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ABSTRACT

This paper shows the usefulness of the exponential upwinding technique in convection diffusion computations. In par-
ticular, it is demonstrated that, even when convection is dominant, if exponential upwinding is employed in conjunction
with either the Jacobi or the Gauss-Seidel iteration process, one can obtain computed solutions that are accurate and free
of unphysical oscillations.
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1. Introduction

Convection diffusion equations are commonly used to
describe a wide variety of physical phenomena. For ex-
ample, when one studies how temperature is being con-
vected by a moving fluid [1] or when modeling insect
dispersal in awindy region or in describing transport of
contaminants in groundwater, convection diffusion mod-
els are extremely useful.

In many of these physical processes there is a massive
amount of data to be analyzed and studied. Therefore,
when studying these processes and the associated con-
vection diffusion equations computationaly, it is desir-
able to implement methods that are amenable to parallel
computing. If we develop a computational method dis-
cretizing a convection diffusion model either in two or
three dimensions, at the end, we are left to solve a linear
system of equations. One could employ the Jacobi or the
Gauss-Seidd iterative methods to solve such alinear sys-
tem of equations, since they could be easily adapted to
paralel computing. However, there is a problem in em-
ploying either the Jacobi or the Gauss-Seidel iterative
method if the convection terms are very dominant in the
convection diffusion equation. Because, in such cases,
when carrying out the iterative computations, unphysical
oscillations will appear leading to non convergence of
the iterative process. This is due to the fact that the itera-
tion matrices of the Jacobi and the Gauss-Seidel methods,
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in such cases (i.e., when convection is very dominant)
would have spectral radii greater than one [2,3]. Thus,
violating the condition for convergence of the iterative
process.

One way to deal with such unwanted oscillations is by
refining the spatial mesh widths. However, most of the
time, the refinements have to be so extreme, that it may
not be viable to carryout the computations. So, one is
forced to modify the computational method, for example,
by using an upwinding technique, or some other technique
to suppress the undesirable oscillations.

There are a variety of upwinding techniques to solve
convection diffusion problems [1]. In this paper, we fo-
cus on an exponential upwinding technique and use it in
conjunction with a finite element method. Importantly,
we study the effect of exponential upwinding on the spec-
tral radii of the resulting Jacobi and Gauss-Seidel itera
tion matrices.

The motivation for applying an exponential upwinding
technique is the following. Let us consider the one-di-
mensional convection diffusion problem:

2
d—Z—Rd—”=o, 0<x<L (1)
dx dx
with u(O)zu(L)zO. ()]
Introducing an integrating factor, (1) is equivalent to:
i(e“ d_“j —0. ®
dx dx
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Spatial discretization of (3) will give
(e™-1)U,,+(e" -e™)U,+(1-€")U,, =0 (4

i+1

with the following boundary conditions:
U,=0 U,=0

where =i, and U, = u(ih) . N is the total number of

mesh points.

Equation (4) could be viewed as the exponentially up-
winded difference form of Equation (1).

If we solve (1)-(2) ssmply by integrating twice, we
have the solution:

u=C, +C,e™

where, C; and C, are constants that can be deter-
mined by the conditions givenin (2).
Now, the solution for the difference Equation (4) is:

U, = D, + D,e™

where, D; and D, are constants that can again be deter-
mined by the boundary conditionsin (2).

So, it is clear (since ik = x;) that the solution for the
differential Equation (1) and the solution for the differ-
ence Equation (4) are exactly the same. This means that
solving (3) numerically, using the exponentially upwinded
form (4), will give us the exact solution of (1)-(2).

Although we know that this is not the case when deal-
ing with convection diffusion equations in higher dimen-
sions, we wish to examine the usefulness of this type of
idea (i.e., exponential upwinding) and the effect that it
will have on the Jacobi and the Gauss-Seidel iterative
methods, particularly, on the spectral radii of the respect-
tive iteration matrices.

2. Convection Diffusion—Steady State M odel

Let us consider the two-dimensional steady state convec-
tion diffusion model given by

u, +u, —Ru = f(x,y) (x,y) e 5)

u(x,y) =0 on oQ (6)

where, f(x,y) is a given function and R, a non-zero
parameter.

If we apply afinite element method, we are left with a
system of linear equations

GU = f ™
where
_ _(([_24.9% 04,99, _po4
G"f'_a(¢f'¢")_g[ ox ox  ox o Rax‘édeXdy’

f=(f.8)=[[fédxdy, and ¢ are the basic linear
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piecewise functionsfor i=1---,N.

