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ABSTRACT 

In machine learning, selecting useful features and rejecting redundant features is the prerequisite for better modeling 
and prediction. In this paper, we first study representative feature selection methods based on correlation analysis, and 
demonstrate that they do not work well for time series though they can work well for static systems. Then, theoretical 
analysis for linear time series is carried out to show why they fail. Based on these observations, we propose a new cor-
relation-based feature selection method. Our main idea is that the features highly correlated with progressive response 
while lowly correlated with other features should be selected, and for groups of selected features with similar residuals, 
the one with a smaller number of features should be selected. For linear and nonlinear time series, the proposed method 
yields high accuracy in both feature selection and feature rejection. 
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1. Introduction 

In machine learning, the models quality depends much 
on features used. Often, one faces problems of lacking 
useful features and/or of redundant features, causing poor 
modeling and prediction performance. For better model- 
ing, we need to include high predictive capability fea- 
tures and exclude low predictive capability or redundant 
features from the original group of features. Good feature 
selection can increase the modeling efficiency and is the 
prerequisite for subsequent works. Hence, identifying a 
series of representative features has become a central 
problem. In general, features reduction, consists of fea- 
ture selection [1] and feature extraction [2]. The former 
one tries to find a subset which fit the model best from 
original features set, while the latter one attempts to 
transform the original high dimension features space into 
a low one. The features selection can be further divided 
into two categories: filters [2] and wrappers [3]. 

Time series [4] is a collection of observations taken 
sequentially in time, and occurs in many fields, e.g. the 

stock price in successive minutes [5], the indoor tem- 
perature in successive hours, etc. In this paper, we ad- 
dress feature selection for time series. To this end, many 
methods of feature selection have been reported in the 
literature. However, none of them can always produce 
the good performance. In this regard, we first conduct 
comparative study of several typical correlation based 
methods of feature selection, and find that they do not 
work well for time series though they can work well for 
static systems. This motivates us to provide better sche- 
mes for feature selection. Then, theoretical analysis for 
linear time series is carried out to show why they fail. 
Based on these observations, we propose a new correla- 
tion-based feature selection method. Our main idea is 
that the features highly correlated with progressive re- 
sponse while lowly correlated with other features should 
be selected, and for groups of selected features with 
similar residuals, the one with a smaller number of fea- 
tures should be selected. For linear and nonlinear time 
series, the proposed method yields high accuracy in both 
feature selection and feature rejection. 

The rest of this paper is organized as follows. The 
feature selection methods are presented in Section 2. In 
Section 3, we describe the data sets obtained and simula- 
tion designs. The results and discussions are given in 
Section 4. Finally, conclusions are drawn in Section 5. 
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as a center for intellectual excellence in research and education in Sin-
gapore. 
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2. Feature Selection 

2.1. Linear Regression Method 

In linear regression method [6], suppose that the response 
 y t  is related to the feature  x t  in a linear fashion, 

     
1 1

, 1,2, , ,
r m

i i r j j
i j

y k x k k k N  
 

       (1) 

where j  are m random variables with uniform distri- 
bution on interval  ,b b , independent of each other, 
and added into  x t  to test for effectiveness of this fea- 
ture selection method. These equations for all k  are 
integrated to form the matrix equation, 

,Y X                   (2) 

where 
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It is solved by the linear least squares method [7] to 
find weights  . We find the maximum absolute value 
of last m  weights, 

 1
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max , , if > 0
.

0 if 0

r r m m
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The feature ix  is retained in the selected feature 
group if max>i  , or discarded otherwise. 

2.2. Linear Correlation Method 

Pearson product-moment correlation coefficient [8] is a 
measure of the linear dependence of two variables X  
and Y , giving a value between −1 and 1 inclusive. It is 
usually estimated by 

  
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based on a sample of paired data  ,i iX Y . Similarly to 
the linear regression method, we add m random variables 
with uniform distribution on interval  ,b b , indepen- 
dent of each other, and added into  x t  to test for 
effectiveness of this feature selection method. Linear 
correlation coefficients i  between response  y t  
and each feature  ix t  are calculated, and the maxi- 
mum absolute value of the last r  ones is determined, 

 1
max

max , , if > 0
.

0 if 0

r r m m

m

 
   




    (8) 

The feature  ix t  is retained in the selected feature 
group if max>i  , i.e.  ix t  is more correlated to the 
response than the random variables. Otherwise,  ix t  is 
discarded. 

2.3. Spearsmans Correlation Method 

It is well known that the relationships between features 
and the response could be nonlinear. The linear corre- 
lation coefficient captures the linear relation only, and 
thus is not accurate in the nonlinear case, which calls for 
nonlinear correlation coefficient method. The simplest 
nonlinear correlation coefficient is the Spearmans rank 
correlation coefficient, and it is more appropriate when 
the data points seem to follow a curve instead of a 
straight line, and is less sensitive to the effects of outliers. 
Spearmans rank correlation coefficient is a measure of 
statistical dependence between 2 variables, and is defined 
as the Pearson correlation coefficient between the ranked 
variables [9]. Given n  raw data points  ,i iX Y , iX  
are ranked with ia  such that the largest value has rank 1, 
the second largest value rank 2, etc. whereas iY  are 
similarly ranked with ib . Spearmans rank correlation 
coefficient of iX  and iY  is Pearson correlation co- 
efficient calculated from ia  and ib . The efficient way 
to calculate Spearmans rank correlation coefficient is to 
use 
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The feature selection based Spearmans rank corre- 
lation coefficient follows its linear counterpart by re- 
placing the linear correlation coefficients by Spearmans 
rank correlation coefficient. 

