58.3389 49.4355 43.2179  160.108 17.2437 

 3129.69 41.0974 32.194 25.9764  142.867 0.002182 

 4078.39 15.1211 6.21768 0.0000763  116.89  

 4305.47 8.90344 0.0000154   110.673  

 4630.59 0.0013457    101.77  

 8347.39     0.0009143  
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Table 3. Critical Marangoni number Mc for different val- 
ues of L and R with f(z) = 1, N1 = 0.5, N3 =2.0, N5 = 1.0. 

 L = 0 L = 100 L = 200 L = 500 

R Mc Mc Mc Mc 

0 98.5737 94.4581 90.3407 77.9774 

100 94.9229 90.8073 86.6899 74.3266 

200 91.2721 87.1565 83.0392 70.6758 

1000 62.0657 57.9502 53.8328 41.4694 

2135.89 20.5967 16.4812 12.3638 0.000432

2474.48 8.2355 4.11997 0.002584  

2587.33 4.11558 0.00004762   

2700 0.002234    

 
Table 4. The values of critical wave number  for various 

values of N1, N3, N5 and L with f(z) = 1 and for all values of 
R. 

2
ca

L = 100, R = 100 L = 200, R = 100 

N1 N3 N5 
2
ca  N1 N3 N5 

2
ca  

0.1 2 1 5.85319 0.1 2 1 5.7939 

0.5   5.85469 0.5   5.81864

1   5.75689 1   5.73666

0.1 2 1 5.85319 0.1 2 1 5.7939 

 4  5.85167  4  5.7939 

 6  5.85103  6  5.7939 

0.1 2 0.5 5.85319 0.1 2 0.5 5.7939 

  1 5.85319   1 5.7939 

  1.5 5.85319   1.5 5.7939 

 
conditions for an appropriate basic temperature gradient, 
we can also make an appropriate decision delaying the 
convection. It has been observed that parabolic tempera- 
ture profile is the most stabilizing temperature profile 
and step function is the most destabilizing temperature 
profile. 
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