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ABSTRACT 

Urban vegetations have infinite proven benefits for urban inhabitants including providing shade, improving air quality, 
and enhancing the look and feel of communities. But creating a complete inventory is a time consuming and resource 
intensive process. The extraction of urban vegetation is a challenging task, especially to monitor the urban tree heights. 
In this study we present an efficient extraction method for mapping and monitoring urban tree heights using fused hy- 
perspectral image and LiDAR data. Endmember distribution mapping using the spectral angle mapper technique is em- 
ployed in this study. High convenience results achieved using fused hyperspectral and LiDAR data from this semi- 
automatics technique. This method could enable urban community organizations or local governments to map and 
monitor urban’s tree height and its spatial distribution.  
 
Keywords: Fusion; LiDAR; Urban Vegetation; Hyperspectral; Mapping 

1. Introduction 

Remotely-sensed data and imagery provide a compre- 
hensive, scalable means for detecting and quantifying 
land use land cover (LULC) change, and its use in map- 
ping urban growth, estimating population density, and 
modelling sustainability and quality of life is becoming 
increasingly popular as the scale, cost, and spatial-tem- 
poral coverage improves [1]. However, the spatial het- 
erogeneity inherent to urban environments represents 
substantial challenges to discriminating LULC types us- 
ing remotely sensed data. Spectral mixtures of vegetation 
and impervious surfaces common in transitory urbaniz- 
ing landscapes challenge the ability of spectral-based. 
Standard LULC classification schema for moderate-re- 
solution data at regional and greater scales often lack the 
specificity (e.g., “mixed” class) and completeness (e.g., 
“other” class) necessary for accurate representation of 
complex urbanizing landscapes. Mapping urban vege- 
tation in details is important to understanding the urban 
green space available for urban inhabitants [2].  

The Light Detection and Ranging (LiDAR) and hy- 
perspectral data provide the best opportunity in order to 
distinguish urban features from urban vegetations (e.g., 
impervious surface, and vegetated area). LiDAR airborne 

laser scanner has emerged as an increasingly popular tool 
for collecting very high-resolution structural data repre- 
senting the vertical dimension of the Earth’s surface by 
measuring the travel time of laser pulses between the 
sensor and earth objects [3]. 

Reitberg [4] analysed full waveform LiDAR data for 
tree species classification in the Bavarian Forest National 
Park in leaf-on and leaf-off conditions for Norway spruces. 
In urban environments, many researchers have been do- 
cumenting the advantages of LiDAR and LiDAR-op- 
tical fusion data for LULC classification, city 3D model- 
ling, and feature extraction [5-8].  

This study examines the advantage of LiDAR and hy- 
perspectral data fusion to improve mapping and moni- 
toring of urban tree heights along different urban features 
over the University of Houston and the neighbouring 
urban area, Houston, USA.  

2. Data 

A hyperspectral image and a LiDAR derived Digital 
Surface Model (DSM), both at the same spatial resolu- 
tion (2.5 m). The hyperspectral imagery consists of 144 
spectral bands in the 380 nm to 1050 nm region and has 
been calibrated to at-sensor Spectral Radiance Units (SRU) 
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= µW/(cm2 sr nm). The corresponding co-Registered DSM 
consists of elevation in meters above sea level (per the 
Geoid 2012A model). The data were acquired by the 
NSF-funded Center for Airborne Laser Mapping (NCALM) 
over the University of Houston campus and the neigh- 
bouring urban area (Figure 1) [9].  

3. Methodology 

Two separate processing steps were considered for the 
two different data source. 1) For fused data, we firstly 
fusion LiDAR and hyperspectral data using layer stack- 
ing, and employ the following technique:  
 Reduce data dimensionality using Minimum Noise 

Fraction (MNF) transform. 
 Select spectral endmember candidates to reduce spa- 

tial data dimensionality using Pure Purity Index (PPI). 
 Evaluate linearity and select endmembers using n-D 

visualizer. 
 Mapping endmember distribution using Spectral An- 

gel Mapper (SAM) technique. 
 Majority/minority analysis. 
 Raster-vector conversion. 

2) Urban tree heights then extracted from LiDAR data 
using urban vegetation class vector data as boundary, 
furthermore only trees with height more than equal to 1 
meter and less than 30 meter extracted. We performed 
heights filtering technique, all return pulses were used, 
with canopy spacing 1 m, linear interpolation used for 
this step and finally geo-processing analysis employed to 
clip only the urban vegetation.  

