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ABSTRACT 

This work presents a software tool for modeling of mass transfer physicochemical processes occurring in the atmos- 
phere. The implemented algorithms provide an efficient theoretical frame for the interpretation of the results obtained 
from Coated Wall Flow Tube (CWFT) reactor experiments, which is one of the most adequate techniques to study het- 
erogeneous kinetics. The numerical simulations are based on the fundamental Langmuir adsorption theory by ordinary 
differential equations and the second Fick’s law described by partial differential equations. The main application of the 
system is to estimate the basic parameters that characterize the processes. The best parameter estimation is found by 
minimizing the difference between experimental signals from the CWFT reactors and the obtained numerical simula- 
tions. A numerical example for an experimental data fit is given. 
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1. Introduction 

Climate changes in the last decades and the expansion of 
ozone hole have become an important problem for re- 
searchers from different fields of natural sciences. A major 
point of atmospheric processes studies is the understand- 
ing of the heterogeneous mass transfer occurring in dif- 
ferent altitudes and specifically the role of ice as adsorb- 
ent. Atmospheric trace gases interact with the ice in a 
complicated manner including various physicochemical 
processes such as adsorption, desorption and diffusion. 
One of the most efficient ways to study these processes 
in laboratory are experiments performed in Coated Wall 
Flow Tube (CWFT) reactors [1-3] in order to match the 
atmospheric conditions in high altitude such as tempera- 
ture, pressure, trace gas concentration etc. Usually the 
thermodynamic and kinetic parameters that characterize 
the atmospheric processes cannot be derived directly from 
the raw measurements; hence the mass detector signal 
must be analyzed with various numerical methods. The 
calculations can be done in different levels: quantum me- 
chanics (QM), molecular dynamics (MD) and macro- 
scopic kinetic simulations customized for specific experi- 
ments. QM and MD typically characterize theoretically 
(on a microscopic level) small system of several mole-  

cules for QM or thousands of molecules for MD (for a 
very small time interval). However the linking of theo- 
retical data with the experiment still remains quite specu- 
lative in many occasions since the theory takes into ac- 
count localized effects while the experimental data is 
taken from the whole reactor. The efficient interpretation 
of the mass signal requires a third numerical approach 
where the processes in the entire reactor are simulated 
(the number considered molecules is 1017 for few min- 
utes of simulation/measurement). CWFT reactor consists 
of a tube cooled down at low and constant temperatures 
in accordance with atmospheric conditions. A movable 
injector that ends with a tiny nozzle injects the measured 
trace gas along the reactor tube while it is moving (see 
Figure 1). The carrier gas flows laminarly toward the 
mass spectrometer (detector). Initially ice film is gener- 
ated by deposition of gaseous water upon injection of 
water vapor through the sliding injector at low tempera- 
tures of the reactor wall. The combined effect of all 
processes adsorption/desorption with diffusion/segrega- 
tion kinetics and thermodynamics can be observed as 
measured mass spectrometer signal Gexp(t). The best es- 
timation of the studied parameters optimizes the mean 
square error (MSE), which measures the difference be- 
tween the experimental and simulated (G(l, t)) signal. 
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Figure 1. CWFT reactor schematic presentation and formalization of the simulated processes. 
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In this paper we present in detail developed by us nu- 
merical algorithms for simulation of mass transfer phys- 
icochemical processes occurring in the atmosphere. Also 
we give an example application for real measurements of 
acetic acid interacting with ice surfaces at temperature 
190 K. 

2. Mathematical Model with a PDE System 

The CWFT reactor state is formalized by the following 
functions: 

G(x, t)—gas concentration, 
S(x, t)—ice surface concentration, 
B(x, z, t)—ice bulk concentration, 

where the argument  0,t T  is the time,  0,x l  is 
the position in the reactor and  0,z d  is the position 
in the ice bulk. G(l, t) is the resulting mathematical model 
which is used to fit the reactor experimental output (see 
Equation (1)). G(l, t) is the gas concentration at the end 
of the CWFT reactor (x = l), where also the mass de- 
tected signal, Gexp(t) is obtained (see Figure 1). 

