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ABSTRACT 
Preimplantation genetic diagnosis allows to test 
the genetic status of embryos prior to implanta- 
tion. In order to obtain genetic material, on 
which carry out a genetic diagnosis, a procedure 
named embryo biopsy is required. In the last two 
decades, embryo biopsy at the cleavage stage 
has been the mostly performed procedure. How- 
ever, recently, alternative methods allowing the 
retrieval of a larger number of cells (blastocyst 
stage biopsy), or representing a valid alternative 
to overcome ethical issues (polar body biopsy) 
have obtained increasing consensus. This arti- 
cle reviews different methods of embryo biopsy 
and points out their positive and negative as- 
pects. 
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1. INTRODUCTION 

Preimplantation Genetic Diagnosis (PGD) has been 
conceived as an alternative to fetal prenatal diagnosis. 
Patients recurring to PGD are couples at risk of transmit- 
ting genetically inheritable disorders to their offspring. 
Most of them are fertile, but have been diagnosed with a 
specific genetic disease and this technique offers them 
the possibility to know the health status of their embryos 
before undertaking the pregnancy [1]. In many cases, 
they have a previous history of recurrent miscarriages of 
genetic origin or affected pregnancy terminations fol- 
lowing invasive prenatal diagnosis procedure such as 
amniocentesis or chorionic villus sampling [2]. However, 
patients are usually advised to further perform prenatal 
diagnosis to confirm the status of the baby. 

PGD diagnoses three main groups of inheritable dis-
ease: 1) monogenic disorders, which can affect autoso- 
mes or sex chromosomes with autosomal dominant, au- 

tosomal recessive, X-linked inheritance; 2) triplet re- 
peat disorders, caused by an expansion of a triplet repeat 
of bases on a chromosome; 3) chromosome abnormali- 
ties, which can be numerical (aneuploidies) or structural 
(translocations or inversions) [1,2]. Additionally, PGD 
can be used to perform sex selection for non-medical 
reasons, [3,4] to detect mutations that can predispose to 
specific diseases (such as BRCA1 mutation which pre- 
dispose to breast cancer) [5], to detect late-onset neu- 
rodegenerative disorders such as Huntington’s disease 
[5,6] and for HLA typing [7]. However, the ethical as- 
pects concerning these indications remain controversial 
and are still under debate [5,8]. 

PGD technology has been recently used also to exam- 
ine the genetic status in embryos from infertile couples 
undergoing IVF. In this case, the methodology is named 
Preimplantation Genetic Screening (PGS) or PGD for 
aneuploidy screening [9]. This procedure tests genetic 
conditions, in the absence of symptoms, with the aim to 
select “the chromosomally best embryo” for transfer [1]. 
It does not look for a specific disease; it just screens em- 
bryos for the most common genetic pathologies. Patients 
referred to PGS include couples with a history of re- 
peated implantation failure in IVF, recurrent miscarriages 
and severe male factor infertility and advanced maternal 
age (AMA) [1,9,10]. However, different randomized 
control trials have demonstrated that PGS for AMA pa- 
tients do not directly improves implantation or pregnancy 
rates [11-13]. 

The two main techniques used for genetic diagnosis 
are fluorescent in situ hybridization (FISH) for cytoge-
netic analysis of chromosomal abnormalities [14,15] and 
polymerase chain reaction (PCR) for molecular analysis 
of monogenic disorders [14,15] (Table 1). However, new 
methods of diagnosis requiring a whole-genome ampli- 
fication (WGA) step to amplify a single cell DNA con- 
tent prior to genetic analysis have been recently included 
in PGD/PGS clinical practice [16]. These techniques are 
array-comparative genomic hybridization (array-CGH) 
and single nucleotide polymorphism arrays (SNP-arrays) 
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Table 1. Main methods of genetic diagnosis. 

 INDICATIONS LIMITATIONS 

PCR 
Monogenic disorders 

Sexing 

Contamination (high risk)
Allele drop-out 

Preferential amplification
Amplification failure 

FISH 
Chromosome abnormalities 

Sexing 
Aneuploidy screening 

Contamination (low risk)
Mosaicism 

Overlapping signals 
Failure of probes binding

 
[16,17]. 

In order to obtain genetic material on which carry out 
genetic diagnosis, both PGD and PGS require the proce- 
dure known as biopsy which consists in the removal of 
one or more cells from the embryo/oocyte to be diag- 
nosed. Biopsy is performed using a micromanipulator 
equipment. Since this is an invasive procedure, the 
choice concerning the appropriate timing and methodo- 
logy requires particular attention in order to ensure an 
uncompromised and correct development of the biopsied 
oocyte/embryo and to allow an accurate diagnosis. 