Human involvement appears in order to select the 
endmembers using a n-D visualizer, therefore this me- 
thod called semi-automatics technique. Diagram flow of 
data processing shown in Figure 2.  

3.1. Data Fusion 

We fused hyperspectral and LiDAR data at single resolu- 
tions to assess differences in classification accuracy with 
only hyperspectral (non-fusion) data. We then subset the 
three visible bands of hyperspectral-only data (B1, 502.5 
nm; B2, 602.6 nm; B3, 697.9 nm) to produce a compos- 
ite image near-natural color of the study area with an 
Red-Green-Blue (RGB) combination B1-B2-B3 for vis- 
ual interpretation using superimposed technique. We 
subset the study area to only 100 ha enclosed area. 

3.2. Calculating Forward MNF Transform 

The calculation of the forward MNF transform occurs in 
two steps. The first step calculates the noise statistics 
based on a shift difference method. The second step per- 
forms the two principal components transformations. The 
MNF outputs data that has unit variance, isotropic noise  

 

Figure 1. Composite image near-natural color of the study 
area. 
 
and has decorrelated data sorted by descending variance, 
the MNF transform will run out of information to process 
before it runs out of bands, leaving the final MNF output 
bands as noise-only proof of the hyperspectral nature 
data [10]. 

3.3. Pixel Purity Index (PPI) 

The Pixel Purity Index (PPI) is used to find the most 
“spectrally pure” or extreme, pixels in multispectral and 
hyperspectral data [11]. The most spectrally pure pixels 
typically correspond to mixing endmembers. The PPI is 
computed by repeatedly projecting n-dimensional scatter 
plots onto a random unit vector. The extreme pixels in 
each projection are recorded and the total number of 
times each pixel is marked as extreme is noted. The 
threshold value is used to define how many pixels are 
marked as extreme at the ends of the projected vector. 
The threshold value should be approximately 2 - 3 times 
the noise level in the data (which is 1 when using MNF 
transformed data). Larger thresholds cause the PPI to 
find more extreme pixels but they are less likely to be 
“pure” endmembers [12]. 

The PPI process exploits convex geometry concepts in 
the n-dimensional data space of the MNF-processed hy- 
perspectral data. The purest pixels still must be on the 
extreme corners or edges of the data cloud. While n-di- 
mensional data may be hard to visualize and imagine, the 
PPI process is relatively insensitive to dimensionality and 
acts as an n-dimensional “rock tumbler” or “clothes dryer”, 
tumbling the n-dimensional cloud of data points and 
counting how many times each pixel is “hit” in this tum- 
bling process. The purer the pixel, the more convex the 
data cloud is at that location and as a result it will be hit 
more often and receive a PPI score higher than a less- 
pure pixel. This convexity concept is based on the as-
sumption of hyperspectral ov r determinacy [12]. e 
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Figure 2. Diagram flow of semi-automatic technique performed in this study. 
 
3.4. n-Dimensional  

n-dimensional visualizer provides an interactive tool for 
finding endmembers by locating and clustering the purest 
pixels in n-dimensional space. Spectra can be thought of 
as points in an n-dimensional scatter plot, where “n” is 
the number of MNF bands or dimensions. The coordi-
nates of each point in n-space consist of “n” values that 
are simply the spectral radiance or reflectance values in 
each band for a given pixel [12]. Thus position in the 
scatterplot conveys the same information as contained in 
the shape of the spectrum for a single pixel. In n-dimen- 
sional scatter plot space, because of the feasibility con- 
straints, the best endmembers occur as vertices, or cor- 
ners, of an n-Dimensional data cloud or mixing volume. 
The n-D Visualizer is used to rotate the data cloud, and 
to locate and highlight the corners of the cloud to find the 
endmembers [12]. 

3.5. Spectral Angle Mapper (SAM) 

The Spectral Angle Mapper (SAM) matches image spec- 
tra to reference spectra in n-dimensions. SAM compares 
the angle between the endmember spectrum (considered 
as a n-dimensional vector, where n is the number of 
bands) and each pixel vector in n-dimensional space. 
Smaller angles represent closer matches to the reference 
spectrum. SAM produces a classified image based on the 
SAM Maximum Angle Threshold. Decreasing this thre- 
shold usually results in fewer matching pixels. Increasing 
this threshold may result in a more spatially coherent 
image, however, the overall pixel matches will not be as 

good as for the lower threshold [13].  

