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ABSTRACT 

We present approximations to the distribution of the weighted combination of independent and dependent values, -P

  1
2 log .

m

ii iA P


   In case that independence of ’s is not assumed, it is argued that the quantity iP A  is 

implicitly dominated by positive definite quadratic forms that induce a chi-square distribution. This gives way to the 
approximation of the associated degrees of freedom using Satterthwaite (1946) or Patnaik (1949) method. An 
approximation by Brown (1975) is used to estimate the covariance between the log transformed P -values. The 
performance of the approximations is compared using simulations. For both the independent and dependent cases, the 
approximations are shown to yield probability values close to the nominal level, even for arbitrary weights, i ’s. 
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1. Introduction 

Let 1 2  be  tail probabilities or probability 
values from continuous distributions. Associate null 
hypotheses 0

, , , mP P P m

: 0, 1, ,i i ,H i m   

 ni 0,1

 to these  proba- 
bility values. Using the probability integral transform, we 
know that  when 

m

~UiP form 0iH  is true. For 
  2log ,i iS P 

    
    

2log

exp 2 exp 2

i i

i

P S s P P s

P P s s

   

    
 

That is,    1 exp 2 ,iP S s s     which is the cu- 
mulative distribution function of a chi-square variable 
with 2 degrees of freedom. That is, 2

2 ,iS   and the 
decision rule is to reject 0iH  if 2

2,1 .iS    Define a 
combined statistic by 

   1
1

2 log 2log
m m

m

i ii
i i 1

iM P P


 

     S   

For independent i ’s, the variable P 2
2 .mM 

: m

 The 
overall test procedure is to reject 0 1 0H      if 

2
2 ;1 .mM    This is Fisher’s Inverse Chi-square method. 

We notice that for the statistic ,M  all the i ’s are 
weighted equally, which may not be acceptable in some 
situations and therefore unequal weighting may be 

necessary. A number of authors have attempted to derive 
the distribution of a weighted form of 

P

.M  For instance,  

let  1
,

m

i ii
W cW 


   where  iW   has a non-central  

2  distribution with non-centrality parameter .i  
Solomon and Stephens [1] approximated the distribution  

of  by a random variable of the form   W   12
0

b
b 

matching the first three moments. The disadvantage with 
this approximation is that there is no closed-form for- 
mula for computing the parameters. Buckley and Eagle- 
son [2] approximation of the distribution of  involves 
approximating  using a variable that takes the form 

1

W
W

2
0T b b   and matching the first three cumulants of 

T  and .  Zhang [3] showed that by equating the first 
three cumulants of  and   the distribu- 
tion of  can be approximated by  

W

W
W 2

0R b  1,b

     2
1 0 .P W w P R w P w b b         Zhang [3] 

also proposed a chi-square approximation to the distri- 
bution of  Others authors have approximated the null 
distribution of  by intensive bootstrap [4-8]. 

.W
W

In this article, we concentrate on linear combinations 
of i  (a function of i ’s) that have a central chi-square 
distribution, and involve dependent and independent 

i ’s and arbitrary weights, i

S P

P  ’s. For dependent i ’s, 
we use simulations to investigate the performance of the 

P
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approach by Makambi [9] when it is assumed that there 
is homogeneity in correlation coefficients between any 
pair of the ’s. iP

2. Distribution of Independent and  
Dependent Weighted 2 ’s 

Let’s focus on the mixture 

1

,
m

i i
i

A S


   

where i  has a central S 2 -distribution with 2 degrees 
of freedom and i  are arbitrary weights. For inde- 
pendent ’s, Good [10] provided the following appro- 
ximation: 

iP

 
1

1 exp
2

m

i
i i

a
P A a



 
     

 
  

where   1

1,
,m

i i i j i jj j i
.    