2. BIOPSY 

Biopsy can be performed at three different stages: on 
oocytes or zygotes (polar body biopsy), on 6 - 10 cells 
embryos (cleavage stage biopsy) or on blastocysts (blas- 
tocyst biopsy), (Table 2). Independently from the proce- 
dure chosen, a biopsy involves two steps: 1) zona pellu- 
cida (ZP) drilling, which can be performed mechanically, 
chemically or by laser energy [18-20], and 2) cell/s re-
moval. 

2.1. Polar Body Biopsy 

Polar body biopsy consists in the removal of the first 
polar body (PB) from an oocyte in order to diagnose the 
genetic status before insemination. This procedure is 
referred as to Pre-Conception Genetic Diagnosis (PCGD) 
[21]. The first PB is extruded during Meiosis-I and it is 
not required to achieve a correct fertilization and/or em-
bryo development, so its removal has not any detrimental 
effect on oocyte competence. First PB biopsy allows the 
evaluation of the genetic maternal contribution by the 
identification of chromosomal abnormalities [22-24] or 
gene mutations [15,25]. Additionally, it has been recently 
applied for HLA typing [26] and for the diagnosis of 
X-linked disorders [27]. 

The first use of PCGD was reported by Verlinsky and 
collaborators for cystic fibrosis screening on the first PB 
[28]. However, problems of misdiagnosis due to cross- 
ing-over events that can occur following fertilization, 
have shown that the second PB, which is extruded during 
fertilization, is often required for an accurate diagnosis 
[24]. 

Table 2. Comparison between oocyte, embryo and blastocyst 
biopsy. 

 Oocyte Embryo Blastocyst

Aneuploidy from first meiotic 
division 

√ √ √ 

Aneuploidy from second  
meiotic division 

 √ √ 

Female translocations √ √ √ 

Male translocations  √ √ 

Cleavage mistakes  √ √ 

Paternal contribution analyzed  √ √ 

Recessive carrier’s 
 identification 

 √ √ 

Absence of influence on 
 embryo development 

√  √ 

High DNA quantity   √ 

Less biopsies to be performed   √ 

Mosaicism effect reduced   √ 

Embryo selection and Single 
Embryo Transfer 

  √ 

Absence of ethical problems √   

 
Polar body biopsy is performed by aspiration for both 

first and second polar bodies. A hole in the ZP allows to 
access the perivitelline space, then a small beveled mic- 
ropipette is used to gently aspirate the PB [29] (Figure 1). 
The timing of the procedure can differ according to indi- 
cations. When only the first PB is required, aspiration is 
performed soon after oocyte retrieval, in order to avoid 
oocyte aging. When the second PB is required, aspiration 
can be performed simultaneously or sequentially. The 
sequential aspiration is performed by a two-step micro-
manipulation procedure: the first PB is removed soon 
after oocyte retrieval and the second after 6 - 14 hours 
post fertilization [30]. On the contrary, the simultaneous 
removal of first and second PBs can be performed in a 
less invasive single-step micromanipulation procedure, 6 
- 14 hours post fertilization [29]. 

Important aspects to consider 
Polar body biopsy is a valid alternative to embryo bio- 

psy for those couples who have ethical objections to em- 
bryo biopsy or in Countries with legal restrictions on 
PGD, such as Germany and Italy. However, PCGD al- 
lows only to analyze the maternal contribution and there- 
fore cannot be performed in case of disorders of male 
origin or for sexing [15]. Furthermore, the need of bi-
opsing both first and second PBs, in some cases may 
represent a limit for this technique. In fact, PBs have a 
different morphology: the first one usually has a crinkly 
appearance while the second is smooth, but the distinc- 
tion between them can be difficult. For this reason se- 
quential aspiration is often preferred to the simultaneous 
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res are loosen, lowering the risk of cell lysis during 
cell removal and shortening the duration of the whole 
procedure [32]. 

one. 

2.2. Cleavage Stage Biopsy 
Different methods for blastomere removal have been 

developed and all of them require a hole in the zona in 
order to access the perivitelline space. The most widely 
used procedure is blastomere aspiration: a small beveled 
aspiration pipette is introduced into the perivitelline 
space and one or two blastomeres are gently aspirated 
(Figure 2). An alternative method is the extrusion tech- 
nique which can be performed by the “stitch and pull” 
[33] or by “flow” displacement [34]. 

