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ABSTRACT 

The purpose of this paper is to find the invariant solutions of the reduction of the Navier-Stokes equations 

           2, , , , 2 , , 1 , , 2 0yy t sy ss sU t s y U t s y y sU t s y y s U t s y sU       where .s z y  This equation is con- 

structed from the Navier-Stokes equations rising to a partially invariant solutions of the Navier-Stokes equations. Group 
classification of the admitted Lie algebras of this equation is obtained. Two-dimensional optimal system is constructed 
from classification of their subalgebras. All invariant solutions corresponding to these subalgebras are presented. 
 
Keywords: Optimal System; Invariant Solutions; Partially Invariant Solutions; Navier-Stokes Equations 

1. Introduction 

An invariant solution of a differential equation is a solu- 
tion of the differential equation which is also an invariant 
surface of a group admitted by the differential equation. 
Invariant solution can be found by solving an algebraic 
equation derived from the given differential equation and 
the infinitesimals of an admitted Lie group of transfor- 
mations. Constructing of invariant solutions consists of 
some steps: choosing a subgroup of the admitted group, 
finding a representation of solution, substituting the rep- 
resentation into the studied system of equations and the 
study of compatibility of the obtained (reduced) system 
of equations. 

This paper is devoted to use the basic Lie symmetry 
method for finding the admitted Lie group of the reduce- 
tion of the Navier-Stokes equations, 

      
   2

, , , , 2 , ,

1 , , 2 0

yy t sy

ss s

U t s y U t s y y sU t s y y

s U t s y sU

 

   


    (1) 

where  is a dependent variable and U ,t s z y y ,  are 
independent variables. This equation is constructed from 

the Navier-Stokes equations. Subgroups for studying are 
taken from the part of optimal system of subalgebras con- 
sidered for the gas dynamics equations [1]. The proposed 
research will deal with two-dimensional optimal system of 
subalgebras for the reduction of the Navier-Stokes Equa- 
tions (1). It is determined for symmetry algebras obtained 
through classification of their subalgebras. All invariant 
solutions are presented. They can return to new solutions of 
the Navier-Stokes equations. 

2. Invariant and Partially Invariant  
Solutions 

One of the main goals of application of group analysis to 
differential equation is construction of representations of 
solutions. Solutions whose representations are obtained 
with the help of the admitted group are called invariant 
or partially invariant solutions. The notion of invariant 
solution was introduced by Sophus Lie [2]. The notion of 
a partially invariant solution was introduced by Ovsian- 
nikov [3]. This notion of partially invariant solutions 
generalizes the notion of an invariant solution, and ex- 
tends the scope of applications of group analysis for con- 
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structing exact solutions of partial differential equations. 
The algorithm of finding invariant and partially invariant 
solutions consists of the following steps. 

Let  be a Lie algebra with the basis rL 1, , rX X . 
The universal invariant J  consists of s m n r    
functionally independent invariants 

      1 2, , , , , , ,m n rJ J x u J x u J x u    

where  are the numbers of independent and de- 
pendent variables, respectively and  is the total rank 
of the matrix composed by the coefficients of the gen- 
erators

,n m

i

r

, 1, 2, , X i   r . If the rank of the Jacobi matrix 

 
 
1

1

, ,

, ,

m n r

m

J J

u u

 






 

is equal to , then one can choose the first q q m  in- 
variants 1, , qJ J  such that the rank of the Jacobi ma- 
trix 

 
 

1

1

, ,

, ,

q

m

J J

u u








 

is equal to . A partially invariant solution is character- 
ized by two integers: 

q
0   and 0  . These solutions 

are also called  ,H    solutions. The number   is 
called the rank of a partially invariant solution. This 
number gives the number of the independent variables in 
the representation of the partially invariant solution. The 
number   is called the defect of a partially invariant 
solution. The defect is the number of the dependent func- 
tions which can not be found from the representation of 
partially invariant solution. The rank   and the defect 
  must satisfy the conditions 

  
0, 0, ,

max , ,0 min 1, 1 ,

n r n

r n m q r m 
    






      

     

 

where   is the maximum number of invariants which 
depends on the independent variables only. Note that for 
invariant solutions, 0   and . q m