When R is relatively small, the system of linear equa-
tions given by (7) can be solved easily with either the
Jacobi or the Gauss-Seidel iterative methods. However,
as R increases (i.e., as convection becomes dominant),
the spectral radii of both the Jacobi and the Gauss-Seidel
iteration matrices will begin to grow and eventually be-
come greater than one, giving us non-convergence (of the
iterative processes) in the form of oscillations [4].

For our computational modeling, we choose f'(x,y)
such that u(x,y)=sin(nx)sin(ny) is the exact solu-
tion of (5)-(6) where (x,y)eQ=[0,1]x[0,1] and

Ax=Ay=h :i. Figure 1 shows the oscillations that
20

are generated when the Jacobi iterative process is used
with R = 85. For bigger values of R the oscillations will
overshadow the solution completely giving us extremely
large oscillations. For comparison, Figure 2 presents the
exact solution of the problem (5)-(6).

One way to avoid this problem is to solve (7) with an

Figure 1. Numerical solution of (5)-(6) with R = 85 using
1000 iterations.

g™ AP SN

06~

Figure 2. Exact Solution of (5)-(6) with R = 85.
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eigenspectrum enveloping technique proposed in [4]. In
that paper, the authors study a two step-Jacobi and Gauss-
Seidédl iterative methods by constructing an ellipse, in the
complex plane, that envelopes the eilgenvalues of the itera
tion matrices.

In this paper, we seek the same objective—the need to
eliminate unphysical oscillations when solving convec-
tion dominated diffusion problems. However, we will try
to accomplish this by modifying the numerical scheme
for the partial differential equation, instead of modifying
theiterative method directly.

Let usrewrite Equation (5) as

(e‘qux )X +eu, =ef(x,y). (8)

We are applying the same idea, discussed in the intro-
duction, to only one of the spatial variables, in this case
X.

Theweak form of (8) is

(Au,v) = (e”“f,v)

2
where Au:i(e’“a—u]+a—z and ve H. H is the
Ox ox) Oy

space of admissible test functions. Now, applying a
Galerkin method we get

a(u,v)z(e%f,\/) 9)
where

a(u,v)= J;ife’R” (—uxvx —uyvy)dxdy .

Let U(x,y) bethe Galerkin approximation for u(x, y)
N

and U(x,y)=>.U¢ (x,y) wherethe ¢ arethebasic
i=1

linear piecewise functions for i=1,---,N and v(x, y) =
#(x, y). Substituting U(x,y) in (9) we get the linear
system of equations given by

GU=f
where G, =a(d;.4,) and f,=(e"f.4).

With this new system of equations, we analyze the
spectral radii of the Jacobi and the Gauss-Seidel iteration
matrices to determine whether the respective iterative
processes will converge for large R values. Figures 3 and
4 show the eigenspectra of the respective iteration matri-
ceswhen R = 100, alarge value.

We see that in both cases the spectral radii of the itera-
tion matrices are less than one. This means that the itera
tions will lead to convergence. Our computations show
that this is indeed the case. Also, we do not get any un-
wanted oscillations.
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Figure 3. Eigenspectrum of the Jacobi iteration matrix with R = 100.
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Figure 4. Eigenspectrum of the Gauss-Seidel iteration matrix with R = 100.

In Table 1 we show the percentage error and the num-
ber of iterations for convergence (to the solution) for
different values of R. In al the cases, the number of it-
erations the Gauss-Seidel method took was less than half
the number of iterations the Jacobi method took for con-
vergence.

3. Convection Diffusion Transport Equation

In our previous model, the convection was only present
in one spatial variable. In order to further investigate the
effectiveness of this upwinding technique, we would like
to explore a problem with convection on both spatial
variables (x and y) and see what effects it has on the ei-
genspectra of the Jacobi and the Gauss-Seidel iterative
matrices.
For this purpose we analyze the following convection
diffusion transport equation
u, = fu,, +52uw —ou,—yu, 0<t<T,B+#0,6#0
(10)
subject to the following boundary and initial conditions:
u(x,y,O) = f(x,y), (x,y) eQ
(11)
u(x,y,t) = g(x,y,t), (x,y) € 0Q.

Copyright © 2013 SciRes.

Table 1. Number of iterations and associated error for it-
erative methods.