Embryonic blastomeres are totipotent and this prop- 
erty ensures that the removal of few cells (1 or 2) does 
not affect the ability of the remaining cells to differenti- 
ate in all the cell lineages required for a correct deve- 
lopment. Hardy and colleagues were the first authors to 
report that blastomere removal does not affect further 
embryo competence [31]. 

This procedure is usually performed on day-3 post 
insemination, when embryos are at the 6 - 10 cells 
stage. If performed at earlier stages (4 cells), the ratio 
of inner cell mass (ICM) to trophectoderm cells (TE) 
may be altered, while, if performed at the stage of 
compaction, cell removal can be very difficult and 
may result in cell lysis since strong contacts among 
adjacent blastomeres have been established. The use 
of Ca2+/Mg2+ free media during embryo biopsy can be 
helpful to overcome this problem. When incubated in 
such media, membrane adhesions between blastome-  

Important aspects to consider 
A main advantage of cleavage stage biopsy is that 

once the embryo biopsy has been performed embryo 
cryopreservation is not necessary, avoiding the risk of 
embryo damage or death following the freezing/thawing 
process [35]. 

Biopsy on day three gives a sufficient time lapse pe- 
riod for cell genetic diagnosis since embryo transfers can 
be performed at blastocyst stage, after 2 or 3 days from 

 

 
(a)                       (b)                       (c)                        (d)                     (e) 

Figure 1. Polar body biopsy. Oocyte is held with a holding pipette and the polar body is extracted with a biopsy pipette ((a)-(d)). In 
picture (e) is visible the polar body removed from the oocyte. 

 

 
(a)                              (b)                            (c)                          (d) 

 
(e)                              (f)                                (g)                          (h) 

Figure 2. Embryo biopsy. The embryo is held with a holding pipette and one blastomere is removed with a biopsy pipette ((a)-(g)). In 
picture (b) the hole in the zona pellucida performed with laser is visible (arrow). The blastomere immediatly after the biopsy (h) with 
he nucleus clearly visible (arrow). t 
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the day of biopsy. Anyway, recent data have shown that 
embryo vitrification provides higher survival rates than 
conventional slow freezing [36]. 

One of the main issues concerning cleavage stage bio- 
psy is the number of cells to aspirate. The choice of cell 
number for PGD should be the result of a balance be- 
tween two aspects: an accurate and correct diagnosis of 
the embryo and the safeguard of its implantation poten-
tial. Two-cell analysis certainly provides a more reliable 
result, especially considering the problem of mosaicism. 
Chromosomal mosaicism is when different cells with a 
different chromosomal makeup coexist within the same 
individual who has developed from a single fertilized 
egg. In the past, high levels of mosaicism have been re- 
ported in cleavage stage embryos [37] and for this reason 
the analysis of two blastomeres or even more cells with 
the blastocyst stage biopsy (see the following paragraph) 
have been introduced. Anyway, data in the literature have 
shown that embryos with low-moderate chromosome 
mosaicism on day-3 often self-correct during their de- 
velopment to the blastocyst stage [38-40]. 

Recent studies have highlighted that the removal of 2 
cells from a 8-cell embryo can result in an impaired im- 
plantation potential [41,42]. Therefore, the ESHRE PGD 
consortium recommends the biopsy of just one cell in 
PGS cycles: the aim of PGS is to improve embryo im- 
plantation and the removal of more than one cell would 
be more harmful than beneficial for the embryo [43]. 
However, the possibility of mosaicism should be taken 
into account. 

Finally, in order to choose the blastomere to aspirate, 
the presence of a clearly visible nucleus should be con- 
sidered since multinuceation or anucleation are frequent- 
ly observed in cleavage stage embryos [44,45]. However, 
additional aspects such as the size, orientation, shape and 
volume of the blastomere, can significantly influence the 
outcome of the biopsy. 

2.3. Blastocyst Biopsy 

Blastocyst biopsy consists in the removal of the outer 
TE cells from a blastocyst without affecting the ICM, 
from which the fetus will develop. The introduction of 
improved culture media and sequential cultures have 
been the main factors leading to the current use of blas- 
tocyst biopsy in clinical practice since blastocyst forma- 
tion is more easily achieved. 

