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ABSTRACT 

In this paper, based on sparse representation classification and robust thought, we propose a new classifier, named 
MRSRC (Metasample Based Robust Sparse Representation Classificatier), for DNA microarray data classification. 
Firstly, we extract Metasample from trainning sample. Secondly, a weighted matrix W is added to solve an l1-regular- 
ized least square problem. Finally, the testing sample is classified according to the sparsity coefficient vector of it. The 
experimental results on the DNA microarray data classification prove that the proposed algorithm is efficient. 
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1. Introduction 

A tumor is a neoplasm from an abnormal growth of cells. 
An accurate, effective and prompt treatment of tumor is 
necessary for patient. But before treatment, how to clas-
sify the tumor is a more important mission because tu-
mors have many types. If you make a wrong analysis, 
your treatment will become another killer. 

DNA microarray is a biotechnology that simultane-
ously monitors the expression of tens of thousands genes 
in cells. There are many methods have been used in tu-
mor classification through microarray gene expression 
profiling like independent component analysis (ICA), 
nonnegative matrix factorization (NMF), i.e. Since the 
biological data is too large in scale and too complicated 
in profiling, which not only bring a great difficulty to 
save, search, process or analyze these data, but also bring 
an big challenge to data mining technology. A new effi-
cient data mining technology is necessary for improving 
the accuracy of tumor classification. 

Sparse representation has been successfully used in 
image processing applications [1], DNA microarray data 
classification [2], and Text classification. Intuitively, the 
sparsity of the coding coefficient vector for samples can 
be measured by the 0 -norm or -norm minimization 
( -norm minimization is the closest convex function to 

0 -norm minimization) of it. The -norm minimization 
is widely applied in sparse coding. Generally, the sparse 
coding problem can be formulated as 

l 1l

1l
1l

l

1
min


  subject to 2

2
y D  

      
 (1) 

where y is a given signal, e.g. the gene expression profile 
of a sample. D is the dictionary of coding atoms,   is 
the coding vector of y over D and   > 0 is a constant. 

The processing means of this function for gene ex-
pression data can be interpreted as following: By coding 
DNA microarray data y as a sparse linear combination of 
the training samples D via the 0l -norm or -norm 
minimization(here we used -norm minimization) in 
above function, SRC(Sparse Representation Classifica-
tion) classifies y by evaluating which class of training 
samples could result in the minimal reconstruction error 
of it with the associated coding coefficients. 

1l
1l

But there are two important issues in this model. The 
first one is that whether 

1
  is well enough to represent 

the signal sparsely. there are many works having been 
done for it. For example, adding a nonnegative constraint 
to   [3]; introducing a Laplacian term of coefficient in 
sparse coding [4]; Designing the sparsity regularization 
terms by using the Bayesian methods [5] and using the 
weighted 2 -norm in the sparsity constraint [6]. So, the 
first issue has been solved well. The Second one is that 
whether the 2l -norm term 

l

2

2
y D    is effective 

enough to represent the signal fidelity when y is noisy or 
has many outliers. By now there are only in [7,8] the 

-norm was used to keep the coding fidelity of 1l

1
y D   . Since we assume that the testing signal y 

can be represented by the training sample D. But in prac-
tice this assumption may not hold well as the noisy or 
outliers. So the 2l - or -norm may not be robust 
enough in DNA microarray data classification.  

1l

To improve the robustness and effectiveness of sparse 
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representation based classification. In this paper, we 
propose a Metasample-Based Robust Sparse Representa-
tion Classifier (MRSRC) for DNA microarray data clas-
sification using Sparse Coding and Robust theory. A 
weighted matrix W is added in -regularized least 
square problem to reduce noisy or outliers. 

1l

The rest of this paper is organized as follows. Section 
2 presents the proposed MRSRC model and algorithm. 
The metasample model of gene expression data are first 
presented, then MRSRC is given. Section 3 presents the 
numerical experiments. Section 4 concludes the paper. 

