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ABSTRACT 

Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robust-
ness. A crucial stage of the liver segmentation is the selection of the image features for the segmentation. This paper 
presents an accurate liver segmentation algorithm. The approach starts with a texture analysis which results in an opti-
mal set of texture features including high order statistical texture features and anatomical structural features. Then, it 
creates liver distribution image by classifying the original image pixelwisely using support vector machines. Lastly, it 
uses a group of morphological operations to locate the liver organ accurately in the image. The novelty of the approach 
is resided in the fact that the features are so selected that both local and global texture distributions are considered, 
which is important in liver organ segmentation where neighbouring tissues and organs have similar greyscale distribu-
tions. Experiment results of liver segmentation on CT images using the proposed method are presented with perform-
ance validation and discussion. 
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1. Introduction 

Automatic and accurate liver segmentation in medical 
images such as computed tomography (CT) and magnetic 
resonance imaging (MRI) is one of the most important 
concentrations in medical image processing. Segmenta-
tion of liver from its surrounding organs and tissues are a 
crucial yet very difficult task in building a surgical plan-
ning system for liver transplantation and resection. This 
is because the boundary between the liver and its 
neighbouring structures such as the heart is sometimes 
barely noticeable in CT images, and the liver is nonrigid 
in shape and variant in position. 

Various algorithms have been proposed to deal with 
liver segmentation, including live wire-based, gray level- 
based, neural networks-based, model fitting-based, prob-
abilistic atlas-based, graph cut, deformable model-based, 
level set-based, and machine learning-based [1-9]. Al- 
though much progress has been achieved in recent years, 
challenges remain on the aspects of segmentation accu-
racy, robustness and automation. 

This paper presents an automatic liver segmentation by 
combining high order statistical texture features with 
anatomical structural features. Section two describes the 
algorithm in detail, including texture analysis, liver dis-

tribution image calculation with support vector machines, 
and liver organ localization with a group of morphologi-
cal operations. Section three gives the details of the liver 
segmentation experiment on CT images, including the 
experiment setting, performance validation and discus-
sion, and future work in the area. 

2. The Approach 

The proposed automatic liver segmentation in CT images 
consists of three major processes as shown in Figure 1, 
including texture analysis, liver distribution image cal-
culation, and liver organ localization. 

The approach starts with texture analysis process, 
where an optimal set of texture features including high 
order statistical texture features and anatomical structural 
features is calculated out of the abdominal CT images. 
With these texture features as input, liver distribution 
image is derived by classifying the original image pix-
elwisely using support vector machines. Since the liver 
distribution image can only indicate the likely distribu-
tion of the liver organ, not the exact delineation of the 
organ, liver organ localization is applied to locate accu-
rately the liver. Following subsections describe the algo-
rithm in details. 
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Figure 1. The diagram of the proposed automatic liver seg-
mentation. 

2.1. Texture Feature Analysis 

In abdominal CT images, liver shows similar grey scales 
and textures to its neighbouring structures such as heart 
and stomach. Therefore, three important considerations 
are taken in developing the proposed algorithm. First, 
liver segmentation based on greyscale parameters alone 
is not sufficient; second, high order texture parameters 
can better deal with liver segmentation; lastly, optimal 
liver segmentation can be achieved when global ana-
tomical structural features are used. 

Since homogeneity and consistency characterize liver 
segmentation where multiple slices and different patients 
are dealt with, texture features are considered. Textures 
are complex visual patterns that are composed of entities 
or subpatterns that have characteristic brightness, colour, 
slope, size, etc. [10]. It can be regarded as a similarity 
grouping in an image. Methods of texture analysis can be 
broadly classified into four categories, including: struc-
tural approach, which represents texture by defined 
primitives; statistical approach, which represents texture 
by non-deterministic properties that govern the distribu-
tions and relationships between grey levels of an image; 
model-based approach, which uses fractal and stochastic 
models to interpret image texture; and transform ap-
proach, which represents image in a space where texture 
is well characterised. The statistical approach and the 
transform approach are investigated and adopted in the 
proposed segmentation method, mainly based on the 
facts that the statistical approach has the advantage of 
representing texture inexplicitly and the transform ap-
proach has the advantage of representing texture at vari-
ous scales. 

