
Applied Mathematics, 2013, 4, 161-170 
http://dx.doi.org/10.4236/am.2013.48A022 Published Online August 2013 (http://www.scirp.org/journal/am) 

Mathematical Modeling of Hydrogels Swelling Based on 
the Finite Element Method 

Armando Blanco1,2, Gema González1, Euro Casanova2, María E. Pirela1,3, Alexander Briceño3 
1Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela 

2Departamento de Mecánica, Universidad Simón Bolívar, Caracas, Venezuela 
3Centro de Química, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela 

Email: ajblanco@usb.ve, gemagonz@ivic.gob.ve, ecasanov@usb.ve, mariapirelabracho@gmail.com, abriceno@ivic.gob.ve 
 

Received May 25, 2013; revised June 25, 2013; accepted July 5, 2013 
 

Copyright © 2013 Armando Blanco et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

In recent years, hydrogels have been introduced as new materials suitable for applications in areas such as biomedical 
engineering, agriculture, etc. The rate and degree of hydrogel swelling are important parameters that control the diffu- 
sion of drugs or solvents inside a polymer network. Therefore, the description of the dynamic swelling process of the 
hydrogels is very important in applications that require precise control of the absorption of solvents inside the hydrogel 
structure. To date, most of the numerical models developed for describing the swelling process are based in the finite 
difference methods. Even though numerical models supported in finite differences can be easily implemented, their use 
is limited to samples with very simple shapes. In this paper, a new model based on the finite element method is pro- 
posed. The diffusion equation is solved in a time-deformable grid. An original procedure is proposed to numerically 
solve the non-linear algebraic equation system that permits computing a new grid for each time-step. Hydrogel samples 
of different shapes were prepared in order to conduct experimental tests to validate the numerical proposed model. Nu- 
merical results show that the new model is able to describe the mass and shape changes in the hydrogel samples in time. 
An application of the numerical model to determine the relation between diffusion coefficients and density in Poly-
acrylamide samples allows verifying the versatility of the model. 
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1. Introduction 

Hydrogels are cross-linked polymeric networks that have 
the capability to hold water within their porous structure. 
This property allows using them in applications that re- 
quire either to absorb or to expel liquids from or towards 
the environment in which the hydrogel is immersed. Hy- 
drogel applications cover areas such as biomedical engi- 
neering, pharmaceutical industry, agriculture, etc. [1]. Some 
applications involve capturing or delivering liquids or 
mixtures in a dynamically controlled way, at predeter- 
mined rates for predefined periods of time. During the 
water uptake or delivery process, hydrogels could ex- 
perience volume changes of several orders of magnitude. 
According to Singh et al. [2], hydrogels can absorb 
amounts water nearly 10 - 20 times their molecular 
weight. Consequently, when a dry solid hydrogel sample 
is immersed in water, it suffers a continuous volume trans- 
formation until the ultimate, and completely swollen state 
is reached [1]. 

Depending on the application considered, dynamical 
description of the swelling process could be important. In 
some applications, only equilibrium hydrogel states need 
to be considered and the dynamic transient swelling proc- 
ess of the hydrogel does not need to be described [3-5]. 

However, some applications require prior knowledge 
of the transient behavior of the process of uptake or de-
livery of drugs or solvents. For example, the description 
of the dynamic swelling process of the hydrogels is very 
important in applications that require precise control of 
the absorption of solvents inside the hydrogel structure. 

Qualitative descriptions of the polymer relaxation pro- 
cess are reported by several authors [6,7]. Figure 1 shows 
a diagram of the water sorption process into a hydrogel 
slab sample. 