2. MRSRC 

2.1. Classification Based On Sparse  
Representation 

Sparse representation (SR) is a new effective method 
based on -norm minimization of data processing. By 
using SR technique, we can represent a new sample as a 
linear combination of training sample set with sparse 
coefficient, and classify new sample based on the sparse 
coefficient vector. Sparse Representation Classification 
(SRC) has been used in face recognition, tumor classifi-
cation [9] and performed well. The core idea of the SRC 
is that a test sample can be well expressed by only using 
the same class training sample. And in this condition, 
there are only a few nonzero elements in the coefficient 
vector of SR. In SR, we use -norm sparsity-con- 
strained least square estimation to get coefficient vector. 
SRC is different from traditional supervised learning 
algorithm in that SRC hasn’t strict training and test proc-
ess. So it has no over learning problem. 

1l

1l

However, using original training sample as dictionary 
directly can not express a new test sample well enough 
sometimes. At the same time, if there are too much 
training samples, the speed of algorithm will slow down. 
To solve this problem, we first extract metasamples from 
each class training samples, then using them to construct 
the dictionary. The detailed processes are listed in the 
following Section. 

2.2. Maintaining the Integrity of the Specification 

A typical characteristic of DNA microarray data is that 
gene amount is much more than the number of samples. 
Generally, the number of samples is about hundreds, but 
there are thousands of genes in each sample. Which 
makes that many classic classification methods can’t be 
used in DNA microarray data analysis. Fortunately, 
methods of choosing related features or extract new fea-
tures can solve well this issue. So far, there are many 
documents have studied how to use genes selection to 
classify the tumor samples, like [10-12], and how to ex-
tract new features, e.g., metasamples [16]. Alter et al. [13] 

used SVD to transform the gene expression data from the 
“genes   samples” space to diagonalized “eigengenes 
  eigenarrays” space, where the eigengenes are unique 
orthonormal superposition of the genes. Brunet et al. [14] 
used NMF to describe the gene expression data through a 
few of metasamples. (Figure 1) 

Metasamples of gene expression data is defined as a 
linear combination of several samples. We factorized the 
gene expression data set matrix A into two matrices 

~A WH ,                 (2) 

where matrix A is of size . In matrix A, the col-
umn represents the expression level of genes in a sample. 
Each row means the expression level of one gene through 
all samples. Matrix H is of size . Matrix W is of 
size

n m

k m
n k . 

From the above analysis, it can be seen that there are 
many methods to extract the metasamples, such as SVD, 
PCA [13], ICA [15], NMF [14], etc. In consideration of 
algorithm’s simple and fast features, in this paper we use 
SVD to extract the metasamples. 

We extract metasamples from the samples in class i 
and denoted them as i , then put them together, which 
constructed the new dictionary. 

W

D = 1 2, , , kW W W   ,            (3) 

2.3. The RSRC (Robust Sparse Representation 
Coding) model 

The sparse coding model in Eq. (1) is equivalent to the 
LASSO problem [22]: 

2

2
min y D


     subject to 
1

  ,     (4) 

where   > 0 is a constant, y =  1 2; ; ; ny y y   nR  is 
the signal to be coded, D =  1 2d d, , , md   n mR   is the 
dictionary with column vector jd  being the  atom, 
and 

thj
  is the coding coefficient vector. Here the resid-

ual e = y D  follows Gaussian distribution. 
We can see that a sparsity-constrained least square es-

timation problem is necessary to the sparse coding prob-
lem in Eq. (4). If e follows Laplacian distribution, this 
solution will be 

1
min y D


  subject to 
1

 
,      (5) 

 

 

Figure 1. The metasample model of gene expression data. 
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However, the residual e may be far from Gaussian or 
Laplacian distribution because of noisy or outliers. So the 
conventional sparse coding models in Eq. (4) and Eq. (5) 
may not be robust and effective enough for DNA mi-
croarray data classification. In order to build a more ro-
bust model for DNA microarray data classification, we 
rewrite D as D= 1 2; ; ; nr r r   , where row vector  is the 

 row of D, and set e = 
ir

thi y D = 1 2; ; ; ne e e   . Then we 
get i i ie y r  . And ie  are distributed according to 
some probability density function ( )if e

With consideration of the sparsity constraint of
. 