2.4. Local Learning Method 

A new algorithm, called “Local Learning Based Feature 
Selection for High Dimensional Data Analysis of feature 
selection”, was proposed by Sun et al. [10]. Its core idea 
is that an arbitrarily complicated nonlinear problem can 
be decomposed into a series of local linear problems 
based on local learning and then the feature relevance is 
learned globally. Their method does not make any 
assumption on the data distribution, and is capable of 
selecting useful features successfully from a large num- 
ber of features that are irrelevant. Its flowchart is shown 
as follows. 

Input: Data        
1

D , 1
N J

i
x i y i R


    , kernel  

width  , regulation parameter  , stop criterion  . 



Feature Selection for Time Series Modeling 

Copyright © 2013 SciRes.                                                                                JILSA 

154 

Output: Feature weights w . 
1. Initiation: Set  0 1, 1.w t    
2. Repeat: 

a) Compute       1d , , ,t
i jx i x j w x x D    

b) Compute        1t
NMP P x j NM x i w    and 

       1t
NHP P x j NH x i w    with equations, 
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c) Solve for v  through gradient descent using the 
update rule, 
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4.   .tw w  
In this algorithm,  x i  is the feature vector,  y i  is 

the label corresponding to  x i , and d() stands for the 
Manhattan distance of  1 2, , , nu u u u  ,  
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2.5. 2D-Correlation Method 

The correlation methods mentioned above only consider 
correlation from features to response. It tends to select 
redundant features if these features are all highly related 
to response but they are mutually correlated too. To 
select a set of features as good and few as possible for 
learning task, one must take into consideration possible 
interdependencies between the features as well. As a 
trade-off between the complexity of the selection process 
and the quality of the selected feature set, a pair wise 
selection strategy has been recently suggested [11]. This 
method assumes that a feature is irrelevant if it is 
uncorrelated with response, otherwise it is useful, and the 
feature is redundant if a feature is highly correlated with 
other features. 

In this paper, we propose some modifications. Firstly, 
we use the rank correlation coefficient instead as it can 
capture nonlinear relation and is computational efficient. 

Secondly, we compare correlation from real features with 
those from pure noises, and retain those features only 
when they are more relevant than noises. Thirdly, we 
introduce tuning parameters to allow the users to fit to 
specific situations. Thus, the main idea of this modified 
method is to check first whether the features are corre- 
lated in linear or nonlinear way to each other. If the 
correlation coefficients between a feature and other fea- 
tures exceed the correlation coefficient between this fea- 
ture and response by some extent, it means that this 
feature is not useful, and its information can be gained 
from high correlated other features. The detailed proce- 
dure is as follows, 

1. Initialization: 
a) Define the feature sets: Set oF  as the original set 

of n  features and the selected feature set sF  as empty 
set. 

b) Select the first feature: compute the rank corre- 
lation coefficient  ,ix y  between the feature ix  and 
the response y . Then include the feature with the 
largest  ,ix y  as the first selected feature in sF  and 
exclude it from oF . 

c) Remove noisy features: compute the rank corre- 
lation coefficient  ,i y   between noise i  and the 
response y, where 1,2, ,i m  . Set the default m as 20. 
Let the standard deviation of these m coefficients be  . 
Take ix  away from oF , if ix  be in oF  such that 

 , <ix y  , where   is the threshold ratio. 
2. Search for relevant features, repeat until no feature 

is produced from (b) below. 
a) Compute the rank correlation coefficient  ,i jx x  

for each pair of variables  ,i jx x  with i ox F  and 

j sx F . 
b) Select the next feature: choose feature i ox F  as  

the one that maximizes 
 

 
,
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i j
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n n x x
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>
,
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j

n x y

n n x x




 
, where   is the threshold  

ratio. Move ix  from oF  into sF . 
3. Output the set sF  as the selected features. 
It will be seen from our simulation study below that 

correlation based methods work badly for time series in 
general. The best one, the 2D-correlation method, is able 
to reject irrelevant features but unable to select minimum 
number of relevant features. We will find causes of their 
failure through theoretical analysis in the next section. 