Initially, a macroscopically homogeneous dry hydrogel 
sample is immersed in water. Depending on the particu- 
lar characteristics of the hydrogel sample (material com- 
ponents, polymer structure and porosity), it can retain a 
maximum value of water in its structure (water equilib- 
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Figure 1. Qualitative description of polymer relaxation dur-
ing water sorption into a slab geometry (adapted from [6]). 
White areas represent glassy polymer regions. Solvent ab-
sorption corresponding to state (a) to (d) are detailed in the 
text. 

 
rium concentration value). Therefore, water penetrates 
the dry polymer sample travelling from the hydrogel sur- 
face to its interior starting the hydrogel swelling process 
(Figure 1(a)). Thus, simultaneously, the surface of the 
hydrogel sample (swelling front) moves away from its 
core, while a mobile interface that separates dry and hy- 
drated polymer is displaced inside of the dry sample (Fig-
ure 1(b)). During this process, depending on the specific 
geometrical characteristic of the hydrogel sample, water 
concentration can reach its equilibrium value in the swell- 
ing front, or the dry-hydrated polymer interface disap- 
pears because water is present in all places of the hy- 
drogel sample (Figure 1(c)). Finally, water local concen- 
tration reaches its equilibrium value all around the hy- 
drogel sample (Figure 1(d)). 

To describe the process of hydrogel volume change 
driven by water diffusion, different mathematical models 
have been developed. One approach is the so-called 
power-law equation where a simple empirical equation, 
developed by Peppas and Korsmeyer [8], assumes a 
time-dependent power law function which is used to de- 
termine the mechanism of diffusion in polymeric net- 
works 

ntM
kt

M

                    (1) 

where Mt and M∞ are the cumulative amounts of water at 
time t and infinite time (equilibrium), respectively, k is a 
structural/geometric constant for a particular system and 
n is designated as “release exponent” representing the 
release mechanism [9]. 

Variations to the power-law function approach have 
been made in order to improve its capabilities to take into 
account some weaknesses. In particular, to take into ac- 
count both the solvent diffusion and the polymer relaxa- 
tion, Equation (1) was modified by Peppas and Sahlin 
[10]: 

2
1 2

ntM
k t k t

M

  n           (2) 

where k1, k2, and n are constants. Terms on the right side 
represent the diffusion and polymer relaxation contribu- 
tion to the release profile, respectively. 

Despite their simplicity, two drawbacks of the power- 
law function approach limit its use. First, it is necessary 
to determine the k’s and n coefficients, for each geomet- 
rical shape and size of the hydrogel sample. Second, no 
details of internal diffusion process such as position of 
the dry-hydrated polymer interface can be provided.  

Another family of models have considered the combi- 
nation of the kinematics of the deformation, the presser- 
vation of solvent molecules, the local equilibrium condi- 
tions and the kinetics of the molecule migration, in order 
to simultaneously calculate the temporal evolution of the 
chemical potential of the solvent and the deformation of 
the hydrogel [11]. This approach can be implemented 
using a variational formulation, which leads to a set of 
coupled governing equations that describe mechanical 
and chemical equilibrium conditions, along with adequate 
boundary conditions [12,13]. The finite element method 
is frequently used to discretize the resulting system of 
differential partial Equations. 

Even if such implementations enable numerical simu- 
lations of hydrogel swelling under various constraints, 
the later approach requires knowing or estimating a large 
number of physical parameters, such as, for example, 
values of the volume per solvent molecules, the envi- 
ronmental temperature, two dimensionless material pa- 
rameters to represent the Flory-Rehner free-energy den- 
sity function, besides of the coefficient of diffusion of the 
solvent in the hydrogel [11]. 

Between the two approaches described, a third class of 
models is found. In this approach, mathematical models 
based on Fick’s laws of diffusion [10] overcome limita- 
tions of the power-law Equation model and they do not 
require a very large number of parameters. In these mod- 
els, change in solvent concentration inside the hydrogel 
matrix are computed from [14] 

C D C
t


  


               (3) 

where C is the mass fraction of solvent in the hydrogel 
matrix, and D is the diffusivity. If the hydrogel deforma- 
tion due to osmotic stress is taken into account, Equation 
(3) can be modified to consider an elastic stress diffusion 
coefficient and the internal stress state of the polymer [9]. 
Nevertheless, for simple systems, authors as Rossi and 
Mazich [15,16] and Mazich et al. [17] have established 
that Fick’s law of diffusion is completely adequate to 
describe the swelling process. 