For constructing a representation of a  ,H    solu- 
tion one needs to choose l m    invariants and sepa- 
rate the universal invariant in two parts: 

   1 1 2, , , % , , , .m n rl l lJ J J J J J J       

The number l  satisfies the inequality 1 . 
The representation of the 

l q m  
 ,H   

l
solution is obtained 

by assuming that the first  coordinates J  of the uni- 
versal invariant are functions of the invariants J : 

 .J W J                   (2) 

Equation (2) form the invariant part of the representa- 
tion of a solution. The next assumption about a partially 

invariant solution is that Equation (2) can be solved for 
the first  dependent functions, for example, l

  1 2, , , , , 1, ,i i l l mu u u u x i     .l     (3) 

It is important to note that the functions  
 , 1, ,iW i l   are involved in the expressions for the 

functions  , 1, ,i  i l m. The functions  
are called superfluous. The rank and the defect of the 

1 2, , ,l lu u u  

 ,H    solution are m l  
r

 and  
m n r l n       

0
 , respectively. 

Note that if   , the above algorithm is the algo- 
rithm for finding a representation of an invariant solution. 
If 0  , then Equation (3) do not define all dependent 
functions. Since a partially invariant solution satisfies the 
restrictions (2), this algorithm cuts out some particular 
solutions from the set of all solutions. 

After constructing the representation of an invariant or 
partially invariant solution (3), it has to be substituted 
into the original system of equations. The system of 
equations obtained for the functions  and superfluous 
functions 

W
 , 1, 2, ,ku k l m    is called the reduced 

system. This system is overdetermined and requires an 
analysis of compatibility. Compatibility analysis for in- 
variant solutions is easier than for partially invariant so- 
lutions. Another case of partially invariant solutions 
which is easier than the general case occurs when J  
only depends on the independent variables 

     1 1 2 2, , , m n r m n rl l l l .J J x J J x J J x           

In this case, a partially invariant solution is called 
regular, otherwise it is irregular. The number    is 
called the measure of irregularity. 

The process of studying compatibility consists of re- 
ducing the overdetermined system of partial differential 
equations to an involutive system. During this process 
different subclasses of  ,H    partially invariant so- 
lutions can be obtained. Some of these subclasses can be 

 1 1 1,H    solutions with subalgebra 1H H . In this 
case 1 1,    . The study of compatibility of par- 
tially invariant solutions with the same rank 1  , but 
with smaller defect 1   is simpler than the study of 
compatibility for  ,H    solutions. In many applica- 
tions, there is a reduction of a  ,H    solution to a 

 1 ,0H   solution. In this case the  ,H    solution 
is called reducible to an invariant solution. The problem 
of reduction to an invariant solution is important since 
invariant solutions are usually studied first. 

3. The Reduction of the Navier-Stokes  
Equations 

The reduction of the Navier-Stokes equations to partial 
differential equation in three independent variables is 
described. Unsteady motion of incompressible viscous 

Copyright © 2013 SciRes.                                                                                  AM 



S. KHAMROD 1156 

fluid is governed by the Navier-Stokes equations 

,t p       u u u u u 0,


        (4) 

where  is the velocity field,  
is the fluid pressure,  is the gradient operator in the 
three-dimensional space 

  1 2 3, , , ,u u u u v w u


p

  1 2 3, , , , x x x x y z 

5L L 

x

L

 and 
 is the Laplacian. A group classification of the Na- 

vier-Stokes equations in the three-dimensional case was 
done in [4]. The Lie group admitted by the Navier-Stokes 
equations is infinite. Its Lie algebra can be presented in 
the form of the direct sum , where the infi- 
nite-dimensional ideal  is generated by the operators 



       ,
i i ii x ui i i p pX t t t x X t              

with arbitrary functions  and    , 1, 2,3i t i   t . 
The subalgebra  has the following basis: 5L

 
02 2 ,

, 3
i i

k i k

t i x i u p t

ik i x k x i u k i

Y t x u p Z

Z x x u u u i k

         

         

,

.
 