2.1.1. Grey Level Co-occurrence Matrix and Haralick 
Texture Descriptors 

In characterising the distribution and relationship of pix-
els, i.e. texture, in a grey scale image, the joint probabil-
ity distribution of pairs of pixels is used. It is defined as 
the co-occurrence matrix. Its normalised form is noted as 
Cij(d, θ) [11].  

In an image Im of size H by W pixels and with G in-
tensity levels, for every pixel centered on a neighborhood 
I(x,y) of size N by N, Cij(d, θ) is defined as the total 
numbers of times that, within the N by N neighborhood: 

I(x1,y1) = i  and  I(x1+dcosθ, y1+dsinθ) = j   (1) 

where x1 = 0, 1, …, N-1, is the row number in the 
neighborhood ; y1= 0, 1, …, N-1, is the column number 
in the neighborhood; i = 0,1,…,G-1, is the row number in 
the co-occurrence matrix ; j = 0,1,…,G-1, is the column 
number in the co-occurrence matrix; d = 1,…,N-1, is the 
displacement distance along θ; θ = 0°, 45°, 90°, 135°, is 
the angle between the pair.  

Figure 2 illustrates the calculation of Cij(d, θ) at a 
pixel in an abdominal CT image. The co-occurrence ma-
trix is square and has a size G, which is the intensity lev-
el in original image. Note that in Figure 2 (b), for the 
sake of easy description, the maximal intensity value is 
supposed to be 5, much less than that of original liver CT 
image. For a normalised CT image, the maximal inten-
sity value is usually 255. In the figure, the curved line 
connecting (b) and (c) shows how C00(1, 0) is calculated: 
for d = 1 and θ = 0, within the 5 by 5 neighborhood, the 
total number of times that a pair of 0-value pixels ap-
pears is one, so C00(1, 0) = 1.  
 
 

1 1 0 0 0 2 
0 1 0 0 0 1 
1 2 0 0 0 0 
0 0 2 0 0 0 
1 0 1 0 1 1 
0 2 0 2 0 1 

0 5 3 2 1 
4 2 1 5 1 
0 0 5 5 1 
4 4 0 1 1 
4 5 3 2 0 

(a)The original CT image Im, with size 
1024x1024 and 256 intensity levels  

(b)I(x,y), a neighborhood at a 
position inside (a). 

 

(c)Corresponding co-occurrence matrix Cij(d, θ), 
with d=1 and θ = 0.    

Figure 2. The calculation of Cij(d, θ) at a position in an ab-
dominal CT images. 
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The co-occurrence matrix basically keeps track of all 
the pixel-pair counts. It is also called spatial dependence 
matrix. Since representing an image with its co-occur- 
rence matrix will result in much more data (e.g., for an 
image of size 1024 by 1024 pixels and with 256 intensity 
levels, the co-occurrence matrix will be of size 256 by 
256 by 1024 by 1024), a set of features with much less 
size yet reflecting the co-occurrence characters was pro-
posed, known as Haralick texture descriptors [11]. The 
nine Haralick texture descriptors can be defined and cal-
culated as below. 

Entropy: measures the randomness of gray-level dis-
tribution: 
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Variance: measures the variation of gray-level distri-
bution: 
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Correlation: measures a correlation of pixel pairs: 
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Maximum Probability (MP): gives the most predomi-
nant pixel pair: 
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Inverse Difference Moment (IDM): measures the 
smoothness: 
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Cluster Tendency: measures the grouping of pixels 
that have similar gray-level values: 
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where Cij is the normalised co-occurrence matrix with 

displacement distance d and angle θ; r , c , 2
r , and 

2
c  are the means and variance of row and column in 

Cij(d,θ). 

2.1.2. Wavelet Coefficients 
Wavelet coefficients are the output of wavelet transform 
(WT) [12] which is the decomposition of a signal into a 
set of basis functions consisting of contractions, expan-
sions and translations of a mother wavelet  . 