However, mathematical modeling of the hydrogel swell- 
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ing process using Equation (3) needs to consider two 
different elements: the mathematical expression of the 
diffusivity coefficient and the volume change of the hy- 
drogel matrix during the swelling process. First, to de- 
scribe the diffusion process in the hydrogel matrix, the 
diffusivity coefficient cannot be considered constant. Good 
results [18,19] have been obtained by expressing the dif- 
fusion coefficients with a Fujita-type exponential de- 
pendence [20]. 

In addition, due to the intrinsic nature of the diffusion 
and penetration of the solvent in the matrix, the boundary 
between the hydrogel and the environment in which is 
immersed, the swelling front, moves during the swelling 
process (Figure 1). Consequently, the solution domain of 
the diffusion Equation (3) changes in time and a moving 
boundary condition needs to be included. 

As a consequence of these last considerations, there 
are no analytical solutions to the mathematical model (3) 
with mobile boundary conditions, and these equations 
must be solved using a numerical method. 

To date, most of the numerical models developed are 
based on the finite difference methods. Even though nu- 
merical models based on in finite differences can be eas- 
ily implemented, their use is limited to samples whose 
shape is very simple. Consequently, most applications 
are developed considering axial and radial diffusion within 
cylindrical tablets [18]. 

Figure 2 shows the typical representation of the cylin- 
drical tablets and the symmetry plane and the symmetry 
axis, indicating the rectangular domain that represents 
the overall cylindrical tablet. The plane z = 0 cuts just in 
the top half of the tablet. The z-axis is a symmetry axis. 
Thus, a reduced computational domain, the rectangle 
OABC, can be used to model the solvent inflow into the  
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Figure 2. Rectangular domain OABC representing overall 
cylindrical tablet for finite difference model. 

cylindrical tablet. In the domain OABC, a rectangular 
grid can be generated. Therefore, the diffusion equation 
is easily discretized using a finite differences scheme. 

During the swelling process, volume variations of the 
hydrogel sample are represented in a dynamically de- 
formable grid that is computed each time step. Mathe- 
matical models based on this approach have been suc- 
cessfully used in a vast range of applications [18,19]. 
Siepmann et al. [18] proposed a mathematical model for 
modeling the water transport into and drug release from 
hydroxypropyl methylcellulose (HPMC) cylindrical tab- 
lets. This model [18] considers that the tablet can swell in 
both axial and radial directions. The swelling is assumed 
to be ideal; the total volume of the tablet at any instant is 
given by the sum of the volumes of different components: 
polymer, water, and drugs. Thus, as the water penetrates 
the tablet, the total volume changes. In this manner, the 
tablet radius Rt and the half-height Ht change with time. 
A rectangular grid is defined in the region  = 0, 0  r  
Rt and 0  z  Ht. Once the new volume is computed in 
each time interval, the new values of Rt and the Zt are 
calculated. Due to that, [18] assumed that water imbibing 
in the axial direction leads to a volume increase in the 
axial direction, whereas water imbibing in the radial di- 
rection leads to a volume increase in the radial direction; 
the increase in volume in each direction is proportional to 
the surface area in this direction. In this approach, the 
shape of the tablet remains cylindrical during all the 
swelling process. 

However, as it has been shown by Achilleos et al. [21], 
swelling is not a continual process [1]. Achilleos et al. 
[21] have developed a technique for the real-time visu-
alization of dynamic deformation profiles during gel 
swelling processes. Achilleos et al. [21] visualizations 
allow appreciating that the evolution of the dry tablet 
shape does not necessarily preserve the initial cylindrical 
shape during all stages of the swelling process. When a 
hydrogel in its initial state is in contact with solvent 
molecules, the latter penetrate into the polymeric net- 
work. Obviously, the region close to the intersection be- 
tween the plane surface (z = Zt) and the cylindrical sur- 
face (r = Rt) is exposed to a solvent flow on both surfaces. 
Consequently, a more substantial increase in volume is 
expected in this region compared to the rest of the sur- 
face of the tablet. 

On the other hand, the use of finite difference schemes 
in hydrogel samples different from cylindrical tablets can 
be restrictive because of the difficulties to generate a 
computational grid where diffusion equations can be eas- 
ily discretized. When non-rectangular grids are consid- 
ered, the interpolation process at the boundaries requires 
special considerations. 