The Galilean algebra  is contained in 10L 5L L  . 
Several articles [5-11] are devoted to invariant solutions 
of the Navier-Stokes equations. While partially invariant 
solutions of the Navier-Stokes equations have been less 
studied, there has been substantial progress in studying 
such classes of solutions of inviscid gas dynamics equa- 
tions [12-19]. 

In this section analysis of compatibility of regular par- 
tially invariant solutions with defect 1  and rank 1  of 
the subalgebras  , , ,x x u t t x yt t y         

t x y    
zz

z
x


 is 
given. Note that the generator t x y z  is 
not admitted by the Navier-Stokes equations. The groups 
are taken from the optimal system constructed for the gas 
dynamics equations [20]. 

The Navier-Stokes equations are used in the component 
form: 

,t x y z x xx yy zu uu vu wu p u u u        z

z

z

     (5) 

,t x y z y xx yy zv uv vv wv p v v v              (6) 

,t x y z x xx yy zw uw vw ww p w w w           (7) 

0.x y zu v w                            (8) 

The dependent variables  and  are functions 
of the space variables 

, ,u v w p
, ,x y z  and time  .t

Invariants of the Lie group corresponding to subalgebra 
generated by  , , , x x u t t x y zt t x y z             are 

, , , .v w p z y  

The representation of the regular partially invariant 
solution is 

     , ,v V s w W s p P s   ,           (9) 

where s z y . For the function  , , ,u u t x y z  there 

is no restrictions. Substituting the representation of par- 
tially invariant solution (9) into the Navier-Stokes Equa-
tions (5)-(8), we obtain 

  0,t x y z xx yy zzu uu Vu Wu u u u            (10) 

     2 1 2W sV V sP y s V sV    0,        (11) 

     2 1 2W sV W P y s W sW    0,       (12) 

  0.xyu sV W                          (13) 

Since  and W  only depend on V s , Equations (11) 
and (12) can be split with respect to : y

   0, 0,W sV V sP W sV W P             (14) 

   2 21 2 0, 1 2s V sV s W sW    0.         (15) 

Solving Equations (15), we have 

  1 2 3arctan , arctan .V C s C W C s C    4  

Multiplying the first equation by s  and combining it 
with the second Equation of (14), we obtain 

   0.W sV V sW     

Let 0W sV 
0,V W

, then 1 2 3 4  This 
means that 

0.C C C C   
0   and hence 5 . Substitut- 

ing  and W  in Equation (13), we have 
P C

xuV 0 . It 
means that u  depend on  or , ,t y z  .y, ,su U t  
Equation (10) becomes 

    22 1 2yy t sy ss sU U y sU y s U sU 0.        (16) 

Thus, there is a solution of the Navier-Stokes equa- 
tions of the type 

  5, , , 0, 0, ,u U t s y v w p C     

where the function  , ,U t s y  satisfies Equation (16). 
If 0V sW  

C
, then 2 4  In this case 

5

,V C W C  .
P  . Note that the Galilei transformation applied to 

 and W , also change V s . Substituting V and in 
Equation (13), we have 

W
0xu   or u U . Equa- 

tion (10) becomes 
 , ,t s y

    
  

2
2

2 4

2 1

2 0.

yy y t sy

s

U C U U y sU y s U

C y s C y U

    

   

ss
    (17) 

Thus, there is a solution of the Navier-Stokes equa- 
tions of the type 

  2 4, , , , , ,u U t s y v C w C p C   5  

where the function  , ,U t s y  satisfies Equation (17). 
These solutions are partially invariant solution with re- 

spect to the group which are not admitted Lie algebra 
 , , ,x x u t t x y zt t x y z            . 
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4. Admitted Group of Equation (16) 

In this section, the Lie group admitted by Equation (16) 
is studied. It was obtained from the Navier-Stokes equa- 
tions and gives rise to a partially invariant solutions of 
the Navier-Stokes equations 

      
   2

, , , , 2 , ,

1 , , 2 0

yy t sy

ss s

U t s y U t s y y sU t s y y

s U t s y sU

 

   


 

where the function  depends on  and U , ,t s y s z y . 
Assume that the generator has a representation of the 

form 

   
   

, , , , , ,

, , , , , , .