All processes in the reactor are mathematically de- 
scribed by means of the PDE system (2). The first two 
equations are based on the Langmuir law [1] plus correc- 
tion for the gas injection IG(x, t) and transfer from the 
bulk R(x, t), the third equation is the classical diffusion 
PDE (also known as the second Fick’s law in physical 
chemistry) and the last equation describes the gas flow in 
the reactor. 
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(2) 

The constants k1, k2, Smax and D (also k3, k4 and Bmax,  
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see Equation (5)) characterize the kinetics of the proc- 
esses. The constants k1 and k2 respectively describe ad- 
sorption and desorption rate coefficients. Smax is the 
number of the active surface sites and Bmax is the maxi- 
mum bulk concentration at the given conditions. k3 and k4 
represent the solution into the bulk and segregation from 
the bulk rate constants respectively. The constants a1 and 
a2 describe the reactor geometry and v is the flow veloc- 
ity constant. 

The function: 

   
 0

0 if
,

if
p

G
p

x I t
I x t

G x I

   t
         (3) 

represents the injected gas from the movable injector 
where Ip(t) is the injector position expressed as a function 
of time: 
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Equation (4) describes the injector position as it is 
changed during the experimental procedures. The injec- 
tor moves with a constant speed from the end of the 
CWFT reactor (Ip(t) = l) to the beginning of the reactor 
(Ip(t) = 0) and backwards to the end. Respectively T1, T2, 
T3, T4 are the times for the different stages of the injector 
trajectory (profile). 

The rate penetration function  
 is defined in Equation (5).      in out, ,R x t R x t R x t 
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where the entry bulk volume concentration is defined for 
a depth dEV: 
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 are the optimal val-
ues for max  and p* are found 
by searching a multidimensional parallelepiped 

B
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for the minimal value of MSE. 
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p H
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
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MSE from Equation (1) is regarded as a function of the 
parameters p, MSE = MSE(p). Hyper parallelepiped H is 
defined as follows: 
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The dimensionality of H may change in different oc- 
casions. For example, if a simulation is performed with- 
out considering the diffusion, only three parameters are 
used   3

1 2 max, ,p k k S H   . 

3. Initial and Boundary Conditions of the 
PDE System 

The initial and boundary conditions for PDE system (2) 
are defined as follows: 
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P(z) is a probability density function used for the defini- 
tion of the Neumann boundary conditions in the fourth 
equation of the PDE system (9). P(z) may be defined in 
different ways in order to describe the physicochemical 
processes occurring on the boundary. One of the ap- 
proaches used by us to define P(z) is the PDE system (10) 
that is a diffusion process for a time interval . t

   

 
   
 

2

2

, ,

0,

,0 0   0,

0, const

( , ) 0

V z t V z t
D

t z
t t

V z z d

V t

V d t

 


 
 

 



          (10) 

The solution V(z, ∆t) is used to define P(z) in the in- 
terval  0, EVz d : 
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System (10) is numerically solved preliminary, before 
the simulations with the PDE system (2). 

4. Numerical Procedures 

A discretization is performed for the time: 

0 1, , , , ,nt t t t n t T    . 

The reactor is divided into a number of segments K 
with length ∆x and ice bulk is separated into a number of 
layers with thickness of ∆z. The functions are represented 
in discrete form as follows: 
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ˆn
iS  is an intermediate value for , where the trans- 

fer function R(x, t) is not taken into account.  

n
iS

The iterations for a simulation with particular parame- 
ters  are performed by means of nested cycles 
over time (index n), reactor segments (index i) and ice 
bulk layers (index j). The entire simulation process is 
summarized as follows: 

p H

 
for n = 1,2,…,N  
{ 
 for i = 0,1,2,…,K-1 
take gas state from previous iteration: 

   
1n n

i iG G 
1n n

i iG G 
 for i = 0,1,2,…,K-1  
 { 
step(i) adsorption/desorption for segment i:  

   Equation (16) 1 ˆn
iS   nS

n

i

 step(ii) gas flow from segment i to segment i+1: 
  Equation (20) 1i

step(iii) interface-in: ;  

n
iG G 

 
 transfer to the bulk, j=1,2, …, nEL, Equation (23) 