To overcome modeling difficulties associated to the 
sample shape, the finite element method can be used.  
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Finite element methods allow the use of adaptive grids 
non-restricted to rectangular elements. Therefore, non a 
priori restrictions to the sample shape during the swelling 
process need to be imposed. Additionally, initial sample 
shapes not limited to cylindrical tablets can be modeled. 
Even though the flexibility of the finite element method 
allows modeling arbitrary tridimensional sample shapes, 
for practical purposes, it is convenient, from a computa- 
tional point of view, to restrict sample shapes to bodies 
with a symmetry axis. Fortunately, this is the preferred 
shape in most practical applications. Figure 3 shows typi- 
cal shapes that can be easily modeled with this approach.  

In this study, the swelling dynamics of initially dry 
hydrogel samples is numerically modeled using the finite 
element method. Due to the numerical approach chosen, 
the sample shapes to be considered can correspond to 
those of any solid of revolution. The mathematical model 
is based on Fick’s second law of diffusion. The diffusion 
coefficient is expressed by a Fujita-type exponential de- 
pendence. The resulting equations are solved by using a 
deformable grid. Grid displacements are computed at the 
end of each time-step considering local variations in wa- 
ter concentration as a result of the diffusion process. The 
new positions of the grid nodes are computed by solving 
a set of non-linear equations that is solved for each time- 
step. This iterative process is done until the hydrogel 
sample reaches the final equilibrium state. Model valida- 
tion was performed by the comparison between numeri- 
cal results and laboratory tests, considering the swelling 
of hydrogel samples of different shapes (cylindrical tab- 
lets, conical and capsule samples). 

This paper is organized in the following way. First, the 
mathematical model is presented. Equations for modeling 
the water diffusion process and sample shape evolution  

 

(a) (b) (c) (d) (e)
 

Figure 3. Typical sample shapes and computational domain 
(in white) (a) cylindrical; (b) pastille; (c) capsule; (d) com-
posed cone-cylinder and (e) general axisymmetry. 

are developed. Then, a description of the numerical model, 
in particular, the specific implementation of the finite 
element model used to solve the diffusion equation and 
the finite difference scheme used to solve the grid equa- 
tions, is carried out. Later, the experimental section de- 
scribes the materials and methods used to prepare differ- 
ent hydrogel samples. Once the swelling laboratory tests 
for all hydrogel samples were finished, comparisons with 
numerical predictions were performed. Finally, following 
the analysis of results, model assumptions are evaluated 
and suggestions for further numerical and experimental 
work are provided. 

2. Mathematical Model 

In this study, the dynamics of the hydrogel swelling proc- 
ess is modeled. The following assumptions have been 
considered: 1) Dissolution processes are neglected, i.e., 
all solid material remains attached to the original sample; 
2) Swelling can be modeled as a pure diffusion process; 
3) Water concentration at the surface of the tablet is at its 
equilibrium value. 

As a consequence of assumption 2) and following [18, 
19], the mathematical model for modeling the water trans- 
port into the hydrogel samples is based on Fick’s second 
law of diffusion. A general sample and the cylindrical 
coordinate system are represented in Figure 4, just be- 
fore the swelling process starts. 

Each point P in the hydrogel sample is represented by 
the coordinates r,  and z. The radial coordinate r, repre- 
sents the distance between the projected point of P, P’, in 
the plane xy and the origin O of the coordinate system; 
the axial coordinate, z, is the coordinate along the sym- 
metry axis and  is the angle between the segment OP’ 
and the x axis. 
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Figure 4. General axisymmetrical sample and the coordi-
nate system. S is the sample surface. 
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As there is no concentration gradient of any compo- 
nent with respect to , in cylindrical coordinates, Fick’s 
second law (3) is expressed as: 

C C D C
D D

t r r r r z z

                  

C 



   (4) 

where C and D are the concentration and the diffusion 
coefficient of water, respectively, r is the radial coordi- 
nate, z is the axial coordinate and t represents time. 