The wavelet transform of a signal f(x) is defined as 
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where the mother wavelet   is a zero average function, 
centered around zero with a finite energy. The family of 
vectors is obtained by translations and dilatations of the 
mother wavelet: 

,

1
( ) ( )u s

t u
t

ss
  

            (12) 

In image processing applications, the wavelet trans-
form is usually computed with dyadic wavelet transform 
which is implemented by filter banks. The filtering is 
done along both row and column with pairs of lowpass 
filter and highpass filter [12]. Figure 3 illustrates the 
process of deriving wavelet coefficients for an image 
using the dyadic wavelet transform. Figure 3 (a) gives a 
one-scale wavelet decomposition result which has four 
blocks of components: LL is the downsampling of the 
lowpass filtering along both row and column, LH is the 
downsampling of the lowpass filtering along row and 
highpass filtering along column, HL is the downsampling 
of the highpass filtering along row and lowpass filtering 
along column, and HH is the downsampling of the high-
pass filtering along both row and column. Such filtering 
or decomposition can be done further on LL, resulting a 
two-scale wavelet decomposition of an image as shown 
in Figure 3 (b). Note that the number of total wavelet 
coefficients equals to the number of the pixels in the im-
age, no matter being a one-scale decomposition or two- 
scale decomposition. In general, there will be 4 + 3* (S - 
1) blocks for an S-scale decomposition. 
 

 

LL LH

HL HH HL HH

LH

LL
LL 

LL
LH 

LL
HL 

LL
HH 

(a) one-scale (b) two-scale  

Figure 3. The process of deriving wavelet coefficients for an 
image using dyadic wavelet transform. Where L is a low- 
pass filter, H is a high-pass filter. 
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Comparing to other transforms such as Fourier [13] 
and Gabor [14], Wavelet transform has two advantages 
in segmentation application. One is that it can represent 
textures at the most suitable scale by varying the spatial 
resolution. The other is that wavelets best suit for texture 
analysis in a specific application can be chosen because 
of a wide range of choices for the wavelet function. 

2.1.3. Combining High Order Statistical Texture  
Features with Anatomical Structural Features 

As discussed before, the grey level co-occurrence matrix 
and related Haralick texture descriptors are second-order 
statistical texture features. They have the advantages of 
describing the statistic relationships among neighboring 
pixels. However, in practical segmentation applications, 
they are confined by two factors – small local range cov-
erage and huge computation load. The small local range 
coverage is the fact that the co-occurrence matrix is cal-
culated within a neighboring of N by N pixels. N is usu-
ally a single digit value, e.g., 5, considering the computa-
tion load. To consider the statistical texture representa-
tions for an image, the computation load is huge. For 
example, for an image of size 1024 by 1024 pixels and 
with 256 intensity levels, if three kinds of pixel-pairs are 
considered (i.e., the displacement distances d = 1, 2, 3), 
and only one direction is considered (i.e., angle between 
the pair θ =0), 3 × 9 × 1024 × 1024 Haralick texture 
descriptors will be calculated, with each calculation be-
ing propotional to the task of deriving the co-occurrence 
matrix of size 256 by 256. 

Wavelet coefficients can compensate Haralick de-
scriptors in specifying texture, by providing features to 
describe anatomical structure at a large scope with vari-
ous resolutions. For example, for a WT of 3 scales and 
filter length 9, a coefficient in the lowest resolution block 
can represent the texture of 8 × 9 pixels, which will well 
cover the important anatomical structure around liver.  

Therefore, to fully take the advantages of high order 
statistical texture features and anatomical structural fea-
tures, both Haralick texture descriptors and WT coeffi-
cients are used as the inputs to liver distribution image 
calculation stage. 

