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ABSTRACT 

In this paper, a model is proposed to study the impact of awareness on the dynamics of dengue. It is assumed that due to 
awareness of the disease some susceptible take necessary precautionary measures to protect themselves from mosquito 
bite. A threshold is obtained for the stability of the disease-free equilibrium state. The awareness is found to affect the 
threshold. For the sufficiently large awareness rate, the endemic state does not exist and disease-free state remains glob-
ally stable. It is concluded that the increase in the awareness rate decreases the densities of infectious populations of 
human as well as mosquitoes. 
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1. Introduction 

Dengue is viral infection transmitted by the bite of an 
infected Aedes mosquito causing severe flu-like symp-
toms which may lead to potentially lethal complications. 
The disease affects infants, children and adults and could 
be fatal. The symptoms of dengue fever vary according 
to the age of the patient. Once infected, the human be-
comes the main carrier and multiplier of the virus, serv-
ing as a source of the virus for uninfected mosquitoes. 
The virus circulates in the blood of an infected person for 
2 - 7 days, at approximately the same time that the per-
son develops a fever. Patients who are already infected 
with the dengue virus can transmit the infection via Aedes 
mosquitoes after the first symptoms appear (during 4 - 5 
days; maximum 12). Symptoms usually last for 2 - 7 
days, after an incubation period of 4 - 10 days after the 
bite from an infected mosquito [1,2]. The only method of 
controlling or preventing dengue virus transmission is to 
effectively control the mosquitoes and their bites. 

There are four distinct serotypes of the dengue virus 
(DEN 1, DEN 2, DEN 3 and DEN 4). In humans recov-
ery from infection by one dengue virus provides lifelong 
immunity against that particular virus serotype. However, 
this immunity confers only partial protection against sub- 

sequent infection by the other three serotypes of the virus. 
Once infected, a mosquito remains infected for life, trans- 
mitting the virus to susceptible individuals during prob- 
ing and feeding. 

Different mathematical models have been proposed to 
study the spread of dengue. Host vector type models are 
generally considered. The host (human) population con-
sists of susceptible, exposed, infectious and removed 
compartments. For the vector (mosquito), only suscepti-
ble and infective compartments are considered. Feng and 
Vealsco proposed and model to study the population dy-
namics of vector transmitted disease with two pathogen 
strains [3]. A model for the transmission of dengue fever 
in a constant human population and variable vector popu-
lation is discussed by Estava and Vargas [4]. The same 
authors in [5] proposed another model considering verti-
cal and mechanical transmission in the vector population, 
to study the effects on the dynamics of the disease. Some 
more mathematical models have been developed in the 
literature to gain insights into the transmission dynamics 
of dengue in a community (see, for instance, [6-11]). 

The spread of the disease in the population make the 
people to change their behavior so as to protect them-
selves from the disease. Such change of attitude and be-
havior can be considered as awareness towards the dis-
ease. When the dengue infected person gets recovered 
from the disease, he takes all the necessary precautions  
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not to experience its bitterness again. For this, he takes 
precautionary measures such as use of mosquito nets, 
repellents etc., eliminating the possibility of mosquito bite 
and hence dengue infection. To incorporate this idea, a 
separate class of aware individual is taken into consid-
eration. The infective will become aware after recovery. 
Also, transitions from susceptible to aware class directly 
are possible. This is due to the fact that infection of one 
member makes the whole family and friends aware to 
take necessary steps to be protected against the disease. 
The preventive measures due to awareness may bring 
vital changes in the dimension of the epidemic. Keeping 
these in view, a dynamic model incorporating the aware-
ness is proposed for the dengue infection. 

2. Mathematical Model 

The most important and responsible factor for the spread 
of the dengue fever (DF) in the human population is the 
mosquito population. Therefore to study and predict the 
control of the DF it is necessary to consider the dimen-
sion of the mosquito population along with the human 
population. The total human population of interest is di-
vided into three mutually disjoint classes. The members 
of susceptible class  are at the risk of contracting 
DF. Each member of aware class 

 1C
 2C  is very much 

cautious to protect themselves from the mosquito bites 
and hence from dengue also. The members of dengue 
infected class  3C  are getting infection due to infected 
mosquito bite. Let    ,S t h  and S t  I t  be the num-
ber of individuals in these three compartments respec-
tively such that the total human population at time  is 

. 
t

   N t S t 


 S t  I th

Let M t  be the total population of mosquitoes which 
is divided into susceptible  1S t  and infected popula-
tion  1I t

 
at time  such that t      1 1M t S t I t  . 