To describe the diffusion process in the hydrogel ma- 
trix, the diffusivity coefficient is modeled following [18]. 
Thus, the diffusion coefficients is expressed with a Fu- 
jita-type [20] exponential dependence 

exp 1eq
eq

C
D D

C


  
      

           (5) 

where Deq and Ceq are the diffusion coefficient and sol- 
vent concentration in the equilibrium swollen state of the 
system, respectively, and  is a dimensionless constant 
characterizing the concentration dependence of D. 

The hydrogel sample is allowed to swell, independ- 
ently, in both axial and radial directions. The swelling is 
assumed to be ideal. Hence, the total volume of the sam- 
ple at any instant is given by the sum of the volumes of 
polymer and water. However, unlike the approach of [18], 
the hydrogel shape is not necessarily a cylindrical tablet. 
In particular, any form that corresponds to a solid of 
revolution can be modeled, as it is shown in Figure 4. 

At t = 0, the sample is dry and thus the water concen- 
tration at any position inside the sample is equal to zero 
while that at the sample surface, S, the water concentra- 
tion is Ceq. Thus, the initial conditions in each point P of 
the hydrogel sample are expressed as: 

0;      0      inside the sample

0;       at the sample surfaceeq 

t C P

t C C P

  
  

    (6) 

During the swelling process, at the surface of the tablet, 
the concentration of water is assumed to be at its equilib- 
rium value, Ceq. This boundary condition is written as 
follow:  

0;       at the sample surfaceeq t C C P       (7) 

During the swelling process, as a consequence of wa- 
ter inflow inside the hydrogel sample, the volume of the 
sample will change. Therefore, solution of the diffusion 
equation requires considering that the physical domain is 
changing along the swelling process. In addition, the sam- 
ple shape at each time is not known in advance and it is 
part of the solution. 

3. Numerical Model 

In this work, no assumption regarding the sample shape 
evolution was considered. In addition, because sample 

shapes are not limited to cylindrical tablets, the selected 
numerical method should be able to manage irregular 
meshes. For these reasons, the finite element was chosen 
to discretize the mathematical model. 

3.1. Finite Element Formulation 

In order to obtain the finite element formulation of the 
problem, a weighted residual method, using the Galerkin 
formulation [22], was employed. The residual is defined 
from Equation (4) as: 

  C C D C
R c D D

t r r r r z z

            
C 
        

    (8) 

This residual is minimized by imposing: 

 d
Vol

R C v  0               (9) 

where   is an arbitrary weight function that vanishes 
wherever a Dirichlet condition is specified, and dv = 
2πrdA since the problem is axisymmetric. 

Introducing (8) in (9) and manipulating the integrals, 
the weak formulation of the problem is obtained: 

d d

d 0

A A

C C
r A D r A

t r r z z

C C
r s

r z

 




            
       

 



C



A

   (10) 

Using a Galerkin approach, the concentration and the 
weight function are interpolated from the nodal values by 
mean of the same matrix of interpolating functions: 

 
e
t

e



 Ψ

C NC

N
              (11) 

With these interpolations, Equation (10) is transformed 
to: 

     
T 0e e e e e e

t t t
e

   Ψ M C K C f     (12) 

where  and  are element matrices and vec- 
tors: 

,e eM K  
e
tf

T d
e

e

A

r A M N N           (13) 

T d
e

e

A

D r K B B            (14) 

 
T d

e

e
t

C C
r s

r z

      f N         (15) 

where B  represents the matrix of the derivatives of the 
interpolation function. 

Finally, the finite element formulation of the problem 
is obtained by assembling all the elements in one equa- 
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tion: 

     t t MC KC f t

1

          (16) 

In this work, the finite element model was constructed 
using axisymmetric linear triangular elements of three 
nodes and one degree of freedom by node, corresponding 
to the concentration at that point. 