2.2. Liver Distribution Image Calculation 

The liver distribution image of an abdominal CT image is 
a binary image. In the distribution image, the values of 
the pixels are one if the pixels have the most possibility 
of being liver, whereas the values of the other pixels are 
zero. Support vector machines (SVMs) [15] are imple-
mented as classifier to pixelwisely derive the distribution 
image. SVMs are a set of discriminative classifiers which 
are defined by an optimal separating hyperplane. View-
ing input data as two sets of vectors in an n-dimensional 
space, the hyperplane will maximize the margin between 

the two data sets.  
The SVMs classifiers are built in a training process. In 

the process, assume the training set is {(xi,yi), i =1,2,…l}, 
where xi is the input with xi∈Rn, yi is the output with yi∈
R R={-1,+1}, and l is the number of input samples. Then 
an optimal hyperplane in canonical form must satisfy the 
following constraints: 

( ) 0x b                  (13) 

where b∈R,   is a normal vector, and ( )x  is an 
inner product induced feature map that maps the input 
space into a high dimension linear space.  

SVMs convert the task of finding the optimal hyper-
plane into a task of quadratic programming problem as: 
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Applying Lagrange multipliers, the optimal quadratic 
programming problem can be solved as the following 
dual optimal problem: 

1
2

1 1 1

max{ ( , )}
jl l

i i j i j i
i i j

y y K x x  
  

  j

i

 

subject to 

1

0 ,  and 0
l

i i
i

C y 


              (15) 

where i  is support value, the xi corresponding to 
0 i C   is support vector (SV), and the xi corre-
sponding to 0 i C   is normal support vector 
(NSV). 

1 [ (
NSV

i j
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where NNSV is the number of NSV, ( , )i jK x x  is kernel 
function. Typical kernel functions are linear, polynomial, 
radial basis function, and sigmoid.   

The training process will derive i , b, and ( , )i jK x x . 
Then the SVM as a classifier can classify any input data 
x with the following classify function: 

1

( ) { ( , ) }
l

i i i
i

f x sign y K x x b

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2.3. Liver Region Localization 

The liver distribution image derived with SVMs is a bi-
nary image. It can indicate most of the liver correctly. 
Figure 4 illustrates one such example, where the left is 
an original abdominal CT image and the right is the out-
put of SVMs on the image. In the image, liver is at the 
top-left corner, indicated with the white curve.  
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Figure 4. An example of liver distribution image left: an 
original image; right: output of SVMs. 
 

Observing the distribution image, two issues need be 
tackled. One is that the classification is not perfect, re-
sulting misclassified pixels both within the liver and out-
side the liver. The other is that the shape and spatial in-
formation is not considered, making the classification 
sensitive to the noise produced by the misclassified pix-
els. Therefore, a set of binary morphological operations 
[16] is specifically designed to get the delineation of the 
liver out of the distribution image. 

The morphological operation starts with dilate and 
erode on the distribution image to get connected regions. 
Morphologic operations are described by the shape and 
size of the structural element used. Considering both the 
anatomical structural knowledge of the abdomen and the 
CT image resolutions, a square structural element with a 
diameter of 6 pixels is chosen. The second stage of the 
morphological operation is to further purify the outcome 
of the first stage. This includes: to retain the largest ob-
ject; to remove the pixels that are liver yet are misclassi-
fied as non-liver using hole filling operation; and to de-
lete the spurs and smooth the contour along edges with 
erode and dilate operation. 

3. Experiments and Discussions 

The proposed automatic liver segmentation algorithm 
was applied to human abdominal CT images obtained 
from [17]. All the images were enhanced with contrast 
agent and scanned in the central venous phase on a vari-
ety of scanners ranging from 4 to 16 and 64 detector 
rows. All the data were acquired in transversal direction. 
The pixel spacing varied between 0.55 and 0.80 mm, the 
inter-slice distance varied from 1 to 3 mm. In the ex-
periments, eight images from one subject were chosen as 
training set to train the SVM classifier, and testing set 
were the images from another subject. 