 
 

.A

   This  

approximation is usually regarded as the exact distri- 
bution of  The approximation has been criticized 
because the calculations become ill-conditioned when 
any two weights, i  and ,j i j,   are equal. To avoid 
this problem, Bhoj [11] proposed the approximation 

   
 1

1 , 2

1

m
i i

i i

IG a ia
  



     
  

P A  

where IG  denotes the incomplete gamma function. 
This approximation is also for independent probability 
values. 

For an alternative and more general approximation to 
the distribution of A  where independence of i ’s is 
not assumed, it may be argued that 

P
A  is a quantity that 

is implicitly dominated by positive definite quadratic 
forms that induce a chi-square distribution. Thus by 
Satterthwaite [12] or Patnaik [13], we have 

 
2A

E A    

It follows that 

    
 

2

2var var 2
A

A
E A E A

 
      
  

 

Therefore, the degrees of freedom can be obtained by 
solving the above equation for ,  namely, 

  
 

2

2
var

E A

A
    

Now, 

   
1 1

2
m m

i i
i i

E A E S

and 

     

 

2 2

1 1 1

2

1 1 1

var var cov ,

4 cov ,

m m

A i i i j
i i j i

m m

i i j i j
i i j i

i jA S S

S S

  

 

   

   

  

 

 

 

S

 

where  cov ,i jS S
,

 denotes the covariance between i  
and 

S

jS  for .i j  An estimate of the degrees of  

freedom, ,  is given by  2
2

1
ˆ ˆ8

m

ii A  


    (see 

[9,14]). 
We can now synthesize the  probability values m
, 1, ,iP i m,   based on the decision rule 

2
ˆ,1

0
1

Reject if 2
ˆ

m

i
i

H A  







    

For normalized weights, that is, 
1

1,
m

ii



  the 

decision rule is: 
2
ˆ,1

0Reject if 2 ,
ˆ

H A  

   

with an estimate of the degrees of freedom   given by 
ˆ.  Notice that for independent i  and S jS  and 

normalized weights, Makambi [9] and Hou [14] utilize  
2

1
ˆ 2 .

m

ii
 


   For 2m   and 4, Hou [14] presented  

simulation results indicating that the approximation 
given above attains probability values close to the 
nominal level, similar to the Good [10] and Bhoj [11] 
approximations. 

For 4m   independent -values, we use Table 1 in 
Hou [14] to obtain Table 1, just for purposes of 
comparing the performance of the approaches. We notice 
that using 

P

̂  (column 5, Table 1) yields results that are 
close to both the exact method by Good [10] and the 
method by Bhoj [11]. 

To illustrate the application of the methods for inde- 
pendent probability values, we use data from Canner [15] 
on four selected multicenter trials involving aspirin and 
post-myocardial infarction patients carried out in Europe 
and the United States in the period 1970-1979. Two of 
these trials, referred to as UK-1 and UK-2 were carried 
out in the United Kingdom; the Coronary Drug Project 
Aspirin Study (CDPA); and the Persantine-Aspirin 
Reinfarction Study (PARIS) (Table 2). 

The values provided in column 4 of Table 2 are 
for the log odds ratio as the outcome measure of interest. 
Using the values in Table 2 and the weights from 
Table 1 of [14], we obtain the values in Tables 3. We 
have also included results for normalized inverse vari- 
ance weights determined from the data. The three ap- 
proximations yield values that are close to each other, 
and are in good agreement with the exact method by 

-P

-P

i 
 

    
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Good [10]. 
If  and iS jS  are non-independent, the expression 

for 2
A  contains a covariance term between  and iS

jS  that has to be estimated. Let ij  be the correlation 
between i  and S jS  i.e., i j  An 
approximation of the variance of 

corr , .S S ij 
A  is given by [16] 

 

 

 

2 2

1 1 12

2 2

1 1 1

4 3.25 0.75 , 0 1

4 3.27 0.71 , 0.5 0

m m m

i i j ij ij ij
i i j i

A m m m

i i j ij ij i
i i j i

    


    

   