t s
t s

y U
y U

X t s y U t s y U

t s y U t s y U

 

 

   

   

s

tt

 

The second prolongation of the operator X is 

     
   

   

   

 

2 , , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

., , ,

t s

t

y tt

y

tyts

ts ty

sy ss

sy

yy

yy

U U
U

U U
U

UU
U

U U
U

U
U

X X t s y U t s y U

t s y U t s y U

t s y U t s y U

t s y U t s y U

t s y U

 

 

 

 



  

  

  

  

 



ss

U

U

U

U









 

The coefficients of the prolonged operator are defined 
by formulae 

   ; , 1, 2,3ji xU U
i j iD U D i j      

   ,1 2 1

2 1 2, ; , 1, 2,3i i i jU U x
i i j iD U D i j      

; , 1, 2,3i i ij
i j

D U U i j
x U U

  
    
  

 .  

Here we used the notations 1 2 3, ,x t x s x y    and 
for the derivatives 

   , .i i ij j iU D U U D U   

The determining equations are 

 
 

2

0
0.

F
X F


                (18) 

All necessary calculations here were carried out on a 
computer using the symbolic manipulation program 
REDUCE. 

The result of the calculations is the admitted Lie group 
with the basis of the generators: 

1 2 3

4 5

1
, , ,

2
2 ,

t s s y

t y U s U

s
X X X

y y

t
X t y U X syU

y

       

         

 

  
 

2
6 7

2 2 2
8

9 10

2
1 , 2

4 4 4 1 ,

, , , ,

,s y s y

t y U

U U

ts
X s sy X t yU

y

X t ty t s y U

X U X b t s y

U          

       

   

 

where  , ,b t s y  is an arbitrary solution of 

    22 1 2yy t sy ss sb b y sb y s b sb 0.       

5. Optimal System of Subalgebras 

To obtain all different invariant solutions, we make re- 
course to the concept of optimal system of subalgebras. 
This concept follows from the fact that, given a Lie 
algebra  of order  with  the corresponding 
group of transformations, if two subalgebras of  are 
similar, i.e., they are connected with each other by a 
transformation of , then their corresponding invari- 
ant solutions are connected with each other by the same 
transformation. Therefore, in order to construct all the 
non similar 

L 1r  G
L

G

s -dimensional subalgebras of , it is 
sufficient to put into one class all similar subalgebras 
of a given dimension, say 

L

s r , and select a repre- 
sentative from each class. The set of all representatives 
of these classes is called optimal system of s -dimen- 
sional subalgebras of . The classification of subal- 
gebras can be done relatively easy for small dimensions. 
The problem of finding the optimal system is the same 
as the problem of classifying the orbits of the adjoint 
transformations. Two-dimensional subalgebras of the 
optimal system of the Lie algebra spanned by the gen- 
erators 

L

1 9, ,X X  are constructed in [21]. 
The list of two-dimensional subalgebras of the opti- 

mal system of the algebra  is presented in the Ta- 
ble 1, where 

9L
1    and , ,    are arbitrary con- 

stants. 
 
Table 1. Two-dimensional subalgebras of the optimal sys- 
tem of the algebra L9. 

,

  (19) 

N Generator N Generator 

1 2, 3 11 1, 2 + α4 + 6 + β9 

2 2, 7 12 8, α4 + 6 + β9 

3 5, 7 13 8, α4 + 5 + 6 + β9 

4 2, 3 + ε7 14 4 + α9, 6 + β9 

5 1, 4 + α9 15 6 + α9, ε1 + 8 + β9

6 2, 4 + α9 16 2 + 7, 3 + 5 + α7 

7 5, 4 + α9 17 2 + α9, 1 + β7 + γ9

8 8, 4 + α9 18 5 + α9, α3 + 8 + γ9

9 1, 2 + 4 + α9 19 2 + ε5, −1 + 8 + α9

10 1, α4 + 6 + β9 20 1 − 8 + α9, 1 + 4 + α9

Copyright © 2013 SciRes.                                                                                  AM 
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6. Invariant Solutions of the Equation (1) 

One of the advantages of the symmetry analysis is the 
possibility to find solutions of the original differential 
equation by solving reduced equations. The reduced equa- 
tions are obtained by introducing suitable new variables, 
determined as invariant functions with respect to the 
infinitesimal generators. Constructing of invariant solu- 
tions consists of some steps: choosing a subgroup of the 
admitted group, finding a representation of solution, sub- 
stituting the representation into the studied system of 
equations and the study of compatibility of the obtained 
(reduced) system of equations. 