Segmentation performance validation was done by 
comparing the automatic segmentation results with the 
benchmark provided by the data supplier. Three metrics 
are designed to evaluate the algorithm as below. 
 False positive volume fraction (FPVF) 
FPVF is defined as the amount of the pixels that are 

falsely classified as the liver by the proposed method, as 
a fraction of the total amount of pixels that are identified 
as the liver in the benchmark. It can be expressed as: 

SVM man

man

L L
FPVF

L


  

where Lman denotes the total amount of pixels that are 
identified as the liver by benchmark. LSVM denotes the 
total amount of the pixels that are classified by the pro-
posed method as the liver. |LSVM- Lman | is the set differ-
ence between LSVM and Lman. 
 False negative volume fraction (FNVF) 
FNVF is defined as the amount of the pixels that are 

falsely classified by the proposed method as non-liver, as 
a fraction of the total amount of pixels that are identified 
as the non-liver in the benchmark. It can be expressed as:  

man SVM

man

NL NL
FNVF

NL


  

where NLman denotes the total amount of pixels that are 
identified as non-liver in the benchmark. NLSVM denotes 
the total amount of the pixels that are classified by the 
proposed method as non-liver. |NLman-NLSVM| is the set 
difference between NLman and NLSVM. 
 True positive volume fraction (TPVF) 
TPVF is defined as the amount of the pixels that are 

classified as liver by both the proposed method and in the 
benchmark, as a fraction of the total amount of pixels 
that are identified as the liver in the benchmark. It can be 
expressed as: 

proposed man

man

L L
TPVF

L


  

where Lproposed denotes the total amount of the pixels that 
are classified as the liver by the proposed method. 

The procedure of the experiments are so designed that 
the performance comparison is done between the method 
using high order statistical texture features only and the 
method using both high order statistical texture features 
and anatomical structural features. Two experiments had 
been done. In experiment 1, nine Haralick texture de-
scriptors (as defined in equations 2 to 10) were used to 
derive the liver distribution image. Where d = 2, θ = 0, 
and the intensity was normalized to 256 levels. In ex-
periment 2, in addition to the nine Haralick texture de-
scriptors, Wavelet coefficients were used. Where scale 
number S = 3. In both the experiments, the parameters 
for SVMs are the same, including using a polynomial 
kernel function. 

Table 1 shows the performance comparison of the two 
experiments. From the table, it can be seen that when 
both the high order statistical texture features and ana-
tomical structural features are used, the total segmenta-
tion performance is apparently improved than high order  
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Table 1. Performance metrics (%) of the two experiments. 

 FPVF FNVF TPVF 

Experiment 1 14.7 6.3 93.8 

Experiment 2 11.1 5.1 97.3 

 
statistical texture features only are used. The perform-
ance improvement is across all the metrics, with about 
four percent improvement on TPVF. 

4. Conclusions 

This paper presents an accurate liver segmentation algo-
rithm. The main focus of the discussion is how to im-
prove segmentation performance by selecting most suit-
able image features. There are three major steps in the 
proposed method, including texture analysis which re-
sults in a suitable set of texture features, calculation of 
liver distribution image using support vector machines, 
and accurate liver organ localization using a group of 
morphological operations to locate the liver organ. The 
novelty of the approach is resided in the fact that the 
features are so selected that both local and global texture 
distributions are considered. Out of detailed methodology 
description and segmentation experiments, it has shown 
that the proposed method can accurately segment liver in 
CT image, achieving as high as 97.3% on true positive 
volume fraction. 

REFERENCES 
[1] A. M. Mharib, A. R. Ramli, S. Mashohor and R. B. Mah-

mood, “Survey on liver CT image segmentation methods”, 
Artificial Intelligence Review, Vol. 37, No. 2, 2012, pp. 
83-95. doi:10.1007/s10462-011-9220-3 

[2] H. Bourquain, et al., “Hepavision2—A Software Assis-
tant for Preoperative Planning in Living Related Liver 
Transplantation and Oncologic Liver Surgery,” Computer 
Assisted Radiology&Surgery, 2002, pp. 341-346. 

[3] H. P. Meinzer, M. Thorn and C. Cardenas, “Computer-
ized Planning of Liver Surgery: An Overview,” Com-
puters and Graphics, Vol. 26, No. 4, 2002, pp. 569-576. 