 , the 
RSRC can be formulated as [23]: 

1
min ( )

n

i ii
y r

 


  subject to 
1

  ,    (6) 

where ( )ie  = ln ( )if e  and it has the following 
properties: (0)  is the global minimal of ( )ie ; 

( )ie = ( )ie  ; ( )ie < ( )je  if ie > je , and we 
let (0) = 0. 

From Eq. (6), we can see that the propose RSRC 
model is a more general sparse coding model. Eq. (4) and 
Eq. (5) are special cases of it when it follows Gaussian 
and Laplacian distributions. 

Now by solving Eq. (6), we can get the coding coeffi-
cient vector . But one key problem is how to determine 
the distribution of  . From above analysis we can see 
that taking   as Gaussian or Laplacian distribution 
directly is not effective or robust enough. So we do not 
determine   directly to solve Eq. (6). Insteadly, we 
transform Eq.(6) into an iteratively reweighted sparse 
coding problem[23]: 

21/2

2
min ( )W y D


  subject to 
1

  ,    (7) 

where W is a diagonal matrix: 
'

, 0, 0,( ) ( ) /i j i i iW w e e e   0, ,         (8) 

Eq. (7) is a weighted LASSO problem. Because W 
needs to be estimated by using Eq. (8). Eq. (7) is a local 
approximation of the RSRC in Eq. (6) at , and W 
should be updated using the residuals in previous itera-
tion via Eq. (8). Using Eq. (7) the determination of dis-
tribution 

0e

  is transformed into the determination of W. 
As the logistic function has properties similar to the 
hinge loss function in SVM, the weight function can take 

2 2( ) exp( ) / (1 exp( ))i iw e u ue u ue      i ,   (9) 

where u and   are positive scalars. u controls the de-
creasing rate from 1 to 0, and   controls the location of 
demarcation point. Through Eq. (9), Eq. (8) and (0)  
= 0, we get 

21
( ) (ln(1 exp( )) ln(1 exp( )))

2i ie u ue u  
     , (10) 

The sparse coding models in Eqs. (4) and (5) can be 
interpreted by Eq. (7). When = 2, we will get the 

model in Eq. (4). If we let 
i  

= 

( )iw e

( )w e 1/ ie , we can get 
the model in Eq. (5). Eq. (7) has the following advantage: 
outliers will be assigned with low weights to reduce their 
affects. The weighted function of Eq. (9) is bounded in 
[0,1]. 

According to Eq. (7, 8, 9, 10), the detailed algorithm to 
get   is following as: 

Start from t = 1: 
1) Compute resisual . (  is first ini-

tialed in Eq.(11)) 

( ) ( )
recyte y  t ( )t

recy

2) Estimate weights as 
( ) ( ) ( )

( ) (

(t t t

t t


  


 

( ) 2
( )

( ) ) ( ) 2

exp( ) )
( )

1 exp( ( ) )

t
t i

i t t
i

e
w e

e
 

 ,       (14) 

where ( )t  and ( )t  are parameters estimated in the  
iteration. 

tht

3) Sparse coding: 
2* ( ) 1/2

2
min ( ) ( )tW y D


    subject to 1|| ||   

where  is the estimated diagonal weight matrix with 
. 

( )tW
( )t t( ) ( )W w e,i i i

4) Update the sparse coding coefficients: 
If t = 1, ( ) *t  ; 
If t >1, ; ( ) ( 1t t ) ( ) * ( 1)( )t t       

( )twhere 0 <   < 1 is the step size. ( )t  can be searched 
from 1 to 0 by the standard line-search process. 