Jacobi method Gauss-Seidel method

R Percentageerror No. of iterations Percentage error No. of iterations

10 0.009 523 0.009 251
50 0.052 62 0.052 24
100 0.087 70 0.087 19
150 0.106 91 0.106 24

Applying a Galerkin semi-discrete finite element method
[5], in which we discretize only the spatial variables, we
are |eft with the following system of ordinary differential
equations:

BU+GU =b
where B, =(4,.4,) = [[ 4 4dxdy,

(12)

G, =a(g,.4,)
B 00, 0 ., 09, 04, o¢, o¢,
[ v G

and b, = (W) -a(W. ).
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W(x,y,t)

is a function that satisfies the boundary condition, and
¢ arethebasic linear piecewisefunctionsfor i=1,---,N.

In order to discretize in time, we will use the Crank-
Nicolson method [6,7] and so, (12) becomes:

(n+ ) _ (n) (n+1) (n)
B U U +G U +U —b
At 2

[B +%GJU(M> - [3 —%GJ U™ +Ab.  (13)

or

Therefore, at each time step, we need to solve the lin-
ear system (13). The stahility of this method will depend
on the amplification matrix [8]

-1
[Bﬁej (B_ﬁcj.
2 2

When o and y are smal compared with 4° and
5° respectively, we will have convergence; however,
when they are large (i.e., when convection is dominant),
the numerical solution will have oscillations and it will
not converge to the correct solution. In the latter case, if
we try to solve the system of linear equations with the
Jacobi or the Gauss-Seidel iteration method, the spectral
radii of the iteration matrices will be greater than one.
Figure 5 shows the numerical solution for a =y =11,
and one can clearly see the oscillations that result from
Jacobi iterations.

In [8] the authors address this problem by proposing
an aternating direction implicit method with exponential
upwinding. In that paper the idea of applying exponential
upwinding to each spatial variable comes naturaly, since
one is solving the system one variable at atime. So, it is
intuitive that the idea discussed in the introduction will
lead to good results.

Figure 5. Numerical solution of (10)-(11) using 1000 itera-
tionswith @ =11 and y = 11.
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In this paper, to avoid the oscillations presented in the
computed solution, we will rewrite Equation (10) as:

et 2 2 AN

5 2 o2

e’ Tu=p%" e u|+5%” e’ u|.
X y

We apply exponential upwinding to both spatial vari-
ables. Theweak form of (14) is:

a7,
[e g ut,vJ:<Au,v) (15)
where
- Lol rou| o, o B ou
Au=p’e " —|e? —|+5%” e —|
Ox Ox oy oy

(u,v) = [[uvdxdy and ve H . H is the space of admis-
Q

sible test functions. So the Galerkin form of (15) is

(16)

Let U(x,y,t) bethe Galerkin approximation for u(x, y,
£). Since we have an inhomogeneous Dirichlet boundary
condition, we choose
N
U(x,y,t)=W(x,y,t)+ZUi(t)¢i(x,y) a7
i=1
where ¢ 's are the piecewise bilinear basis functions for
i=1---,N, and v:¢i(x,y) . W(x,y,t) satisfies the
boundary condition and we will interpolate the boundary
condition to include it in our Galerkin approximation. So
we have

N
W(va/-t) = ;Ui,N+l¢i,N+l(x’y)

where U, ., =g(x,v,.t,) ad ¢, ae the piece
wise bilinear basic functions on the boundary. Now our
Galerkin approximation takes the form

U(x,y,t)élvi (tm(x,y>+§lvi,m¢z,m<x,y>.

Substituting (17) into (16) we get the following system
of ordinary differential equationsin terms of ¢

JZIZ{%UI-(l)(¢/'¢i)+Uia(¢j'¢i)+(m’(éi)+a(W,(éi)}
=0 fori=1---,N
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and the initial condition becomes
U;(0)=c, forj=1---,N

where ¢, j=1---,N arethesolutionsto the system

S(#8)¢, = (/.4) fori=1N .
Written in matrix form we obtain
BU +GU =b
where
(¢ ¢) lj_a(¢ ¢)andb_—(I/V“¢l)_a(W,¢‘)

Apply| ng the Crank-Nicolson method to discretize with
respect to time, we have the new system of equations
given by

_ (n+l) _ (n) _ (n+1) (n) _
B U U +G U +U _b
At 2

(EJF%(—;jU(M) (E_EGJU(W)JFNB' (18)

or

It can be shown that this method is unconditionally
stable [8].

In order to determine whether the iterative processes
could produce a converging solution for (18), we analyze
the spectral radii of the Jacobi and the Gauss-Seiddl it-
eration meatrices.