1 1
, , , in
n n n
i j i j i jB B B   

 
step(iv) diffusion: Equation (25) for j = 1,2,…,L: 
 update of each layer :  1

, ,
n n
i j i jB B 

n nB B step(v) interface-out: ;   , , , out
n

i j i j i jB
transfer out of the bulk to the surface,  
j=1,2, …, nEL, Equation (24) 
 step(vi) correction of the surface   ˆn n

i iS S
see Equation (27) 
 } 
} 
 
In step (i), the first and second PDEs from (2) are 

solved without taking into account the terms IG(x, t) and 
−a2R(x, t): 
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  (12) 

the omitted terms are calculated in steps (ii) and (vi) re- 
spectively. The system (12) is solved semi-analytically 
where for a small time interval, G(x, t) is assumed to be 
constant. After substitution 2 1 ,p k G x t k    and q = 
k1G(x, t)Smax in the second equation of system (12) we 
obtain the following equation: 
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ˆd ˆ
d

S t
pS t q

t
             (13) 

It is with separable variables and its integration is triv- 
ial as x is fixed. 

 ˆ e ptq c
S t

p p
               (14) 

In order to calculate the iteration i  we use (14) 
together with the following initial condition: 
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After substitution of p and q in Equations (14) and 
(15), we obtain the following discrete form of numerical 
step (i): 

 1 211 max 1 max
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In step (ii) the gas flow in the reactor is numerically 
expressed by the consequent change of the concentra- 
tions (iteration 1i

n
iG Gn

 ). Taking into account the gas 
injector function, the first equation of the PDE system 
(12) is rewritten as follows: 
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 ,G x t

t




 from (17) in the last equation  

of the PDE system (2) which is then transformed into: 
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The last Equation (18) is resolved numerically with a 
standard finite difference scheme that is two point de- 
rivative approximation and the substitution of velocity 
expression v x t   : 

1
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Then it follows the iteration of step (ii): 
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 1 , t          (20) 

Numerical steps (iii) and (v) are performed by the fol- 
lowing discrete equations (see also Equation (5) for R(x, 
t)): 

    1
3 maxin

ˆn n n
iiR k S B B 

i EV t  

 t

       (21) 
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1n

      (22) 

In formula (21), member  i EV  has time index (n − 1) 
since diffusion step (iv) is not performed yet. The changes 
for each bulk entry volume layer are obtained from the 
probability function P(z) (see the fourth equation from 
the boundary conditions (9)): 

B

   , in in , for 1,2, ,n n
j ELi j iB P R j n        (23) 

where EL EVn d z  . Analogously, numerical step (v) is 
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calculated: 

   , out out , for 1,2, ,n n
j ELi j iB P R j    n     (24) 

that represents molecules that exit from each layer into 
the surface. 

Numerical step (iv) is the diffusion equation (the third 
PDE from the system (2)). It is numerically solved by 
means of Euler method with two and three point ap- 
proximations respectively for the first and second deriva- 
tives. The following discrete form of the diffusion equa- 
tion describes the backward-time centered-spaced (BTCS) 
method: 

1
, , , 1 , ,
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2n n n n n
i j i j i j i j i jB B B B B

D
t z


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
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The application of the recurrence Equation (25) leads 
to a 3-diagonal system with known numerical solution in 
the literature [4,5]. We use time-step restriction (26) 
which is the Courant-Friedrichs-Lewy stability condition 
[6]: 

2

2

z
t

D


                  (26) 

The stability restriction (26) of the explicit scheme 
could be overcome via standard super-time-stepping ac- 
celeration procedure, see [6,7]. Thus, explicit schemes 
become competitive with the efficient implicit scheme 
with positivity preserving and smoothing properties [8,9] 
that have also stability restrictions in order to satisfy 
some practical requirements of the respective problem. 
For partial differential equations nonstandard finite dif- 
ference schemes could be invented using the proposed 
ideas and methodology of Strikwerda [10]. 