5) Compute the reconstructed test sample: 
( )t
recy  = D ( )t , and let t = t + 1. 

6) Return step 1 until convergencing, or reached the 
maximal number of iterations. 

Iterations finished and output sparsity coefficient vec-
tor . 

2.4. Algorithm of MRSRC 

When we get a testing sample y, in order to initialize the 
weight, we set e as inie y y 

y 

. In this paper, we com-
pute  as iniy

ini Dm                 (11) 

where Dm  is the mean of all training samples. 
At this algorithm, W will change as e in Eq. (8) at 

every iteration. We stop the iteration if the following 
condition satisfying: 

( ) ( 1) ( 1)

2 2
/t t tW W W   <  ,       (12) 

where   is a small positive scalar, t is amount of itera-
tion. 

After the iteration, we get the coefficient , then clas-
sify y using the following function: 

2
min ( ) ( )ii

r y y D i  
         

 (13) 

where =ˆiy ( )iD   is a rebuilt testing sample by the  
class metasamples. Then we can classify y according to 

thi

Copyright © 2013 SciRes.                                                                                 ENG 



B. GAN  ET  AL. 81

the difference between y and . For example, if the 
difference between y and  is smallest, y is classified 
to the  class. 

ˆiy

3ŷ

3th

The classification algorithm is summarized as follows: 
Input: matrix of training samples A = [ 1 2, , , kA A A  

n
] 

 for k classes; testing sample ym nR  R  and  
initialized as . 

(1)
recy

iniy

Step 1: mormalize the columns of A to have unit 
-norm. 2l

Step 2: Extract the metasamples of every class using 
SVD and get D. 

Step 3: calculate the sparse coefficient   using Eq. 
(7).  

Step 4: Compute the difference: 

2
( ) (i iD )r y y  

(ir y

 

rg m
 

Output: 
i

, i.e., The informa-
tion of which class y belongs to. 

( ) a in )identity y 

From the algorithm it can be seen that MRSRC is the 
combination of RSC and metasample based cluster. In 
MRSRC, the complexity of algorithm depends on the 
number of iterations t, which depends on the percentage 
of outliers in the DNA microarray data set. Generally, the 
number of iteration takes 2, unless the percentage of out-
liers is too big. At that instance, t should be taken about 
10 to ensure the algorithm to reach convergence. 

3. Experimental Results 

In this section, experiments were performed to show the 
efficiency of the proposed method. 

3.1. Parameter Selection 

In the weight function Eq. (9), there are two parameters, 
i.e.,   and  .  is the parameter of demarcation point. 
We compute the value of   as follows. 

Denote by
2 2) , 2

1 2[( ) , ( , ]e e e( )n   . We sort   ele-
ments in an ascending order, then we can get a new array 

 . Let k n    , where scalar 0,1  , and n    
outputs the largest integer smaller than n . We set   
as 

k                    (15) 

  controls the decreasing rate of weight value from 1 
to 0. We set /c  , where c is a constant. According to 
lots of experiments, we usually set c as 8, and set   as 
0.8 in our experiments. 

3.2. Two-Class Classification 

In this subsection, we use three microarray data set to 
study the tumor classification, they are Colon cacer data 
set, Prostate cancer data set and DLBCL data set. The 
data set datails are listed in Table 1. All these three data 
sets have two class samlples. Colon data set has 2000 

genes, Prostate data set has 12600 genes and DLBCL 
data set has 5469 genes. 

We used the proposed to classify these dataset. Fro 
comparison, we also used other three methods, i.e., SVM, 
LASSO and SRC, to classify these experimental datasets. 
The classification results are listed in Table 2. In our 
method, SVD is used to extract the metasamples of gene 
expression data. Here, we choose 3 dimensions' meta-
samples when we extract these two class samples. And as 
the samples are not big enough, we use the nested strati-
fied 10-fold cross validation to get a more accurate re-
sult.  