3.2. Grid Generation 

A grid made of triangular elements was generated in 
several steps for t = 0. Initially, the boundary profile of 
the symmetry plane of the hydrogel sample is repre- 
sented in the r-z plane (Step 0). Then, a first set of nr 
segments was generated by building a number of straight 
lines between the origin of the coordinate system and the 
external boundary of the sample (Step 1). Thus, a second 
set of nz lines is generated. Each line of this second set 
intersects those of the first set (Step 2). At this stage, the 
grid includes triangular and quadrilateral elements. Fi- 
nally, quadrilateral elements are divided to form triangu- 
lar elements (Step 4). Figure 5 shows the different steps 
for the generation of the initial grid. 

Figure 6 shows the grid and the associated computa- 
tional domain. 

A set of indices i and j, 1  i  nr and 1  j  nz, repre- 
sents each node (i, j) in the physical domain. Each node 
(i, j) has its representation in the computational domain. 
The origin in the physical domain is a “degenerated 
node”. It means that all nodes with j = 1 represent the 
origin O. 

The total number of nodes is nr  nz, whereas the total 
number of elements is .  2 1r zn n 

Once the hydrogel sample starts the swelling process, 
the physical domain, and consequently, the computa- 
tional domain changes and a new mesh must be gener- 
ated each time-step. Then, it is necessary to establish nr  
nz equations that allow computing the new position of 
each node. The ensemble of equations is derived from: 1) 
Restricting the grid nodes to move along the nr original 
lines (first set of lines); 2) symmetry condition along the 
z-axis and 3) volume of each element must contain the 
initial polymer mass and the water imbibed in. 
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Figure 5. Generation process for the initial grid. 
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Figure 6. k-element in the physical and computational do-
main. 

 
Condition 1) requires that, if i is the angle between 

the i-line and the r-axis, then 

1,

,

0               1        

tan      1 ;  1

0              1

j

ij ij i

nr j

r j nr

z r i nr j n

r j nr



  

r    
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    (17) 

The symmetry condition 2) imposes that grid lines are 
orthogonal to the z-axis. Thus,  

0

0
r

z

r 





                (18) 

The resulting algebraic equation set from expression 
(18) can be expressed by using a forward or backward 
second order expression in finite differences. For exam- 
ple, for i=1, using forward finite differences 

  
2 2

3 2 2 3
1

2 3 2 3

      2j j j j
j

j j j j

z r z r
z j

r r r r


nz  

 
    (19) 

Finally, condition 3) needs to consider spatial local 
variation of water in each elementary grid element in 
time. In consequence, equations that express the relation 
between local water concentration and the volume of 
each element must be established. 

The strategy to generate the new grid considers that 
the local mass of each mesh elementary volume at time t, 
mk, is given by  

 k k km mp mw t            (20) 

where mpk and mwk are the polymer mass and water mass 
at element k. The mass mpk is constant and it corresponds 
to the original mass of dry polymer at t = 0 at element k.  

In terms of the local water concentration, the mass in 
the k-element can be expressed as 

        1k p k w k km t C t C t V t          (21) 
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where p and w are the polymer and water volumetric 
density, respectively, Vk(t) and Ck(t) are the total volume 
and the water concentration in the k-element. 

A expression such as Equation (21) can be written at t 
= t + t 

 
      1

k

p k w k k

m t t

C t t C t t V t t 

 

          
 (22) 

Because the polymer mass is constant in the k-element, 
the first term on the right side of Equations (21) and (22) 
are equal and 

         1 1p k k p k kC t t V t t C t V t       (23) 

Taking advantage of the geometrical properties of the 
hydrogel sample, the elementary volume for a solid of 
revolution is calculated from: 

     2k k kV t r t A t              (24) 

where rk(t) and Ak(t) are the centroid position and the 
area of the triangle associated to the k-element at the in- 
stant t. 

With (24) in (23) after some simplifications it gives 

     
     

1

1
k

k k k k
k

C t
A t t r t t A t r t

C t t


    

  
 (25) 

The non-linear Equations (17), (19) and (25) are a 
complete set of algebraic equations that permits generat- 
ing a new mesh each time-step.  