3. Theoretical Analysis and Progressive 
Correlation Method 

Consider autoregressive process   x t  with order p , 
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which is described by 

       1 1 ,px t x t x t p t             (11) 

where   t  is a purely random process with zero 
mean and variance 2

z . Assume this process is sta- 
tionary. Then multiply through (11) by  x t k , take 
expectations, and divide 2

x  to get 
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  (12) 

where  k  is the correlation coefficients of   x t  
and   x t k  [4]. This holds true, independent of the 
initial condition and variance of   t . For 3p  , (12) 
becomes  
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(13) 

It is shown in Figure 1 for 1 22.9979, 2.9967,     

3 0.9988  . 
If the 2D-correlation method is applied to the above 

case, we find that there is low efficiency in selecting 
useful features. Suppose that the feature with time lag 1, 
 1x t  , is selected, features with time lags 2,  2x t  , 

and 3,  3x t  , should be considered in the subsequent 
steps. For system in (11) with 3p  , it follows from (13) 
and Figure 1 that features,  2x t   and  3x t  , have 
higher correlation with selected feature,  1x t  , than 
that with response,  x t , and thus are not selected. In 
general, it is observed that though   , >x t k k p , are 
redundant, each of them have significant correlation with 
response and their values are not necessarily smaller than 
 

 

Figure 1. Correlation coefficient for p = 3. 

those of   ,x t k k p  . Besides, they are not nece- 
ssarily smaller than their own mutual correlations. Thus, 
the methods mentioned above fail in general. 

To overcome the drawbacks in the above correlation 
methods, we propose the progressive correlation method 
as follows. Select ix , if correlation of ix  and 
 i iy x  decreases significantly with that of ix  and y, 
no longer solely based on single correlation of ix  with y. 
Further, we also use the correlation of jx  with 
 i iy x  when we consider jx  after ix  is selected. 
In this new method, we favor the feature with least time 
lags when several features with similar relative corre- 
lation coefficients exist. And if several groups of selected 
features have similar modeling residuals, we favor the 
one with a smaller number of features. The detailed 
procedure is as follows, 

1. Initialization: 
a) Define the feature sets: Set oF  as the original set 

of n  features and the selected feature set sF  as empty 
set. 

b) Select the first feature: compute the rank corre- 
lation coefficient  ,ix y  between the feature ix  and 
response y . Then find the features which satisfy  

    
  

max , ,

max ,

i i i

i i

x y x y

x y

 





  and select among them,  

one with the least time lag. Include it in sF  and exclude 
it from oF . 

c) Remove noisy features: compute the rank corre- 
lation coefficient  ,i y   between noise i  and the 
response y , where 1,2, ,i m  . Set the default m  as 
20. Let the standard deviation of these m  coefficients 
be  . Let ix  in oF  be such that  , <ix y  , 
where   is the threshold ratio. Take ix  away from 

oF . 
2. Select feature progressively, repeat until the root 

mean square error of modelled system stops decreasing 
or there is no feature in oF : 

a) Learn a model with the selected features and 
response, and calculate the model residual series e . 

b) Calculate rank correlation coefficients  ,ix e  
with i ox F . Then calculate relative correlation coeffi- 
cients with 

 
 

 
,

,
,

i
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i j
j

n x e
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n n x x


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


 
. 

c) Select the feature ix  which satisfies  

   
  

max , ,

max ,

r i i

i

x e x e

x e

 
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


  with minimal time lag  

from response as the new selected feature in sF  and 
exclude it from oF . 
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d) Update the response with the model residual e . 
3. Varying   to different values, and redo step 1. 

and 2., several groups of features are selected. For those 
have similar small modelling residuals, we select the one 
with smaller number of features and less time lag as final 
selected features. 

4. Output the set sF  as the selected features. 

4. Simulation Data and Design 

For testing feature selection on time series, we construct 
two dynamic systems. The first one is linear system and 
described by 

         1 2 31 2 3 ,u t u t u t u t t           (14) 

where   is white noise with uniform distribution on 
interval  ,b b . Coefficients are set as 1 2.9979,   

2 2.9967,    3 0.9988  , and the initial conditions 
are set to be      0 10, 1 10, 2 10.002u u u   . Then 
the equation gives us a stable system and the response is 
shown in Figure 2. 

The second system is nonlinear and described by 

 
        
       

1 2 3 4

5 6

min 1 max 1 2 , ,

log 3 cos 4 ,

u t

u t u t u t

u t u t t

   

  

      

    

 

(15) 

where   is white noise with uniform distribution on 
interval  ,b b . At last, we set 1 22 1, 1,      

3 4 5 610, 10 2 2 , 10, 10         and the initial  

conditions are set to be      0 10, 1 10, 2 10,u u u    
 3 10u  . Its response is shown in Figure 3. The model 

without the last three terms in the right hand side is cited 
from [12], which represents some economic model with 
cycles. 

As our objective is to predict the system response 
change based on the past observations, we form the 
features  x t  as 

       1 , 2 , , ,x t u t u t u t r        (16) 

and the response  y t  for regression as 

     1 .y t u t u t               (17) 

For classification, we define the label for each feature 
vector from its corresponding response as follows (0% 
threshold) 

 
    
    

1,  if  1 > 0
.

0,  if 1 < 0

u t u t
y t

u t u t

   
 

     (18) 

The data set for learning is thus formed by 
      , , 1, ,Z z t x t y t t r r n        with the data  

 

Figure 2. The linear dynamic system. 
 

