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ABSTRACT

By the complete discrimination system for polynomials, we classify exact traveling wave solutions to the Zhiber-Shabat

equation, and compute some new traveling wave solutions.
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1. Introduction

The study of exact solutions to nonlinear partial differen-
tial equations is an important component of integrable
systems [1]. Many methods, such as the transformed ra-
tional function method [2], the multiple exp-function
algorithm [3] and the factorization method [4], have been
proposed to find exact traveling wave solutions to nonli-
near partial differential equations. At the same time, Ma
has obtained complexiton solutions, a kind of multi-wave
solutions, to some nonlinear partial differential equations
[5,6]. Liu [7] introduced a simple and efficient method to
give the classification of exact traveling wave solutions
to some nonlinear equations [8].

In this paper, we focus on the Zhiber-Shabat equation
to classify its traveling wave solutions. A. M. Wazwaz [9]
and A. G. Davodi et al. [10] have got some traveling
wave solutions to the Zhiber-Shabat equation. By Liu’s
method, we’ll classify exact traveling wave solutions to
the Zhiber-Shabat equation, and compute some new tra-
veling wave solutions to the equation.

2. Exact Traveling Wave Solutions
The Zhiber-Shabat equation reads as:

u, +pe' +ge +re® =0, €))
where p=#0, qg,r are three constants. Take the travel-
ing wave transformation

u=u(¢),& =kx+at, 2)

the corresponding reduced ordinray differential equation
is given by
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kou + pe’ +ge™ +re® =0. (3)

Furthermore, we take u =z, where z is a function of
u, and so, we have u’ =zdz/du. Substituting these
terms into Equation (2) yields

ka)zj—z+ pe' +ge ™ +re® =0. (4)
u

Using the method of the variation of constants, the
general solution of Equation (3) is given by

z=U = i\/z—qe‘” PP —Qe” +£, )
ko ko ko kaw

where ¢ is an arbitrary constant. Thus the general solu-
tion of Equation (4) is

s(e-g)=] du G

He—u_i_Le—Zu Qeu_i_%

ko ko ~ ke

We take the transformation v =¢", the corresponding
integral becomes

e-g)=l —2 @
VSV Sy L
Denote
F(w)=w +d,w* +d,w+d,, (8)
where
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The complete discrimination system for F(w) is
given by

3 2
A-—Z?(Zd +d, - d1d3j —4(d, - d2Y’,

27 3 (10)
D, —d -
3
Casel. A=0,D, <0:
We have F(w) (w— a) (W=p8),a=p . When
®> 3, we have
1 ,/ —Ja-
§-&)= | >p, (11)
He-8) - L e
+H(E-&)= marctan w-p a<ﬂ. (12)
The corresponding solutions are
.n{(gj‘
¢ (13)

X[(a—ﬂ)tanhz%\/a—ﬂ(é‘—éo)Jrﬂ]},

-1/3
u, =In {(%)
[0

x[(a—ﬁ)cothzém(f—foﬁﬂ},

=In —2p -
()
x[(ﬂ—a)seczgm(§—§0)+a}}.

Case2. A=0,D, =0:
Then F(w)=(w—a) . The solution is given by

)"
u= In{( kifjl/s[ 5 fo a}} (16)

Case3. A>0,D, <0:
Then F(w)=(w-a)(w-p)(w-y) with
a < 3 <y . Therefore, we have
dw
+(e-&)=] T
7 Jw-a)(w-p)(w-7)
When a<w< £, we obtain a new traveling wave
solution

-3 -1/3
ko ko

x(ﬂ—a)sn{@(é—fo),k]}

(14)

(15)
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When w >y, we obtain another new traveling wave

solution
1/3
u:.n{(_pj
a)
[—ﬂsn( V;/Z—a (zf ),kJ+}/] (19)

cn[“y_a —50),kJ

where
=t
y—a
Cased. A<O:

Then F(w)=(w—a)(w’ +pw+q),p’—4q<0. The
corresponding integral becomes

£(e-¢)=]

dw .
\/(w—a)(wz + pw-+q)

When w> « , we obtain the following new traveling
wave solution

u= In{(ﬂj_ (a
ko
2\Ja’ + pa+q 1)

1+cn [(az + pa+q)1/4 (§—§0),k}

e el

(20)

+

where
p

a+
2-11 2

_\/a2+ pa+q |
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