Further, for constructing the model the following as-
sumptions are considered: 

Human susceptible become dengue infected following 
bite of the dengue infected mosquito. The infected indi-
vidual may have any of the four serotypes of dengue vi-
rus. Some susceptible are becoming aware and are taking 
sufficient protection to avoid mosquito bites. After re-
covery, the lifelong immunity is achieved to the particu-
lar serotype. It is assumed that after recovery the infected 
person becomes aware as he or she understands the risk 
factors for the disease. Further, due to awareness all pro-
tections will be used by the recovered individual and he 
or she will not be then infected by any other serotype of 
dengue virus. The decay in the life expectancy of human 
population due to dengue virus is ignored. 

Let   and 1  be the constant recruitment rates of 
two populations while  and 1  be the natural death 
rates in host (human) and vector (mosquito) populations  

D D

respectively. Let 1  be the dengue infection transmis-
sion coefficient from mosquito to human. The awareness 
is spread in the susceptible population at the rate 1 . 
This incorporates the direct transfer from susceptible to 
aware class. Infected human are treated and recovered at 
the rate 

m

 . 
The susceptible mosquitoes are infected with the virus 

while probing or feeding the dengue infected individual 
and the transmission coefficient is 2 . The infected 
mosquito transmits the virus to the susceptible person on 
biting. No vertical transmission of virus is considered for 
the mosquito population. No recovery is assumed in the 
vector population. Accordingly, the SI model is consid-
ered for the mosquito population. These assumptions 
lead to the following model: 

 

1 1 1

1

1 1

1
1 2 1 1

1
2 1 1 1

d
;

d

d
;

d

d

d

d
;

d

d

d

h
h

S
SI m S DS

T

S
m S I DS

T

I
SI D I

T

S
S I D S

T

I
S I D I

T

 



 

 



   

  

  

  

 

       (5.1) 

All parameters are assumed to be nonnegative. The 
following nonnegative initial conditions are associated 
with the system (5.1): 

         0 0 0 1 10 10 , 0 , 0 , 0 , 0h hS S S S I I S S I 10I    
 (5.2) 

It is easy to establish that the solution of the IVP (5.1)- 
(5.2) is positive. Further, the set  

  1
1 1 1 1

1

, , , , : ,h hS S I S I S S I S I
D D

 
       

 
 

is found to be positive invariant. 
Further, the dynamical system (5.1) can also be written 

as 

1 1

d d
,

d d

N M
DN D M

T T
            (5.3) 

It may be observed that h  does not appear explicitly 
in the system (5.1) except the second equation. Also, the 
limiting mosquito population is obtained as  

S

1 1 1 1S D I   . Accordingly, it is sufficient to consider 
only the first, third and the fifth equations to determine 
the dynamics of the system (5.1). Hence, the three-di- 
mensional nonlinear system (5.4), given as follows, will 
be analyzed in the rest of this paper: 
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 

1 1 1

1 1

1 1
2 1 1

1

d
;

d

d
;

d

d

d

S
SI m S DS

T

I
SI D I

T

I
1I I D I

T D

 

 




   

  

 
   

 

       (5.4) 

This system is positively invariant in the region 

  1
1 1 1

1

, , : 0 ,0hS I I S S I I
D D

 
        

 
 

3. Equilibrium Points and Basic  
Reproduction Number 

The non-linear dynamical system (5.4) always admits the 
disease-free equilibrium point , where  0 ,0,0E S  

 1S D m   . The basic reproduction number is ob-
tained as the dominant eigenvalue of the next generation 
matrix [12]. It is important to distinguish new infections 
from all other class transitions in the population. Consid-
ering  T

1, , X I I S  where  and 1I I  are two infected 
classes, the system (5.4) can be written as 

     X f X X X X        

The vector  is the rate of appearance of new infec-
tion in each class and  is the difference of transfers 
out of compartment and into the compartments:  




 1 1

1
2 1 1 1

1

1 1 1

;

0

SI
D I

I I D I
D

SI m S DS







 

 
  

   
      

          
 

   