 

Figure 3. The nonlinear dynamic system. 
 
size equal to 1N n r   . 

Sometimes, one may be interested in large changes 
only. Then, one can filter the response with some thre- 
shold d : a data point in the original data set is kept in 
the filtered data set for regression if  
        1 > 1y t u t u t d u t    . The other data 

points are discarded. The size of the filtered data set will 
thus be usually reduced, depending on the actual re- 
sponse. The filtered data set for classification is obtained 
by using the same label definition before. 

Equations (16) to (18) are used to generate the 
following data sets for both linear and nonlinear systems 
labeled by 
 

r = 2, 4, 8, 10 d = 0, 0.01 

m = 0, 3 b = 0.01, 0.1, 1 

 
The Noise-to-Signal Ratio (NSR) is obtained by 

 
 

2

2
.

t
NSR

u t


 


               (19) 

5. Simulation Results 

In this section, we first the simulation results for 4 
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existing methods, respectively, and make a comparison. 
Then, we present results of the proposed methods (2D- 
Correlation Method and Progressive Correlation Me- 
thod). 

5.1. Comparison of First Four Methods 

Comparisons are made firstly based on the performance 
for different values of the magnitude of random variables 
added  0.01,0.1,1b  . After that, normalization is 
applied to both the feature and response, and perfor- 
mances of the first four methods are then compared in 
Table 1 to Table 9, respectively. 

From the results above, we can conclude that the 
magnitude of random variables added does not have any 
significant effect on the performance of the 4 methods: 
linear regression, linear correlation coefficient, rank co- 
rrelation coefficient, and local learning method. There 
are some cases when the performance is affected, for 
example when Spearmans rank correlation method was 
applied to nonlinear system with NSR = 0.5224 and r = 
10, d = 0.01, m = 3, the rejection rate for b = 0.01 is 0.83, 
for b = 0.1 is 0.67, and for b = 1 is 1. However, in the 
majority of the cases, the rejection rate and selection rate 
are about the same. This might be because the random 
features which were added do not have any correlation 
with the response, and thus their correlation coefficient 

with respect to the response is close to 0. When the mag- 
nitude of random variables is increased, the correlation 
coefficient might be increased, but the change is not very 
big due to the random nature of these variables. There- 
fore, the threshold level might not have increased by so 
much, and the performance level is roughly the same. 

Overall, Dr. Suns method of feature selection based on 
local learning seems to give the best result. In most cases, 
it is able to remove at least some, if not the majority of 
the irrelevant features. However, not all of the relevant 
features were selected; and it fails altogether in a few 
cases. Nevertheless, it still gives better result than linear 
correlation coefficient, rank correlation coefficient, and 
linear regression, which tends to select most of the 
features, regardless of whether they are relevant. 

5.2. 2D-Correlation Method 

In the simulation of correlation method, we set the thre- 
shold   as 1.5 and the parameter   as 0.5. In our ex- 
periments, it indicates that the magnitude of added ran- 
dom variables do not affect the performance significantly, 
and is set as fixed one [−1, 1]. The simulation results are 
shown in Tables 10 and 11. 

In terms of feature rejection, we observe that the corre- 
lation method yields quite positive results. In most of the 
cases, this method is able to eliminate most of the irre- 

 
Table 1. Performance when b = 0.01 (Part 1). 

   Linear, NSR = 0 Linear, NSR = 0.8649 

   
Linear 

Correlation 
Ranked 

Correlation 
Linear 

Regression 
Local 

Learning 
Linear 

Correlation 
Ranked 

Correlation 
Linear 

Regression 
Local  

Learning 

r d m Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject

2 0 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 0.5 NA

2 0 3 1 NA 0.5 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

2 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 0.5 NA

2 0.01 3 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 0.5 NA

4 0 0 1 0 1 0 1 0 0.67 1 1 0 1 0 1 0 0.67 1 

4 0 3 0.67 1 0.67 1 1 0 0.67 1 1 0 1 0 1 0 1 1 

4 0.01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0.33 0 

4 0.01 3 1 0 1 0 1 0 0.33 0 1 0 1 0 1 0 0.33 0 

8 0 0 1 0 1 0 1 0 0.67 1 1 0 1 0 1 0 1 0.8 

8 0 3 0.67 1 0 1 1 0 0.33 1 1 0.8 0.67 1 1 0 0.33 1 

8 0.01 0 1 0 1 0 1 0 1 0.6 1 0 1 0 1 0 1 0.2 

8 0.01 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

10 0 0 1 0 1 0 1 0 0.67 1 1 0 1 0 1 0 1 0.14

10 0 3 1 0.57 0.33 0.43 1 0 0.67 1 1 0.43 1 0.43 1 0 1 0.29

10 0.01 0 1 0 1 0 1 0 1 0.29 1 0 1 0 1 0 0 0 

10 0.01 3 1 0 1 0 1 0 0.67 0.29 1 0 1 0 1 0 0.33 0.29
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Table 2. Performance when b = 0.01 (Part 2). 