Blastocyst biopsy can be performed on day 5 or 6. The 
removal of TE cells can be performed either by aspira- 
tion (Figure 3) or by the stitch and pull method. How- 
ever, a third method called “herniation” can be used. In 
this case, a hole is drilled in the ZP, usually on day-3, and 
embryos are left in culture until day-5, when herniation 
of some of the TE cells should have occurred [46]. 
However, ICM cells may herniate instead of TE cells and 
for this reason some operators prefer to perform the hole 

in the zona on day-5 at the pole opposite to the ICM and 
wait few hours to ensure the herniation of TE cells [47]. 

Important aspects to consider 
At the blastocyst stage, a larger number of cells can be 

removed from the embryo with respect to cleavage stage 
biopsy, allowing the retrieval of a higher amount of DNA 
and, thus, a more accurate diagnosis. However, a blasto- 
cyst biopsied on day-5 cannot be kept in culture for more 
than 24h, therefore a shorter time is available for cell 
diagnosis and not all genetic laboratories are equipped to 
perform embryo diagnosis in such condition. 

When the genetic results cannot be obtained within 
24h from the biopsy cryopreservation should be consi- 
dered as an alternative. Fortunately, different data in the 
literature report that blastocyst vitrification on day-5 or 6 
is a successful method for cryopreservation with surpri- 
sing higher survival rates than cleavage embryos in PGD 
programs [48,49]. 

Usually, two to nine cells are removed from the tro-
phectoderm without further compromising embryo de-
velopment since ICM is not affected. The degree of 
chromosomal mosaicism detected at this stage is signifi- 
cantly lower compared to the one of embryos at the 
cleavage stage [50]. However, recent studies have indi- 
cated that mosaicism is a recurrent phenomenon also in 
blastocysts: TE cells may have diverged genetically from 
the ICM and they would not be representative of the rest 
of the embryo [51]. 

Despite the improvements obtained in culture media, 
blastocyst biopsy is not routinely carried out in PGD 
programs. Performing biopsy on day-5, the number of 
cycles suspended for the absence of embryos available 
for biopsy increases and it has been estimated that the 
number of cycles in which no embryo reaches the blas- 
tocyst stage are about 20% [46]. However the following 
consideration in support of blastocyst culture and biopsy 
should be taken into account: 1) a low number of em-
bryos to process is more time and cost effective, and 2) 
most of the embryos that do not reach the blastocyst 
stage are chromosomally abnormal [52,53]. Blastocyst 
biopsy seems to be a better strategy as compared to 
cleavage stage biopsy also because different authors have 
reported that embryos diagnosed as aneuploid on day-3, 
later on day-5 have resulted in euploid blastocyst [38-40], 
suggesting the existence of self-correction mechanisms 
during the transition to blastocyst. 

Finally, blastocyst biopsy can be considered as a valid 
alternative to embryo cleavage biopsy in FISH PGS cy- 
cles since ESHRE PGD consortium does not recommend 
embryo biopsy on day three for these couples [54]. 

3. CONCLUSION 

PGD technology offers to couples at risk of transmit-
ting a genetic disorder the chance to conceive a un-af-  
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(a)                      (b)                     (c)                      (d)                      (e) 

 
(f)                         (g)                      (h)                      (i)                    (j) 

Figure 3. Blastocyst biopsy. Blastocyst is held with a holding pipette and few cells from the trophoectoderm are removed with a 
biopsy pipette ((a)-(g)). The blastocele collapses during the biopsy (h) and few hours of incubation are needed for the blastocyst to 
re-expand (j). In (i), the cells removed from the blastocyst are shown. 
 
fected child by the diagnosis of the genetic status of em-
bryos and subsequent transfer of those ones free from 
diseases. This procedure requires an invasive manipula- 
tion named biopsy which has to be performed by well- 
trained embryologists since both the choice of the meth- 
odology and the way it is carried out are of crucial im- 
portance for the final outcome of the PGD/PGS program. 
Only when the benefit of genetic analysis overcomes the 
negative aspects of the biopsy, the PGS/PGD procedure 
can be considered worthwhile. 
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ABBREVIATIONS 

AMA            Advanced maternal age  
CGH            Comparative genomic hybridization  
FISH            Fluorescent in situ hybridization  
ICM             Inner cell mass 
PCGD           Pre-conception genetic diagnosis  

PCR              Polymerase chain reaction 
PGD              Preimplantation genetic diagnosis  
PB                Polar body  
PGS               Preimplantation genetic screening  
TE                Trophectoderm cells  
WGA              Whole-genome amplification 

 