4. Result and Discussions 

It can be seen from n-D visualizer endmember spectra 
(Figure 3) that wavelength 750 - 800 nm region are sen- 
sitive to urban vegetation. 

The area of urban vegetation is ~32 ha with height 
variations ranging from ~12 m to ~30 m. The spatial dis- 
tribution of higher urban trees is in residential areas, 
while the lower urban trees spread along the city streets. 
Figure 4 shows the 3D view of urban tree’s contour ex- 
tracted from LiDAR data using urban vegetation class 
vector data as boundary, while Figure 5 shows 3D view 
of urban tree heights superimposed on near-natural color 
of the study area. 

The small beam may be completely absorbed by the 
canopy before it reaches the floor and/or may miss the 
tree tops causing an underestimation of tree height [14]. 

The basis for LiDAR measurement is that a laser pulse 
is sent out from the sensor and the leading edge of the 
returned signal trips a response for a time measurement. 
The trailing edge of the response is also used to trip a 
second return time. These are referred to as the “first” 
and “last” returns. If the first return happens to be associ- 
ated with a tree canopy top and the last return the under- 
lying ground, then this single signal can be used to pro- 
vide a measurement of tree height.  

Complex backscatter signal (waveform) LiDAR sys- 
tems typically have a much larger footprint that discrete 
return systems, being of the order of 10s of metres. This 
is fundamentally for signal-to-noise reasons: the quantity  
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Figure 3. n-D visualizer endmember spectra. 
 

 

Figure 4. 3D view of urban tree’s contour extracted from 
LiDAR data using urban vegetation class vector data as 
boundary. 
 

 

Figure 5. Result, 3D view of urban tree heights superim- 
posed on near-natural color of the study area. 
 
of backscattered energy in a small field of view is low. 
The energy received per unit time bin is clearly even 
smaller, so the sensor technologies need to be capable of 
measuring very low signal levels, very quickly. The Lite- 
Mapper-5600 system quotes a waveform sampling inter- 
val of 1 ns, giving a multi-target resolution (related to bin 
size) of better than 0.6 m [15]. 

This concept can be found in Figure 6, in which we 
can see that the amplitude of the reflected laser energy 
shows features that clearly relate in some way to the fea- 
tures of the tree being measured. This study typically 
observed two main peaks: one associated with the can- 
opy top reflection and one from the ground reflection 
signal. 

The magnitude of the ground reflection signal is gen-  

 

Figure 6. Comparison between 3D model of urban trees 
extracted from fused hyperspectral and LiDAR data with 
Google street view. Laser pulses are likely to be reflected by 
several discrete objects (e.g. leaves, branches, and ground), 
resulted the urban tree model shows like a cone shape. Lo- 
cation: 29˚43'8.95" North 95˚22'2.12" West. 
 
erally high in urban environment [16], although multiple 
scattering may increase with the increasing illuminated 
area, laser pulses are likely to be reflected by several 
discrete objects (e.g. leaves, branches, and ground), re- 
sulted the urban tree model shows like a cone shape. 
(Figure 6). 

This technique allows us to generate the 3D images of 
the urban vegetation canopy, providing information on 
tree heights with high accuracy using fused hyperspectral 
and LiDAR data.  

5. Conclusion 

We have shown that this study successfully examine the 
advantage of fused hyperspectral and LiDAR data for 
mapping and monitoring urban tree heights in conven- 
ience yields. This semi-automatics technique gives an 
efficient framework to be applied for mapping and mo- 
nitoring urban trees in other cities around the world. 
However, in this study topography variable is neglected, 
therefore this method only suitable for the relatively flat 
urban environment. 
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DSM (Digital Surface Model) 
LiDAR (Light Detection and Ranging) 
LULC (Land Use Land Cover) 
MNF (Minimum Noise Fraction) 
NCALM (NSF-Center for Airborne Laser Mapping) 
NSF (National Science Foundation) 
PPI (Pure Purity Index) 
RGB (Red-Green-Blue) 
SAM (Spectral Angel Mapper) 
SRU (Spectral Radiance Units) 
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