Invariant solutions of the Equation (1) are presented in 
this section. Analysis of invariant solutions is presented 
in details for four examples. 

6.1. Subalgebra 3: {5, 7} 

The basis of this subalgebra is 

5 7

2 2
, 2 .s U s y

t ts
X syU X t yU

y y
         U  

In order to find an invariant solution, one needs to find 
a universal invariant of this subalgebra. Let a function 

 , , ,f f t s y U  

be an invariant of the generator 5X . This means that 

2
0.s U

t
f syUf

y
   

The general solution of this equation is 

 
 2

4ˆ ˆ, , , e .
sy

tf F t y U U U   

After substituting it into the equation  7 0X f  , one 
obtains the equation 

ˆ

2 ˆ2 0s y U

ts
F tF yUF

y
   .  

The characteristic system of the last equation is 

ˆd d
.

ˆ2

y U

t yU



 

Thus, the universal invariant of this subalgebras con- 
sists of invariants 

 22

4 4ˆ ˆ, e , e .
syy

t tt U U U  

Hence, a representation of the invariant solution is 

   
 

2 21

4e

y s

tU t



  

with arbitrary functions  t . After substituting this 
representation into Equation (1), one obtains the ordinary 

differential equation 

0.t     

The general solution of the last equation is 

C t   

where  is arbitrary constants. C
Therefore the invariant solution of the reduction of the 

Navier-Stokes Equations (1) is 

 2 21 4
e

y s t
U C

    
 

t  

where  is arbitrary constants. C

6.2. Subalgebra 6: {2, 4 + α9} 

The basis of this subalgebra is 

 2 4 9

1
, 2 1 .s t yX X X t y U

y
  U           

Let a function 

 , , ,f f t s y U  

be an invariant of the generator 2X . This means that 

1
0.sfy

  

It means that function  is not depend on f s . 
The general solution of this equation is 

 , , .f F t y U  

After substituting it into the equation  
 4 9 0X X f  , one obtains the equation 

 2 1t y UtF yF UF 0.     

The characteristic system of the last equation is 

 
d d d

.
2 1

t y U

t y U
 


 

Thus, the universal invariant of this subalgebras con- 
sists of invariants 

2
1, .

y
Uy

t
  

Hence, a representation of the invariant solution is 

 1U y q   

with arbitrary functions  q  and 2q y t . After 
substituting this representation into Equation (1), one 
obtains the ordinary differential equation 

   2 24 4 2 3 2q q q       0.        

The general solution of the last equation is 
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1 2

8 4
1 1

2 2

1 2 1
e ,

4 4 4

1 2 1
, , .

4 4 4

q q
q C W

q
C W

 



    
 

   
 









,

 

Therefore, the invariant solution of the reduction of the 
Navier-Stokes Equations (1) is 

22 1 1 2
84 2

1 1

2

2 2

1 2 1
, ,

4 4 4

1 2 1
, ,

4 4 4

y

t y
U t y e C W

t

y
C W

t

 



   
  

 

 
  














 

where 

2

1 2

1 2 1 1 2 1
, , , , ,

4 4 4 4 4 4

y
W W

t

     
   
   

2y

t
 

are Whittaker functions and  are arbitrary con- 
stants. 

1 2,C C

6.3. Subalgebra 16: {2 + 7, 3 + 5 + α7} 

The basis of this subalgebra consists of the generators 

     

2 7

3 5 7

1 2
2 ,

1 2
1 2 .

s y U

s y U

ts
X X t yU

y

X X X

s s t
t s yU

y




 

 
       

 
 

  
       
 



 

Let a function 

 , , ,f f t s y U  

be an invariant of the generator 2 7X X . This means 
that 

1 2
2 0s y U

ts
f tf yUf

y

 
   

 
.  