   

   
 
   


 

  j



 
 

 

where  ,
, 1, ,

;
i jS S S

i j m



 


  and   , var 4,

i iS S iS 3. A Procedure for Constant Correlation  
Coefficient 



 tr A

ij

 is the trace of the matrix  For homogeneous .A
,   0

We require estimates of ij  to implement the 
procedures above for dependent i ’s. Let’s consider the 
case of homogeneous nonnegative correlation coeffi- 
cients, that is, ij

P



1,   and using results from Brown [16] 
we have   2, 3.25 0.75 .i jS S, cov

i jS S      We can 
show that  
       1 4 0.75 3.25 .Str B m 2E Q         

Solving the preceding equation for   yields the ap- 
proximate admissible solution  

  1 2
2.16667 10.02778 4 3Q E Q     with an 

estimate for   given by 

  for 0 1.   Let  
 and define the quadratic form [9]  1, , mS S S  

 2m m

1 1,
1

i i
i i

S S S
Q S

m m
 


 



 
 

 1 2ˆ 2.16667 10.02778 4 3 , 0 4Q Q     We can write   1
1 , m mm Q S BS B I J

m
        (1) ,   

where mI  is identity matrix of order  and mm J  is a 
square matrix of order  with every element equal to 
unity. It can be shown that 

m
     1 SQ B   ,m E tr   

We investigate how well this approximation works 
compared with the other approximations by simulating 
data from a variate normal distribution with cova- 
riance matrix 

-m
  ,ij   with 1, 1, , ,ii i m     and 

,ij i j 1, , .m      Just as in Hou [14], we simulated 
 

Table 1.  P A a  for independent iP ’s. 
 
Table 2. Data on total mortality in six aspirin trials (Num- 
ber of Deaths/Number of patients).  1 2 3 4, , ,     a  Good-Exact Bhoj M/H 

(0.05, 0.15, 0.20, 0.60) 3.696 0.9000 0.9085 0.8955

 4.531 0.9500 0.9538 0.9510

 6.460 0.9900 0.9895 0.9923

(0.10, 0.20, 0.30, 0.40) 3.456 0.9000 0.9039 0.8986

 4.082 0.9500 0.9518 0.9505

 5.470 0.9900 0.9897 0.9911

(0.22, 0.23, 0.27, 0.28) 3.346 0.9000 0.9003 0.9000

 3.888 0.9500 0.9502 0.9500

 5.050 0.9900 0.9900 0.9901

(0.20, 0.25, 0.25, 0.30) 3.347 - 0.9000 0.8992

 3.892 - 0.9500 0.9500

 5.070 - 0.9900 0.9902

(0.20, 0.20, 0.20, 0.40) 3.373 - 0.9000 0.8945

 3.960 - 0.9500 0.9477

 5.330 - 0.9900 0.9912

(0.25, 0.25, 0.25, 0.25) 3.340 - 0.9000 0.9000

 3.877 - 0.9500 0.9500

 5.023 - 0.9900 0.9900

Study Aspirin Placebo P-value 

CDPA 44/758 64/771 0.029 

UK--1 49/615 67/624 0.048 

UK--2 102/832 126/850 0.063 

PARIS 85/810 52/406 0.115 

 
Table 3.  P A a  for independent iP ’s using Canner 

(1987) data for m 4 . 

 1 2 3 4, , ,   
 

a  Good Bhoj M/H 

(0.05, 0.15, 0.20, 0.60) 4.966 0.9652 0.9671 0.9674

(0.10, 0.20, 0.30, 0.40) 5.312 0.9880 0.9877 0.9891

(0.22, 0.23, 0.27, 0.28) 5.659 0.9959 0.9959 0.9960

(0.20, 0.25, 0.25, 0.30) 5.614 - 0.9954 0.9956

(0.20, 0.20, 0.20, 0.40) 5.467 - 0.9915 0.9927

(0.25, 0.25, 0.25, 0.25) 5.752 - 0.9966 0.9966

(0.19, 0.20, 0.22, 0.39)* 5.463 0.9919 0.9918 0.9929

inverse variance weights determined from the data; M/H is Makambi/Hou 
method using ̂ . M/H is Makambi/Hou method using ̂ . 