   Linear, NSR = 13.7462 Nonlinear, NSR = 0 

   
Linear 

Correlation 
Ranked 

Correlation 
Linear 

Regression 
Local  

Learning 
Linear  

Correlation
Ranked  

Correlation 
Linear  

Regression 
Local  

Learning 

r d m Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject

2 0 0 1 NA 1 NA 1 NA 0.5 NA 1 NA 1 NA 1 NA 1 NA 

2 0 3 0.5 NA 0 NA 1 NA 0 NA 1 NA 1 NA 0 NA 1 NA 

2 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 

2 0.01 3 0.5 NA 0.5 NA 1 NA 0 NA 1 NA 1 NA 0 NA 1 NA 

4 0 0 1 0 1 0 1 0 0 1 1 NA 1 NA 1 NA 1 NA 

4 0 3 0.67 0 0.33 1 1 0 0 1 1 NA 1 NA 0 NA 1 NA 

4 0.01 0 1 0 1 0 1 0 0 0 1 NA 1 NA 1 NA 0.75 NA 

4 0.01 3 0.67 0 0.67 0 1 0 0 0 1 NA 1 NA 0 NA 1 NA 

8 0 0 1 0 1 0 1 0 0.67 0.6 1 0 1 0 1 0 1 0 

8 0 3 0.33 0 0 0.2 1 0 0.67 0.6 1 0 1 0 0 1 1 1 

8 0.01 0 1 0 1 0 1 0 0.67 0 1 0 1 0 1 0 1 0 

8 0.01 3 0.67 0 0.33 0 1 0 0 0.4 1 0 1 0 0 1 1 0.25 

10 0 0 1 0 1 0 1 0 1 0.14 1 0 1 0 1 0 1 0 

10 0 3 0 0 1 0 1 0 0.67 0.29 1 0.17 1 0.17 0 1 1 1 

10 0.01 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 

10 0.01 3 0 0 0 0 1 0.14 0.67 0 1 0.33 1 0.17 0 1 1 0 

 
Table 3. Performance when b = 0.01 (Part 3). 

   Nonlinear, NSR = 0.043 Nonlinear, NSR = 0.5224 

   
Linear 

Correlation 
Ranked  

Correlation 
Linear  

Regression
Local  

Learning 
Linear  

Correlation 
Ranked  

Correlation 
Linear  

Regression 
Local  

Learning 

r d m Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject

2 0 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 

2 0 3 1 NA 1 NA 0 NA 1 NA 1 NA 1 NA 0 NA 0.5 NA 

2 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 

2 0.01 3 1 NA 1 NA 0 NA 1 NA 1 NA 1 NA 0 NA 0.5 NA 

4 0 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 

4 0 3 1 NA 1 NA 0 NA 0.75 NA 1 NA 1 NA 0 NA 1 NA 

4 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 

4 0.01 3 1 NA 0.75 NA 0 NA 1 NA 0.75 NA 1 NA 0 NA 0.75 NA 

 
8 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 

8 0 3 1 0 1 0 0 1 1 1 1 0.75 1 0.75 0 1 1 1 

8 0.01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0.25 

8 0.01 3 1 0 1 0 0 1 1 0 1 0.75 1 0.75 0 1 1 1 

10 0 0 1 0 1 0 1 0 1 0.25 1 0 1 0 1 0 1 0.67 

10 0 3 1 0.17 1 0.17 0 1 1 1 1 0.67 1 0.67 0 1 0.75 0.83 

10 0.01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0.33 

10 0.01 3 1 0.33 1 0.17 0 1 1 0 1 0.83 1 0.83 0 1 1 0.83 
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Table 4. Performance when b = 0.1 (Part 1). 

   Linear, NSR = 0 Linear, NSR = 0.8649 

   
Linear 

Correlation 
Ranked  

Correlation 
Linear  

Regression 
Local  

Learning 
Linear  

Correlation 
Ranked  

Correlation 
Linear  

Regression 
Local  

Learning 

r d m Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject

2 0 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 0.5 NA

2 0 3 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

2 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 0.5 NA

2 0.01 3 1 NA 1 NA 1 NA 0.5 NA 1 NA 1 NA 1 NA 0 NA

4 0 0 1 0 1 0 1 0 0.67 1 1 0 1 0 1 0 0.67 1 

4 0 3 0.67 1 0 1 1 0 0.67 1 1 0 1 0 1 0 0.67 1 

4 0.01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0.33 0 

4 0.01 3 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0.33 0 

8 0 0 1 0 1 0 1 0 0.67 1 1 0 1 0 1 0 1 0.8 

8 0 3 1 0.8 0.33 0.6 1 0 0.67 1 1 0.4 1 0.6 1 0 1 0.8 

8 0.01 0 1 0 1 0 1 0 1 0.6 1 0 1 0 1 0 1 0.2 

8 0.01 3 1 0 1 0 1 0 1 0.2 1 0 1 0 1 0 1 0 

10 0 0 1 0 1 0 1 0 0.67 1 1 0 1 0 1 0 1 0.14

10 0 3 0.67 0.71 0 0.57 1 0 0.33 1 1 0.14 1 0.14 1 0 1 0.43

10 0.01 0 1 0 1 0 1 0 1 0.29 1 0 1 0 1 0 0 0 

10 0.01 3 1 0 1 0 1 0 1 0.14 1 0 1 0 1 0 0.33 0.29

 
Table 5. Performance when b = 0.1 (Part 2). 