The characteristic system of the last equation is 

 
d d d d

.
1 2 2 0

y s y U t

ts t yU
  

 
 

The general solution of this equation is 

   
2

4ˆ ˆˆ ˆ, , , 2 1 , e .
y

tf F t y U y y ts U U     

After substituting it into the equation 

 3 5 7 0X X X f    

one obtains the equation 

 2
ˆˆ

ˆˆ2 1 2 4 0.y U
t t t F yUF     

The characteristic system of this equation is 

 2

ˆˆd d
.

ˆ 0ˆ2 1 2 4

dy U t

yUt t t
 

 
 

Hence, the universal invariant of this subalgebras con- 
sists of invariants 

   

2
2

2

ˆ

4 1 2 4
4ˆ ˆˆ, e , 2 1 , e .

y
y

t t t
tt U y y ts U U




 
    

A representation of the invariant solution of this sub- 
algebra has the following form 

  
   

2 2

2

2 1

44 1 2 4
e

y ts y

tt t t
U t







 
  

with an arbitrary function  t . After substituting the 
representation of the invariant solution into Equation (1), 
the functions  t  has to satisfy the equation 

   21 2 4 4 0.t t t         

The general solution of the last equation is 

21 2 4C t    t  

where  is constant. C
Therefore the invariant solution of the reduction of the 

Navier-Stokes Equations (1) is 

 
 

2 2

2

2

44 1 2 4 2e 1 2

y tsy y

tt t t
U C t t







 

 
 

  
 
 

4  

where  is constant. C

6.4. Subalgebra 17: {2 + α9, 1 + 7 + 9} 

The basis of this subalgebra is 

 

2 9

1 7 9

1
,

2
2 .

s U

t s y

X X U
y

ts
X X X f t y U

y

 

   

    

U         
 

Let a function 

 , , ,f f t s y U  

be an invariant of the generator 2 9X X . This means 
that 

1
0.s Uf Uf

y
   

The general solution of this equation is 

 ˆ ˆ, , , e .syf F t y U U U    

After substituting it into the equation 
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 1 7 9 0X X X f     

one obtains the equation 

  ˆ

2 ˆ2t s y U

ts
F F tF y UF

y

       0.  

Thus the universal invariant of this subalgebras con- 
sists of invariants 

  2 22 3 32 , e .
sy t t y

t y U
   


   

  

Hence, a representation of the invariant solution is 

    
2 22 3 3

e
sy t t y

U
   


  

 q

y

 

with arbitrary functions  and . After 
substituting this representation into Equation (1), one 
obtains the ordinary differential equation 

 q 2q t 

 2 0.q          

The general solution of the last equation is 

 

 

23

1

23

2

i

i

q
C A

q
C B

   




   



    
 


    
 
 
 




 

Therefore, the invariant solution of the reduction of the 
Navier-Stokes Equations (1) is 

    2 2
23

2 3 3

1

23

2

e

( )
.

sy t t y

i

i

q
U C A

q
C B

       



   


  
     
  
  

 
    

    

 

where 

   2 23 3

,i i

q q
A B

       

 

         
  
  
  








The admitted algebra of the reduction of the Navier- 

 

are Airy wave functions and are arbitrary con- 
stants. 

1 2,C C

The four examples showed that there are solutions of 
the Navier-Stokes equations, which are partially invariant 
with respect to not admitted Lie algebra  

. They can return to new solu- 
tions of the Navier-Stokes equations. 
 t x y zt x y z      

The result of the study of invariant solutions of Equa- 
tion (1) corresponding to the subalgebras of Table 1 are 
presented in Table 2. 

7. Conclusion 

Stokes Equations (1) is spanned by the generators (19). 
The optimal systems of two-dimensional subalgebras of 
the Lie algebra spanned by generators 1 9, ,X X  are 
obtained: there are 20 classes that have i olu- 
tions. All invariant solutions corresponding to the opti- 
mal system are presented in Table 2. Examples given in 
the manuscript show that this algorithm can be applied to 
groups, which are not admitted. These possibilities ex- 
tend an area of using group analysis for constructing ex- 
act solutions. 
 

nvariant s

Table 2. Result of invariant solutions of the Equation (1). 