From Table 2 we can see that, MRSRC have a good 
classification performance in Colon cancer datasets and 
DLBCL datasets. But in Prostate cancer datasets, even 
MRSRC is not better than SRC, but it has an advantage 
over SVM and LASSO. SRC is best in Prostate datasets, 
but as not well as MRSRC in the other two datasets. In 
all, in this Two-Class Classification experiment, MRSRC 
has well results. 

To better illustrate results, we show the accuracies of 
our methods MRSRC in Figure 2 when t = 10. The 
nested stratified 10-fold cross validation is also be used. 
 
Table 1. Three type of tumors for DNA classification ex-
periments. 

samples 
Datasets 

Class 1 Class 2 
Genes 

Colon cancer 40 22 2000 

Prostate cancer 77 59 12600 

DLBCL 58 19 5469 

 
Table 2. The classification accuracies by different methods. 

Datasets SVM LASSO SRC MRSRC-SVD

Colon 
cancer 

85.48 85.48 85.48 90.32 

Prostate 
cancer 

91.18 91.91 94.85 93.38 

DLBCL 96.10 96.10 97.40 98.70 

 

 

Figure 2. The classification accuracy with t = 10. 
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The x-axis represents the k-dimension. The y-axis repre-
sents the accuracy of the classification. From Figure 2, 
we can see that when the dimension of metasample is 3, 
the best classification accuracy can be reached. This re-
sult fully shows the advantage of metasample in reducing 
calculation complexity. 

3.3. Multiclass Classification 

To further investigate the performance of our method, we 
also used five multiclass data sets to do experiment. All 
the five data sets were produced by oligonucleotide mi-
croarrays. They are the Lung cancer data set [17], which 
contains 4 lung cancer types, includes 203 samples with 
12600 genes. The Leukemia data set [18], which contains 
3 kinds of samples, includes 72 samples with 11225 
genes. The SRBCT(Small round blue cell tumors of 
childhood) data set [19], which contains 4 types of tu-
mors, includes 83 samples with 2308 genes. The 
11_Tumors data set [20], which contains 11 various hu-
man tumor types, includes 174 samples with 12533 genes. 
The 9_Tumors data set [21], which contains 9 various 
human tumor types, includes 60 samples with 5726 
genes. 

The results are listed in Table 3. From the experiments 
we can see that, for multiclass classification the proposed 
MRSRC does not have clear advantages over SVM and 
SRC. The reason is that the training samples are very few 
so that the extracted metasamples cannot fully represent 
the information of these classes. For example, 9_Tumors 
data set only have 60 samples but 9 classes. One class 
only has 7 samples so that the training samples can not 
fully represent the testing sample. 

4. Conclusions 

In this paper, using Sparse Coding and Robust theory, we 
proposed a Metasample-Based Robust Sparse Represen-
tation Classifier (MRSRC). Comparing MRSRC with 
SRC and SVM on various types of DNA microarray data, 
the experimental results validated that MRSRC is effective 
and efficient in tumor classification. One important advan-
tage of MRSRC is that MRSRC show robustness to various 
types of outliers or noisy because the reweighted func-
tion can reduce the outlier’s affection in each iteration.  
 
Table 3. The Multiclass Classification Accuracies by Dif-
ferent Methods. 

Dataset SVM SRC MRSRC-SVD

Lung cancer 96.05 95.07 95.07 

Leukemia 96.60 95.83 97.22 

SRBCT 100 100 100 

11_Tumors 94.68 94.83 95.40 

9_Tumors 65.10 66.67 60.00 

One should be noted is that our method is based the as-
sumption that any testing sample can be well represented 
as a linear combination of the training samples from the 
same class. This means that the training samples should 
be many enough. Otherwise, the experimental results 
may be not famous. In future, we will use gene selection 
and SVM or NMF to further reduce training samples’ 
dimension, speed up calculation and improve accuracy of 
classification. 
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