However, when all non-linear nr  nz algebraic equa- 
tions are solved simultaneously, some convergence prob- 
lems were found. In order to avoid these problems, a 
numerical solution solving layer by layer was imple- 
mented. In this approach, the origin coordinates (corre- 
sponding to j = 1) are constant. The implemented proce- 
dure starts by finding the position of the grid nodes cor- 
responding to j = 2 for t = t + t. Hence, only nr non- 
linear algebraic equations must be solved. Once these 
nodes coordinates are found, the next level, j = 3, is 
solved. This procedure continues until the node coordi- 
nates corresponding to the level j = nz are found. In this 
way, a set of nr non-linear algebraic equations are solved 
nz times instead of a single nz  nr system. This procedure 
converged in all simulated cases. 

An additional simplification, with high impact on com- 
putational time, can be introduced when the physical 
domain has a symmetry plane, as in the case of a cylin- 
drical tablet. In such cases, a symmetry condition as Equa- 
tion (18) can be implemented. Then, if the symmetry 
plane corresponds to z = 0, the symmetry condition will 
be 

0

0
z

r

z 





               (26) 

4. Materials and Methods 

To validate the numerical model, a number of laboratory 
tests were conducted considering different sample shapes 
such as cylindrical tablets, capsules, pastilles and com- 
posed cone-cylinder (Figure 3). The hydrogel samples 
were prepared using the following materials and meth- 
ods. 

4.1. Materials 

The following compounds were obtained from Sigma 
Aldrich: Acrylamide (AAm, +99% purity), N’N’metile- 
nebisacrylamide (NMBAAm, +99% purity) and Ammo- 
nium Persulfate (PSA, +98% purity). 

4.2. Methods 

Polyacrylamide hydrogel was synthesized by chemical 
initiation, using AAm (1 g) as monomer, and N’N’Me- 
thylenebisacrylamide (11 mg) as crosslinking agent; 
these were mixed in 0.7 ml of distilled water for 5 min-
utes; then PSA was added as initiator of the reaction. The 
synthesis was carried out in a thermal bath, at a tempera- 
ture of 30˚C ± 1˚C, under constant stirring of 200 rpm. 
The resultant monolith was cut in discs of different 
lengths. The measurements of absorption were obtained 
introducing the dry hydrogel discs (previously weighed, 
mo) in distilled water at 37˚C. The swollen hydrogels, for 
predetermined times (up to equilibrium swelling), were 
removed and gently dried with a filter paper to remove 
excess water and finally weighed (mt) in a scale (Adven- 
ture-OAUS with an accuracy of ±0.0001 g). The swelling 
percentage (%S) of the hydrogels was determined from 
the following relation: 

0

0

100tm m
S

m


                 (27) 

During the swelling process, special care was taken to 
assure that the hydrogel sample was fully immersed in 
the distilled water avoiding contact with the walls of the 
recipient. 

5. Numerical Results 

Applications of the numerical model require advanced 
knowledge of three unknown parameters: the diffusion 
coefficient Deq, the dimensionless constant , and the 
solvent concentration in the equilibrium swollen state of 
the system, Ceq. 

The constant  is characteristic of the diffusing mole-
cules and, for water, a value of 2.5 was calculated by 
Siepmann et al. [18]. The diffusion coefficient of water 
Deq within the fully swollen hydrogel must be determined 
by fitting numerical predictions with experimental water 
uptake data of hydrogel samples. The other parameter,  
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Ceq, depends on the particular capability of the xerogel to 
absorb water and is determined for measuring the total 
amount of water in fully swollen hydrogel samples. 

Since the main objective of this work is to develop a 
numerical method that considers the actual shape evolu- 
tion of the hydrogel sample during the solvent absorption 
process using few parameters, the diffusion coefficient of 
water Deq was computed by numerical regression in order 
to fit the experimental data. Consequently, influence of 
variations in Deq due to changes in experimental condi- 
tions (size of recipient, position of the hydrogel particular 
sample in the original bulk, etc.) was not considered. 

To validate the capabilities of the numerical model, 
three different kinds of samples were considered: 1) tab- 
lets; 2) capsules and 3) truncated cones. 

Six different cylindrical tablets were considered. The 
particular characteristic of each sample are reported in 
Table 1. 

Figure 7 shows the transient water uptake for each cy- 
lindrical tablet. 