Numerical step (vi) is performed by means of Equa- 
tion (27) where the transfer from bulk into the surface is 
taken into account. 
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Finally the optimal parameters p* (see Equation (7)) 
are found by a grid search in the hyper parallelepiped, H, 
with the following discretization: 

1
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5. Software Development 

The first working prototype of the software system (ver- 
sion 1.0) was developed within MS Excel platform as 
VBA script [1]. Second major milestone (version 2.0) is 
the implementation of Core Simulation Library (CSL) 
developed in object oriented language Java. CSL version 
2.0 facilitates simulations of the fundamental Langmuir 
adsorption and desorption processes. CSL library is used 
with the multi-layer distributed system ADDESSA de- 
signed for performing simulations of mass transfer proc- 
esses in a large scale [11]. 

The currently presented CSL version 3.0 implements 
the algorithms (Equations (2)-(27)) for a combined simu-
lation of all three mass transfer processes: adsoption, 
desorption and diffusion.  

CSL is organized in several Java packages (see Figure 
2) where the main functionality is concentrated in pack-
age simulate. CSL is implemented complying Object- 
Oriented Programming representing each component of 
the experimental reactor by one or more classes. The 
main input to the program is handled by Simulation 
Loader class as configuration files which describe the 
basic parameters of experimental process as well as the 
simulation parameters. The main program utilizes an ob- 
ject of type Flow Reactor. The reactor contains an array 
of objects of the type Reactor Segment. Reactor segment 
is used to store the state of a particular part of the reactor. 
Additionally Reactor Segment class solves numerically 
the equations of the Second Fick’s law and stores the 
state of all ice bulk layers for this segment. Reactor 
Manager GUI is a Graphical User Interface class which 
can be used to control the simulation process for a single 
simulation. The basic parameters inputted from the con- 
figuration file can be varied in this module as well. The 
GUI can be used for a preliminary approximation of the 
simulation parameters which can help further to chose  

 

 

Figure 2. Core simulation library—CSL. 
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more precise intervals for an automatic parameter search 
. More information about CSL library and AD- 

DESSA project can be found on the website  
http://addessa.uni-plovdiv.net. 

 p H 

6. Example of Numerical Calculations and 
an Application for Experimental Data 

Figure 3 represents the simulation results for a single 
segment without taking into account the reactor flow. 
The abscissa on the top graphic is a logarithmic scale 
representing the time t and the ordinate corresponds to 
the absolute number of molecules placed on the surface 
(S(xi, t)) and those remaining in the gas phase (G(xi, t)). 
The sharp drop of the gas phase until t = 0.1 is due to a 
rapid adsorption or deposition of molecules on the sur- 
face, that is why the surface molecules number is raising. 
S(xi, t) drops after t = 0.1 because of the concurrent bulk 
diffusion or mass transfer of molecules to the ice bulk. 

The bottom graphics of Figure 3 is illustrating the si- 
multaneous bulk fill (B(xi, zj, t)) as a linear change of the 
time t. It can be seen that the bulk processes are much 
slower than the gas/surface interactions. The set of j-plots 
represent the absolute number of placed molecules in the 
bulk layers. The system reaches its equilibrium state around 
t = 900. 

 

 

Figure 3. Simulations for G(xi, t), S(xi, t), R(xi, t) and B(xi, zj, 
t) at different depth j. 

Figure 4 shows the simulation result for the entire re- 
actor for three different values of the constant k1. Also 
the injector position function Ip(t) is plotted in the range 
of x = 0 (the injector nozzle is far from the detector) to x 
= l (the injector nozzle is right in front of the mass spec- 
trometer detector). 

The three plots of G(l, t) correspond to three different 
values of the adsorption rate coefficient. The latter is 
deposition speed of the gas phase molecules on the ice 
surface. In this case: 1 1 1k k k    . 

Figure 5 visualizes the result simulation fit for the 
experimental measurement of adsorption of acetic acid 
on ice at temperature 190 K. The graph consists of the 
raw experimental output (gray dots) and the optimized 
simulation fit (solid line). The data is measured for about 
700 seconds and the output is normalized. The MSE has a 
minimum value for the found optimal parameters (i.e. 
kinetic rate constants): 
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which are in a good agreement with Varotsos and Zellner  
 

 

Figure 4. Three numerical solutions G(l, t) of the PDE sys- 
tem (2) and Ip(t) function (visualized above). 

 

 

Figure 5. Experimental measurement of acetic acid on ice 
and the corresponding best theoretical fit. 
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