The corresponding Jacobian matrices at disease free- 
state  are computed as 0E

 

2 2 12 2

2 3

1

1

2 2 2 2

12 1

1

0
; ;

0 0

0
0

;
0

0

V JF

X X J J

D m D
F V

D

D

 


 



 

   
        

 
           
  

 

 

The basic reproduction number 0  is obtained as the 
spectral radius of the next generation matrix 

R
1FV   and 

is computed as 

  
2 1 2 1
0 2

1 1

R
D D D m

  



 

        (5.5) 

The endemic equilibrium  1 , ,E S I I

 
 

1 1 1 1 1

2 1 1 1 1 1

0; 0;

0

m S SI DS SI D I

D I I D I

   

 

      

  
  (5.6) 

This gives 

 
  

 
 

    

1 1

1 2 1 2 1

1 2 1 1 2 1

2
1 2 1 1 1

2 1 1 1 1

, ,

, ,

( )

E S I I

D I D D I

D I D

D D D m

D D D m

   
   

   
   

  

 

  
   

 

Since 0I  , the unique endemic equilibrium point 
exists when  

0 1R                     (5.7) 

Further, the equilibrium level of dengue infected hu- 
man population I  decreases if 1  increases. Hence, 
the awareness reduces the severity of the epidemic. 

m

4. Stability Analysis 

The local stability of different equilibrium points of (5.4) 
can be discussed on the basis of stability matrix at 
 1, ,E s i i . It is computed as  

 
 

 

 

1 1 1 1

1 1 1

1
2 1 2 1

1

0

0

i D m s

J E i D s

i i D
D

 
 


 



 
 
    
   
 
  

    
  

 

The stability results are stated below in the form of 
theorems. 

Theorem 4.1. The disease-free state  is locally as- 
ymptotically stable when  

0E

0 1R                     (5.8) 

Proof: The characteristic equation of stability matrix at 
 0 , 0,0E S   is obtained as 

  2
1 1 2 1 10; 0;D m a a a D D             

     2
2 1 1 1 2 1 1 1( )a D D D m D D m    0       

Therefore, the characteristic equation has roots with 
negative real parts for 0 1R  . 

Hence, the result is proved.                     □ 
Remark 1. Clearly, when 0  there will be no dis- 

ease and when 0  disease will persist in the popula- 
tion. Note that the awareness 1  

decreases the basic re- 
production number 0 , thereby increasing the stability 
of 

1R 

m
1R 

R
 0 . It can also be observed that 0  de- 

creases as the natural death rates  and  increase.  
, 0,0E S  R

D1  is obtained by 
solving the system: 

1

Remark 2. It may be noted from (5.7) and (5.8) that the 
D
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local stability of 0  ensures the non-existence of en- 
demic equilibrium point 1 . This suggests that the dis- 
ease-free state 0  may be globally stable when 0

E
E

E 1R  . 
This is proved by using the geometric approach [13-15] 
for global stability in the next theorem. 

Theorem 4.2. The locally stable disease-free equilib-
rium,  0 , 0,0E S   is globally asymptotically stable. 

Proof: The Jacobean matrix and second additive com-
pound matrix of the system (5.4) around the equilibrium 
point  0 , 0,0E S   are obtained as 

 

 

 

 

 

 

1
1

1

1

1

2 1
1

1

1 1
1

1

2 2 1
1 1

1

1

0

0 ,

0

2

0

0 0

D m
D m

J D
D m

D
D

D m
D m D m

J D D m
D

D D

 

 


 

   


 
1



 
    
 

   
 

 
 

  
     





   
 
   
 
 




 

Define a function 1  , , , , P S I I diag S S S , 1P C  
and let f  be a vector field of (5.4), it may be noted that 

   2 21 1, , andf

S S S
P P diag PJ P J

S S S
  
  

 

  
 

Taking , where the block matrix 
B is given as 

 21
fB P P PJ P  1

11 12

21 22

B B
B

B B

 
  
 

, with 

 11 12
S

B D m
S

    


, 1 1
12

1 1

,B
D m D m

   
    


 

 
2 1

1
121 22 1

0
, ,

0
0

A m S
DB B A D D

A S

 



 
            


  

Let   denote the Lozinski measure, then it is computed 
as: 

   
    

 

 

1 2

11 12 22 21

1
1 1

1

2 1
2 1

1

max ,

max ,

2 ,

B g g

B B B B

S
g D m

S D

S
g D D

S D



 

 


 




  

    

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



Now, when 0 1R  , there exists a number  such 
that 

0w 
 B S S w    provided  

   
1 1

1

1 2 1
2

1 1

1 ,

1

D m

D D m D

D

D D

 
 

  

 
     

 
  

 

    (5.9) 

Hence,    
0

0

log1 1
d

t S
B s w

t t S
   . 