   Linear, NSR = 13.7462 Nonlinear, NSR = 0 

   
Linear  

Correlation 
Ranked  

Correlation 
Linear  

Regression 
Local  

Learning 
Linear  

Correlation 
Ranked  

Correlation 
Linear 

Regression 
Local  

Learning 

r d m Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject

2 0 0 1 NA 1 NA 1 NA 0.5 NA 1 NA 1 NA 1 NA 1 NA

2 0 3 0.5 NA 0.5 NA 1 NA 0 NA 1 NA 1 NA 0 NA 1 NA

2 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

2 0.01 3 0.5 NA 0.5 NA 1 NA 0 NA 1 NA 1 NA 0 NA 1 NA

4 0 0 1 0 1 0 1 0 0 1 1 NA 1 NA 1 NA 1 NA

4 0 3 0.33 1 0.33 1 1 0 0 1 1 NA 1 NA 0 NA 1 NA

4 0.01 0 1 0 1 0 1 0 0 0 1 NA 1 NA 1 NA 1 NA

4 0.01 3 0.67 0 0.67 0 1 0 0 0 1 NA 1 NA 0 NA 1 NA

8 0 0 1 0 1 0 1 0 0.67 0.6 1 0 1 0 1 0 1 0 

8 0 3 0.67 0 0.67 0 1 0 0.67 0.6 0.75 0.25 0.75 0.25 0 1 1 0.75

8 0.01 0 1 0 1 0 1 0 0.67 0 1 0 1 0 1 0 1 0 

8 0.01 3 0.67 0 0.33 0 1 0 0 0.2 1 0.25 1 0.25 0 1 1 0 

10 0 0 1 0 1 0 1 0 1 0.14 1 0 1 0 1 0 1 0 

10 0 3 0 0 0 0.14 1 0 0.33 0.29 1 0 1 0.17 0 1 1 0.33

10 0.01 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 

10 0.01 3 0 0 0.67 0 1 0 0 0 1 0.17 1 0.17 0 1 1 0.17
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Table 6. Performance when b = 0.1 (Part 3). 

   Nonlinear, NSR = 0.043 Nonlinear, NSR = 0.5224 

   
Linear  

Correlation 
Ranked 

Correlation 
Linear  

Regression 
Local  

Learning 
Linear  

Correlation 
Ranked  

Correlation 
Linear 

 Regression 
Local  

Learning 

r d m Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject

2 0 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

2 0 3 1 NA 1 NA 0 NA 0.5 NA 1 NA 1 NA 0 NA 0.5 NA

2 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

2 0.01 3 1 NA 1 NA 0 NA 1 NA 1 NA 1 NA 0 NA 1 NA

4 0 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

4 0 3 1 NA 1 NA 0 NA 1 NA 1 NA 1 NA 0 NA 0.75 NA

4 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

4 0.01 3 1 NA 1 NA 0 NA 1 NA 0.75 NA 0.75 NA 0 NA 0.75 NA

8 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 

8 0 3 1 0 1 0 0 1 1 0.25 1 0.75 1 0.75 0 1 0.5 1 

8 0.01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0.25

8 0.01 3 1 0 1 0 0 1 1 0.75 1 0.75 1 0.75 0 1 0.75 1 

10 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0.67

10 0 3 1 0.33 0.75 0.33 0 1 1 0.33 1 0.83 1 0.83 0 1 0.5 0.83

10 0.01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0.33

10 0.01 3 1 0.33 0.75 0.33 0 1 1 1 1 0.5 1 0.67 0 1 0.5 0.83

 
Table 7. Performance when b = 1 (Part 1). 