K. H. MAKAMBI 1112 

10,000 multivariate normal samples and computed the 
corresponding values of  For  and 4, we 

present values for 
.A 2m 

 P A a  at selected nominal levels 
and weights (Tables 4-6). 

 
Table 4. Simulated estimates of  P A a  at selected nominal levels for non-independent ’s from bivariate normal 

distribution with  and covariance matrix 

iP

   0,0  ij ,   with  and ii i1, 1, , ,    m 2ij i j m m, 1, , :     . 

  Simulated  P A a  

  0.1   0.5   0.9   
 1 2, 

 
1   H/M Proposed* H/M Proposed* M/H Proposed* 

(0.1, 0.9) 0.90 0.9062 0.9016 0.8969 0.9017 0.9007 0.8988 

 0.95 0.9490 0.9510 0.9464 0.9462 0.9487 0.9480 

 0.99 0.9898 0.9881 0.9888 0.9870 0.9880 0.9892 

(0.3, 0.7) 0.90 0.8959 0.9054 0.9022 0.8983 0.9030 0.8968 

 0.95 0.9486 0.9512 0.9530 0.9462 0.9521 0.9425 

 0.99 0.9899 0.9885 0.9902 0.9848 0.9902 0.9837 

(0.5, 0.5) 0.90 0.9041 0.9056 0.9032 0.8954 0.8964 0.9010 

 0.95 0.9513 0.9540 0.9509 0.9400 0.9465 0.9458 

 0.99 0.9900 0.9900 0.9890 0.9820 0.9902 0.9895 

ρ is estimated from Equation (1); M/H is Makambi/Hou method using ̂ . 

 
Table 5. Simulated estimates of  P A a



 at selected nominal levels for non-independent ’s from multivariate normal 

distribution with 

iP

 0,0,0,0   and covariance matrix  ij ,   with  and ,ii i1 1, ,    m, ,ij    

. 1, , :i j m   4m 

  Simulated  P A a  

  0.1   0.5   0.9   
 1 2 3 4, , ,     1   M/H Proposed* M/H Proposed* M/H Proposed* 