No Universal invariant Invariant solution 

1 ,t U  U C  

2 
2 4, e y tt U   2 4e y tU C t  

3  2 21 4
, e

y s t
t U


 

  2 21 4
e

y s t
U C t

 
  

4 
1.  2 2 2 1, e y tt U   

2.  2 2 2 1, e y tt U   

 2 2 2 1e

2 1

y tC
U

t

 




 

 2 2 2 1e

2 1

y tC
U

t

 




 

5  1
,s U sy


 

 
 

1

1

1

2

i

i

U C sy y

C sy y









 

 
 

6 2 1,y t Uy   

  22 1 4 1 2 8e ,y tU t y r    

2

1 1

2

2 2

1 2 1
, ,

4 4 4

1 2 1
, ,

4 4 4

y
r CW

t

y
C W

t





   
 

   
 

 

7  2 42 1, e sy ty t Uy   

 

 2 2

2 1 4

1 2 8
,

e
y s t

t
U r

y




  

2

1 1

2

2 2

1 2 1
, ,

4 4 4

1 2 1
, ,

4 4 4

y
r CW

t

y
C W

t





    
 

    
 

8  2 21 41, e
y s t

s Ut y     

 2 21 4
e ,

y s t
U t r  
  

 
 

1

1

1

2

i

i

r C sy y

C sy y





 

 

 

 
 

9   11 ,sy y Uy   
 
 

1

1

1

2

1 i

1 i

U C sy y

C sy y









  

  
 

10
   12 tan2 e ,sq y sy     

   1tane sU     

 
   12 tan1 e ,sU q r

  
 




   

1 2

2 2

sin ln
1

cos ln
1

r C q

C q

 

 


 
 





   






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Continued 

11 
 

 

2
1

2

22

22

2 tan
1

ln 1

,

sy sy
q

y y

y y

sy sy

 




 

   
    

  
   

 
2

1
2

tan
1e

sy sy

y yU
  


          

 
2

1
2

tan
41e ,

sy sy q

y yU r
  


             

 

 

1

2

sin
4

cos
4

q
r C

q
C

 

 

 
  

 
 

  
 

 

Continued 

16

12 

   1

2 2

tan
1

e ,s
y s

q
t

 
  

 
 1 2 2

2 2

tan ( ) 1 4

1

e
s y s t

y s U
   


 

 
 

 

2

2 2
1

1

1

1
tan2 2 4

,

1 e
y s

s
t

q r
U

y s




 











1 2

2 2

sin ln
1

cos ln
1

r C q

C q

 


 


    
    

 

 
 

22

2

2

4 4 1 2 4
, e

y tsyy
t t t t

t U





 
 

 
 

2 2

2

2

44 1 2 4

2

e

1 2 4

y tsy y

tt t t
C

U
t t








 


 

 

17

2 ,q t y   

  2 22 3 3
e

sy t t y
U  

  2 22 3 3
e ,

sy t t y
U r

     
  

 

 

23

1

23

2

i

i

q
r C A

q
C B

   


   


    
 
 
 

    
 
 
 

      

18
2

8
,

8

ty
q

t


  

   2 2 22

3

24 1 121

4 96e
t y tysy

t tUt
     



 

 

 

2

2 2 2

3

1

4

24 1 12

96

e
,

e

sy

t

t y ty

t

r
U

t
  




   
  

1 2 3

2 2 3

2 2

2

2 2

2

i

i

q
r C A

q
C B

 


 


  
  

 
  

  
 

 

13 

 
11

2 2 221 ,q y s t


   

 

  

1tan 1

1
2 2 2

e

1

s

U
y s










 

 

 

2
1tan 1

82

2 2

e
,

1

q
s

t
U r

y s

   




 

2

1 1

2

2 2

i
, ,

2 2 4

i
, ,

2 2 4

q
r CW

q
C W

 

 

   
 

   
 

 

14 

 
  

2
1

2

22

22 2

2
2 tan

2

2 ln 2

2 ,
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where are Whittaker functions, 1 2,W W  ,i iA B  are Airy wave functions 

and  are constants. 
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