Combining the two inequalities in (5.9) gives the con- 
dition 

  
1 1 1 2 1

2
1 1 1

1 1
D m D

D D D D m D
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 

   
        

 

Observe that left side of inequality is always greater 
than unity while right side is less than unity. Therefore 
the condition is always true. Hence, the result is proved. 

Theorem 4.3. The endemic state  if exists, is locally 
asymptotically stable. 

1E

Proof: When 0 , the characteristic equation about 
 is obtained as 

1R 
1E

 

 
     
   

   
 

3 2
0 1 2

1 2 1
0 1 2 1

1 1 2

2 2 1 1 1 1 1

2
1 1 1 2 1

1 2 1 2
1 2

1 1 2
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2 0

0,

2 0

a a a

a D D I m
D D I

a I D D D m D

a D D m I m

I D D I
D D I m

D D I

  

  
 



   

  

   
 



   

      


    

    

  

;

     


 

Since 1 2 3 , the characteristic equation has roots 
with negative real parts. Hence, the result is proved. 

a a a

Theorem 4.4. The endemic state , if exists, is glob-
ally asymptotically stable if 

1E

   
 

     

2 1 1 2 1 1 2 1 1 1

22
1 2 1
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,
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I D I D D D m

D I D
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     

 

    

   

 

     1

 (5.10) 

Proof: Denote D   , the Jacobian matrix and 
second additive compound matrix of the system (5.4) 
around  1 , ,E S I 1I  are  

  1 1
1

2 1

1 1

2 1

1 2
2 1

1 1 1
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 
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

 
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 
 
  
 
 

       

 
m
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Using the same approach as in Theorem (4.2), the ma-
trix B is computed as 
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The Lozinski measure  B  is computed as 
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If the conditions in (5.10) are satisfied then there exist 
a number  such that 0w 

  S
B w

S
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This establishes the result. 
However, the endemic state may be globally stable 

even when these conditions are not satisfied. 

5. Numerical Simulations 

The following data set is chosen to confirm different 
analytical results: 
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For the above dataset with 1  the basic re- 
production number R0 is computed as 0.506414. Since R0 

< 1, the disease free equilibrium point of the system (5.4) 
is computed as (198, 0, 0). The solution of system (5.1) is 
numerically obtained for this data set and with different 
initial conditions. It was observed that the solution con-
verges to the disease free state after removing the initial 
transients. The endemic state does not exist in this case. 
However, for m1 = 0.00025 the basic reproduction num-
ber is computed as 0

0.002m 

3.5105R  . In this case, the en-
demic state is computed as (401, 24, 36). For these two 
values of awareness parameter m1, the time series for 
susceptible, infected human and infected mosquitoes is 
obtained in Figures 1 and 2. These time series confirms 
the analytical results. 

6. Conclusion 

A five dimensional model is proposed and analyzed to 
get insights of dengue transmission in the human popula-
tion. It is assumed that due to awareness of the disease 
some susceptible take necessary precautionary measures 
to protect themselves from mosquito bite and joins aware 
class. It is also assumed that all the recovered individuals 
are convinced that the dengue re-infection is very dan-
gerous so they take sufficient care to protect themselves 
from the mosquito bites so they also join the aware class 
after recovery. Increase in the awareness decreases den-
sity of infected human as well as infected mosquitoes. 
Also, increase in the rate of awareness decreases basic  

 

 

Figure 1. Time series for m1 = 0.002. Blue: susceptible host, 
black: infective host, red: infective vector. 

 

 

Figure 2. Time series for m1 = 0.00025. Blue: susceptible 
host, black: infective host, red: infective vector. 
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reproduction number. It also increases the stability of 
disease free state. Hence, it is concluded that sufficiently 
high rate of awareness plays a crucial role in reducing the 
menace of the disease. 
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