[4] P. Campadelli, E. Casiraghi and A. Esposito, “Liver Seg-
mentation from Computed Tomography Scans: A Survey 
and a New Algorithm,” Artificial Intelligence in Medicine, 
Vol. 45, No. 2-3, 2009, pp. 185-196.  
doi:10.1016/j.artmed.2008.07.020 

[5] S. Luo, Q. Hu, X. He, J. Li, S. J. Jin, S. Chalup and M. 
Park, “Automatic Liver Parenchyma Segmentation from 
Abdominal CT Images Using Support Vector Machines,” 
2009 IEEE/CME Int. Conf on Complex Medical Engi-

neering, April 9-11, 2009, Tempe, USA, paper 10071. 

[6] V. Pamulapati, A. Venkatesan, B. J. Wood and M. G. 
Linguraru, “Liver Segmental Anatomy and Analysis from 
Vessel and Tumor Segmentation via Optimized Graph 
Cuts,” MICCAI'11 Proceedings of the Third international 
conference on Abdominal Imaging: Computational and 
Clinical Applications, 2011, pp. 189-197. 

[7] T. Dima and J. Domingo, “A Local Level Set Method for 
Liver Segmentation in Functional MR Imaging,” IEEE 
Nuclear Science Symposium Conference Record, 2011, pp. 
3158-3161. 

[8] J. Lu, L. Shi, M. Deng, S. C. H. Yu and P. A. Heng, “An 
Interactive Approach to Liver Segmentation in CT Based 
on Deformable Model Integrated with Attractor Force,” 
Machine Learning and Cybernetics (ICMLC) 2011, pp. 
1660-1665. 

[9] Y. Zhao, Y. Zan, X. Wang and G. Li, “Fuzzy C-means 
Clustering-Based Multilayer Perceptron Neural Network 
for Liver CT Images Automatic Segmentation,” Control 
and Decision Conference (CCDC) 2010, pp. 3423-3427. 

[10] A. Materka and M. Strzelecki, “Texture Analysis Meth-
ods - a Review,” Technical Report, Technical University 
of Lodz, Institute of Electronics, 1998. 

[11] R. M. Haralick, “Statistical and Structural Approaches to 
Texture,” Proceedings of the IEEE, Vol. 67, No. 5, 1979, 
786-804. doi:10.1109/PROC.1979.11328 

[12] S. Mallat, “Multifrequency Channel Decomposition of 
Images and Wavelet Models”, IEEE Trans. Acoustic, 
Speech and Signal Processing, Vol. 37, No. 12, 1989, pp. 
2091-2110. 

[13] A. Rosenfeld and J. Weszka, “Picture Recognition in 
Digital Pattern Recognition,”K. Fu (Ed.), Springer-Verlag, 
1980, pp. 135-166.  

doi:10.1007/978-3-642-67740-3_5 

[14] J. Daugman, “Uncertainty Relation for Resolution in 
Space, Spatial Frequency and Orientation Optimised by 
Two-Dimensional Visual Cortical Filters,” Journal of the 
Optical Society of America, Vol. 2, 1985, pp. 1160-1169. 
doi;10.1364/JOSAA.2.001160 

[15] N. Cristianini and J. Shawe-Taylor, “An Introduction to 
Support Vector Machines and Other Kernel-based Learn-
ing Methods,” Cambridge University Press, ISBN 
0521780195, 2000. doi:10.1017/CBO9780511801389 

[16] J. Serra, “Image Analysis and Mathematical Morphol-
ogy,” Theoretical Advances, New York: Academic, Vol. 
2, 1998. 

[17] T. Heimann, M. Styner and B. van Ginneken, “3D Seg-
mentation in the Clinic: A Grand Challenge,” MICCAI 
2007, the 10th Intel Conf. on Medical Image Computing 
and Computer Assisted Intervention, 29 Oct. to 2 Nov. 
2007, Brisbane, Australia, pp. 7-15 

 

http://dx.doi.org/10.1007/s10462-011-9220-3
http://dx.doi.org/10.1016/j.artmed.2008.07.020
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1364/JOSAA.2.001160
http://dx.doi.org/10.1017/CBO9780511801389