For the numerical computations, we consider our equa-
tion on a specific domain, such that
u, = = p? u, +52

i i
yoau —yu, ——<X, <—,0<t<T
Py 752 0V25

(19
with the following boundary conditions:

T T T
+= yl=0, —Z<y<—
”(zyj 27772

where f (—gj =f [gj =0. For every computation we

take =1 06=1. We will take the steady state solution
to be our initial condition and we will interpolate the
boundary condition so that we have

N
W(x,y,t)= ZlUi,N+l v (X00)

Copyright © 2013 SciRes.

where U, ,,,=/(x,) and 4,,, are the piecewise
bilinear basic functions on the boundary y=m/2 for
-n/2<x<m/2. So our Galerkin approximation takes
the form

U(5.0) = LU (08 (00)+ SV, (3).

i=1
Hence, we have the linear system
[E+56Ju<"ﬂ> [B——Gj U™ + Ath
2 2
where B, =(4,.4,),G, =a(4,.4,) and
_ N
b, = _ZU,',N+1‘_‘(¢,',N+11¢1') :
=1

Using separation of variables [8], it is easy to show
that the time dependent solution will tend to a steady
state solution of the form:

u(x.7) = ~ep((ax/28%)+(1/257) (v-/2)
xi(]zf(s)exp(—as/Zﬁz)COS((Zn—1)s)dsJ (20)

y COS((Zn —1))c)sinh(az}17l (y + 75/2))
Sinh(a2n_l7t)

where

\/,82)/2+52(a van?p)
” 23652 '
If f(x)=cos(x) with =0, then (20) reducesto

u(x,y)
407‘? nh[ 25 Jexp((ax/Zﬂz)+(;//252)(y—7r/2))
E3 cos((2n—1)x)sinh(ay, , (y +n/2))
*2ban sinh(ay, )
(21)
where
o’ +4p" (n* +1)

B (a2 +4p* (n +1)2)(a2 +4p*(n —1)2) '

Notice that when a =0 we get a steady state equa
tion similar to (5), so we areinterested inthecase a #0.
For our numerical computations we will choose f(x)
such that the steady state solution consists of only the
first two terms of the series solution (21). Now, the
steady state solution takes the form

AM



86

u(x,)
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We will take Atzé, and h=— foral our computa-

x| b,

given that the boundary conditionat y =

T

gnh(
COS(x)Sinh(al(y +;D

1

+b,

sinh(am)

cos(3x)sinh(a3 (y + SD

ald Jexp(( ad JJ{LZ)(J; _ED tions.

2p 25 20 2 Figures 6 and 7 show the eigenspectra of the Jacobi

and the Gauss-Seidel iteration matrices respectively when

a =y =10. We can clearly see that the spectral radii are

less than one and so, we are sure to have convergence.
The graphsin Figure 8 show the steady state solutions

when o = 10, y = 1, and a = 1, y = 10 respectively. Fig-

sinh(an)

ures 9 and 10 show the errors in the computed solutions
when using the Gauss-Seidel iteration method with a =
10, y = 1, and a = 1, y = 10 respectively. The computed
solutions with the Jacobi method are exactly the same;

the only difference is that the Gauss-Seidel method con-
- verges a lot faster. Also, the computed solutions do not

is

produce any unphysical oscillations when using either
the Gauss-Seidel or the Jacobi iteration process.

/(x)
2 4. Conclusion
daf exp( s jsmh( TCZJ(bl cos(x) +b, cos(3x)).
T 2B In this paper, we are able to demonstrate that exponential
x10°
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Figure 6. Eigenspectrum of the Jacobi iteration matrix for @ = 10 and y = 10.
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Figure 7. Eigenspectrum of the Gauss-Seidedl iteration matrix for @ = 10 and y = 10.

@ (b)
Figure 8. Analytical steady state solutionswith () a=10,#=1,y=1,d=1land(b)a=1,=1,y=10,6=1.

upwinding is an extremely useful technique in convection Gauss-Seidel iteration process on the linear system of
diffusion computations. Even, if convection is dominant, equations resulting from an exponentially upwinded
employing exponential upwinding helps one to compute scheme and obtain a converged solution that is free of
the solution without any difficulty. In particular, we have unwanted oscillations. This is possible because, in the
shown that one could easily use either the Jacobi or the exponentially upwinded case, the spectral radii of the

Copyright © 2013 SciRes. AM
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o - corresponding iteration matrices are always found to be
04 Y f e less than one. Thus, satisfying the condition for conver-
035 s alut I W M gence of the chosen iteration process.
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