The match between experimental data and numerical 
model predictions is remarkable. In all analyzed cases, 
the proposed model was able to reproduce the dynamic 
water uptake.  

A typical sample shape evolution and water penetra- 
tion is shown in Figure 8. Initially, water uptake is more 
pronounced in the intersection of the top and bottom of 
the sample and the cylindrical wall. Consequently, this 
region swells more than the other surfaces of the sample. 

This trend is in good agreement with experimentally 
observed behaviour, as shown in Figure 9. 

Qualitatively, it is clear from Figure 9 that numerical 
predictions of shape evolution in time correspond to ex- 
perimental behaviour.  

Other sample with shape corresponding to a truncated 
cone was modelled. Figure 10 shows the initial shape of 
the truncated cone. This kind of sample shape cannot be 
modelled using the classical finite difference models. 

Figure 11 shows the water uptake process for the trun- 
cated cone. The finite element model was able to repro- 
duce accurately the swelling process. 

 
Table 1. Geometrical and physical properties of cylindrical 
tablet samples. 

Sample Radius (mm) Thickness (mm) Mass (gr) Density (gr/cm3)

1 2.1377 2.7955 0.0324 0.8073 

2 2.8831 2.4467 0.0558 0.8733 

3 4.1899 2.1419 0.0832 0.7043 

4 4.7729 7.2110 0.2709 0.5249 

5 4.8842 8.9300 0.4997 0.7466 

6 4.7958 8.7904 0.5649 0.8893 

Finally, the finite element model was applied to ana- 
lyze the relation between diffusivity coefficients and sam- 
ple average density. Figure 12 shows the variations be- 
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Figure 7. Fit of the model to water uptake. Experimental 
Data(markers)-Numerical model (lines). Sample details in 
Table 1. 

 

 

Figure 8. Typical water penetration and shape evolution in 
a circular tablet (only the symmetry plane is shown). Blue: 
Dry polymer; Red: water. (a) t = 1 min; (b) t = 10 min; (c) t 
= 100 min; (d) t = 700 min; (e) t = 1200 min and (f) t = 1800 
min. 
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(a)                         (b) 

 
(c)                         (d) 

Figure 9. Typical shape evolution in a circular tablet (a) t = 
5 min; (b) t = 15 min; (c) t = 35 min and (d) t = 72 h. 

 

     
(a)                         (b) 

Figure 10. Truncated cone: (a) Physical sample; (b) Physi-
cal domain. 
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Figure 11. Fit of the model to water uptake in non-cylin- 
drical sample shapes: Truncated cone. 

 

 

Figure 12. Relation between density and diffusion coeffi-
cients. 

tween both properties. 
From the inspection of Figure 12, it is clear that the 

diffusion coefficient diminish with sample density. The 
reasons for this behavior will be the subject of attention 
of future work. 

6. Conclusions 

This work presents a numerical model, based on the fi- 
nite element method that describes the swelling process 
in hydrogel samples. The diffusion equation was solved 
in a time-deformable grid. The diffusion coefficients were 
expressed by a Fujita-type exponential dependence. An 
original procedure that considered local variations in wa- 
ter concentration to displace the nodes of the grid was 
implemented. 

The model performance was tested by comparing nu- 
merical swelling predictions with laboratory experimen- 
tal measures obtained from Polyacrylamide hydrogel sam- 
ples of different shapes, such as cylindrical tablets and 
truncated capsules and cones. 

Numerical results show that the new model is able to 
describe the mass and shape changes in the hydrogel 
sample in time using very few parameters. Even though 
the initial and final shapes of the hydrogel samples are 
the same, the shape of the hydrogel sample dramatically 
changes during the swelling process. 

Qualitative comparisons with experimental tests show 
that the new numerical model is able to predict the dy-
namic shape of the hydrogel sample. Versatility of the 
model was verified through the determination of the rela- 
tion between diffusion coefficients and densities for an 
ensemble of Polyacrylamide samples. 

The proposed model does not take into account the 
elastic effects due to the change in polymer structure. 
This aspect will be included in a future work. 
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