(0.05,0.15,0.20,0.60) 0.90 0.9023 0.9041 0.9011 0.8868 0.8990 0.8957 

 0.95 0.9503 0.9492 0.9536 0.9325 0.9519 0.9417 

 0.99 0.9885 0.9868 0.9913 0.9784 0.9902 0.9836 

(0.10, 0.20,0.30,0.40) 0.90 0.9018 0.9006 0.9016 0.8776 0.9029 0.8966 

 0.95 0.9502 0.9443 0.9516 0.9222 0.9530 0.9437 

 0.99 0.9890 0.9862 0.9912 0.9680 0.9909 0.9796 

(0.22,0.23,0.27,0.28) 0.90 0.8991 0.8960 0.9001 0.8695 0.8975 0.8885 

 0.95 0.9498 0.9405 0.9503 0.9125 0.9493 0.9361 

 0.99 0.9886 0.9830 0.9904 0.9620 0.9896 0.9750 

(0.20,0.25,0.25,0.30) 0.90 0.8983 0.8972 0.9072 0.8769 0.9024 0.8928 

 0.95 0.9482 0.9425 0.9533 0.9197 0.9511 0.9361 

 0.99 0.9883 0.9842 0.9908 0.9652 0.9893 0.9753 

(0.20,0.20,0.20,0.40) 0.90 0.8998 0.8964 0.8969 0.8759 0.8978 0.8910 

 0.95 0.9488 0.9416 0.9483 0.9175 0.9516 0.9380 

 0.99 0.9908 0.9855 0.9894 0.9653 0.9902 0.9772 

(0.25,0.25,0.25,0.25) 0.90 0.8994 0.8989 0.8984 0.8704 0.8985 0.8967 

 0.95 0.9496 0.9430 0.9498 0.9123 0.9496 0.9383 

 0.99 0.9894 0.9848 0.9902 0.9616 0.9896 0.9762 

ρ is estimated from Equation (1); M/H is Makambi/Hou method using ̂ . 
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able 6. Simulated estimates of T P A a  (with weig ts, Results are given in Table 6 for selected nominal levels. 

In this article, we have presented chi-square approxima- 
bution of Fisher’s inverse chi-square 

h  

i  simulated from  2,2 ) at se minal levels for 

-independent i

lected no

non P ’s fr bivariate normal distribution 

with  0,0   and covariance matrix 
om 

ij ,   with 

,, i1 1,ii m,   and i j, 1, , ,4  ij m m: 2     . 

  Simulated  P A a  

  2m   4m   
  1   M/H Pr osed* M/H Pr osed*op op

0.01 0.90   

0.  

0.  

0.  

0.  

0.  

0.  

0.9000 0.8976 0.9030 0.9081 

 0.95 0.9483 0.9496 0.9503 0.9512 

 0.99 0.9888 0.9898 0.9899 0.9903 

1 0.90 0.8983 0.8996 0.9021 0.8997 

 0.95 0.9475 0.9508 0.9520 0.9440 

 0.99 0.9899 0.9895 0.9899 0.9862 

3 0.90 0.8973 0.8968 0.8999 0.8798 

 0.95 0.9466 0.9480 0.9511 0.9319 

 0.99 0.9881 0.9851 0.9903 0.9776 

5 0.90 0.8975 0.8926 0.9011 0.8975 

 0.95 0.9478 0.9487 0.9512 0.9446 

 0.99 0.9890 0.9869 0.9910 0.9856 

7 0.90 0.9015 0.8938 0.8986 0.8851 

 0.95 0.9529 0.9478 0.9478 0.9254 

 0.99 0.9899 0.9884 0.9887 0.9663 

9 0.90 0.9025 0.8975 0.9039 0.8977 

 0.95 0.9509 0.9458 0.9507 0.9446 

 0.99 0.9887 0.9846 0.9899 0.9825 

99 0.90 0.8950 0.8967 0.8997 0.8992 

 0.95 0.9469 0.9462 0.9505 0.9496 

 0.99 0.9895 0.9890 0.9887 0.9882 

ρ is estimate  Equa ; M/ kamb ethod d from tion (1) H is Ma i/Hou m using ̂ . 

 
For  (Table 4) the proposed method attains 

pr lity le

ate of the
constant c

2m 
obabi vels that are close to the nominal level, 

similar to the Makambi/Hou method. 
For 4m   (Table 5) the proposed estim  

orrelation coefficient   leads to attained 
probability level that are close to the nominal level, 
1 ,  for 0.1   and 0.9. However, for values of   

to 0.5, the estimate leads to underestimation of the 
probability level. 

Now, instead 

close 

of using pre-defined weights, we
si

 
mulated weights from a beta distribution with pa- 

rameters 2   and 2.   That is, for  ~ 2, 2 ,ib    

1
, 1, ,i iw b i    such that ,ii

b m


m

1
1.ii

w


m   

4. Conclusion 

tions to the distri
statistic for independent and dependent -P values. It has 
also been shown that, for dependent -P values, the pro- 
posed estimate of the constant correlation coefficient   
performs well by attaining probability levels close to the 
nominal level for correlation coefficients close to 0.1 and 
0.9. We expect the proposed estimate to underestimate 
probability levels for relatively large numbers of studies, 
especially when   is close to 0.5. However, for values 
close to 0.1 and 0.9, the proposed estimate works quite 
well and can be recommended. 
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