   Linear, NSR = 0 Linear, NSR = 0.8649 

   
Linear  

Correlation 
Ranked  

Correlation 
Linear 

Regression 
Local 

Learning 
Linear 

Correlation 
Ranked 

Correlation 
Linear 

Regression 
Local 

Learning 

r d m Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject

2 0 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

2 0 3 1 NA 0.5 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

2 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 0.5 NA

2 0.01 3 1 NA 1 NA 1 NA 0.5 NA 1 NA 1 NA 1 NA 0 NA

4 0 0 0 1 1 0 1 0 0.67 1 1 0 1 0 1 0 0.67 1 

4 0 3 0.67 1 0 1 1 0 0 1 1 0 0.67 0 1 0 0.33 1 

4 0.01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0.33 0 

4 0.01 3 1 0 1 0 1 0 0.33 0 1 0 1 0 1 0 0.33 0 

8 0 0 1 0 1 0 1 0 0.67 1 1 0 1 0 1 0 1 0.8 

8 0 3 1 0.8 0.67 0.6 1 0 0.67 1 1 0.6 0.67 1 1 0 1 0.8 

8 0.01 0 1 0 1 0 1 0 1 0.6 1 0 1 0 1 0 1 0.2 

8 0.01 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

10 0 0 1 0 1 0 1 0 0.67 1 1 0 1 0 1 0 1 0.14

10 0 3 1 0.29 0.67 0.29 1 0 0.67 1 1 0.43 1 0.43 1 0 1 0.43

10 0.01 0 1 0 1 0 1 0 1 0.29 1 0 1 0 1 0 0 0 

10 0.01 3 1 0 1 0 1 0 1 0.14 1 0 1 0 1 0 0 0.14
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Table 8. Performance when b = 1 (Part 2). 

   Linear, NSR = 13.7462 Nonlinear, NSR = 0 

   
Linear 

Correlation 
Ranked  

Correlation 
Linear  

Regression 
Local 

Learning 
Linear  

Correlation 
Ranked 

Correlation 
Linear 

Regression 
Local  

Learning 

r d m Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject

2 0 0 1 NA 1 NA 1 NA 0.5 NA 1 NA 1 NA 1 NA 1 NA

2 0 3 0.5 NA 0 NA 1 NA 0 NA 1 NA 1 NA 0 NA 1 NA

2 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

2 0.01 3 0.5 NA 0.5 NA 1 NA 0 NA 1 NA 1 NA 1 NA 1 NA

4 0 0 1 0 1 0 1 0 0 1 1 NA 1 NA 1 NA 1 NA

4 0 3 0.67 0 0.33 1 1 0 0 1 1 NA 1 NA 0.5 NA 1 NA

4 0.01 0 1 0 1 0 1 0 0 0 1 NA 1 NA 1 NA 1 NA

4 0.01 3 0.67 0 0.67 0 1 0 0 0 1 NA 0.75 NA 0.25 NA 1 NA

8 0 0 1 0 1 0 1 0 0.67 0.6 1 0 1 0 1 0 1 0 

8 0 3 0.33 0 0 0.2 1 0 0.67 0.6 1 0 1 0.25 0.25 1 1 0.5 

8 0.01 0 1 0 1 0 1 0 0.67 0 1 0 1 0 1 0 1 0 

8 0.01 3 0.67 0 0.33 0 1 0 1 0 1 0.25 0.75 0.25 0 1 1 0.5 

10 0 0 1 0 1 0 1 0 1 0.14 1 0 1 0 1 0 1 0 

10 0 3 0 0 1 0 1 0 0.33 0.29 1 0 1 0.17 0.25 1 1 0.5 

10 0.01 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 

10 0.01 3 0 0 0 0 1 0.14 0 0 1 0.17 0.75 0.33 0 1 1 0.33

 
Table 9. Performance when b = 1 (Part 3). 

   Nonlinear, NSR = 0.043 Nonlinear, NSR = 0.5224 

   
Linear 

Correlation 
Ranked 

Correlation 
Linear 

Regression 
Local  

Learning 
Linear  

Correlation 
Ranked 

Correlation 
Linear 

Regression 
Local 

Learning 

r d m Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject Select Reject

2 0 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

2 0 3 1 NA 1 NA 0 NA 1 NA 1 NA 1 NA 0 NA 1 NA

2 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

2 0.01 3 1 NA 1 NA 0 NA 1 NA 1 NA 1 NA 0 NA 0.5 NA

4 0 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

4 0 3 1 NA 1 NA 0.25 NA 0.5 NA 1 NA 1 NA 0 NA 1 NA

4 0.01 0 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA

4 0.01 3 1 NA 1 NA 0.25 NA 1 NA 1 NA 1 NA 0 NA 0.5 NA

8 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 

8 0 3 1 0 1 0 0.25 1 1 1 1 0.75 1 0.75 0 1 0.5 1 

8 0.01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0.25

8 0.01 3 0.75 0 0.75 0 0 1 1 0.5 1 0.75 1 0.75 0.25 1 1 1 

10 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0.67

10 0 3 0.75 0.5 0.75 0.5 0 1 1 0.67 1 0.83 1 0.83 0 1 0.5 0.83

10 0.01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0.33

10 0.01 3 1 0.17 1 0.17 0.25 1 1 0 0.75 1 0.75 1 0 1 0.5 0.83
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Table 10. Performance of 2D-correlation method (Part 1). 

  Linear, NSR = 0 Linear, NSR = 0.8649 Linear, NSR = 13.7462 

r d Select Reject Select Reject Select Reject 

2 0 0.5 NA 0.5 NA 0.5 NA 

2 0.01 0.5 NA 1 NA 0.5 NA 

4 0 0.67 1 0.67 1 0.33 1 

4 0.01 0.33 0 0.33 0 0.33 0 

8 0 0.67 1 0.33 0.6 0.33 0.8 

8 0.01 0.33 0.8 0.67 0.6 0.33 0.6 

10 0 0.33 1 0.33 1 0.33 0.71 

10 0.01 0.67 0.86 0.33 0.86 0.67 0.86 

 
Table 11. Performance of 2D-correlation method (Part 2). 

  Nonlinear, NSR = 0 Nonlinear, NSR = 0.043 Nonlinear, NSR = 0.5224 

r d Select Reject Select Reject Select Reject 

2 0 1 NA 1 NA 1 NA 

2 0.01 1 NA 1 NA 1 NA 

4 0 0.75 NA 0.5 NA 0.75 NA 

4 0.01 1 NA 1 NA 0.75 NA 

8 0 0.5 0.75 0.5 0.5 0.25 0.75 

8 0.01 0.5 1 0.5 0.75 0.25 1 

10 0 0.25 0.67 0.25 0.83 0.25 0.83 

10 0.01 0.5 1 0.5 1 0.5 0.83 

 
levant features, with the rate of correctly rejected features 
almost always higher than 0.5. In some particular situ- 
ations, the rate of correctly rejected feature stands at 1. 
This might be because by evaluating the correction co- 
efficient between features, we are able to reduce the 
number of features that are highly-correlated to each 
other, and thus feature rejection rate increases. However, 
there are cases (such as linear data set NSR = 0.8649 with 
number of features 4r  , and the feature threshold level 

0.01d  ) where correct rejection rate is 0. This might be 
because  4u t   is the only irrelevant feature for linear 
data set, and the number of features were not large 
enough for the covariance checking to be effective, and 
hence this irrelevant feature has passed the testing cri- 
teria. 

In terms of feature selection, this method does not give 
very good results, especially for linear data sets. For most 
of the test cases for linear data sets, the method is able to 
select at most 1 feature out of 2 (if 2n  ) or 3 (if 

4,8,10n  ). One possible explanation might be the high 
correlation coefficient between consecutive feature fea- 
tures. For example, kx  and 1kx   are consecutive terms 
in the time series, and hence they are highly correlated. 

As a result, their correlation coefficient is often higher 
than the correlation coefficient between the response and 
feature vector kx . This weakness should be considered 
and improve in the extended method. 

5.3. Progressive Correlation Method 

In the simulation of progressive correlation method, we 
change the response to 

    , , 1, , .y t u t t r r n           (20) 

As both responses come from the same time series, they 
can be transformed to each other, and either one can be 
used for feature selection. The threshold   is set as 0.1 - 
0.8 with step of 0.1, which can give us eight candidate 
options, and the parameter   as 5, which can neglect 
most noise features. Then we select the final se- lected 
features from eight candidate options, and choose the 
option with smaller response residuals, less number of 
features as the final selection result. The simulation result 
is shown in Table 12. From the simulation result, we 
find this kind of feature selection method yields quite 
good both in feature selection and feature rejection for  
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Table 12. Performance of progressive correlation method. 

Linear System 

 NSR = 0 NSR = 0.8727 NSR = 17.0549 NSR = 123.8577 

r Select Reject Select Reject Select Reject Select Reject 

2 1 NA 1 NA 1 NA 1 NA 

4 1 1 1 1 1 1 1 1 

8 0.67 0.8 1 1 1 1 1 1 

10 0.67 0.86 1 1 1 1 1 1 

Nonlinear System 

 NSR = 0 NSR = 0.0415 NSR = 0.0656 NSR = 0.0874 

r Select Reject Select Reject Select Reject Select Reject 

2 1 NA 1 NA 1 NA 0.5 NA 

4 1 NA 1 NA 0.75 NA 0.5 NA 

8 1 0.5 1 0.75 0.75 1 0.5 1 

10 1 0.67 1 0.83 0.5 1 0.5 1 

 
data sets with and without noise. 

For linear data set, the progressive correlation method 
can accurately select most useful features and reject most 
irrelevant features for data set without noise. For data set 
with noise, this method performs better, as it can accu- 
rately select all the useful features and rejects most 
irrelevant features. 

For nonlinear data set, the progressive correlation 
method also achieves better results than before. From the 
result, it can select most useful features and reject most 
irrelevant features for data sets with no or low NSR. For 
data set with high noise, it performs a bit worse. But it 
still can select some useful features and reject all the 
irrelevant features. 

6. Conclusion 

This paper has conducted comparative studies of several 
representative methods for feature selection in the con- 
text of time series modeling. A modified correlation 
method is presented. In most of the cases, this method is 
able to eliminate most of the irrelevant features. However, 
it has a poor performance in feature selection, which can 
only select half of useful features or even less. We show 
why these methods fail. In order to rectify the causes of 
failure, we propose the progressive correlation method. It 
yields the best results, as generally it can remove most 
irrelevant features and keep most of the relevant features. 
Further, it works quite consistently in both linear and 
nonlinear data sets, and over both high and low noise- 
signal ratio, indicating that it is a robust method, and can 
work in different conditions. The use of correlation 
coefficients patterns shown in formula (12) and Figure 1 
to select exact number of features is under progress of 
our research. 
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