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ABSTRACT

We consider a singular differential-difference operator A on R which includes as a particular case the one-dimensional
Dunkl operator. By using harmonic analysis tools corresponding to A, we introduce and study a new continuous wave-
let transform on R tied to A. Such a wavelet transform is exploited to invert an intertwining operator between A and the

first derivative operator d/dx.
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1. Introduction

In this paper we consider the first-order singular differ-
ential-difference operator on R

Af (x)=£+(y+l)w+q(x) f(x)

dx 2 X

where y>-1/2 and qis a C” real-valued odd func-
tion on R. For g = 0, we regain the differential-difference

operator
df 1) f(x)-f(-x)
Af (x) =2 il I G A WY
(x) dx+(y+2j X ’

which is referred to as the Dunkl operator with parameter
7+1/2 associated with the reflection group Z, on R.
Those operators were introduced and studied by Dunkl
[1-3] in connection with a generalization of the classical
theory of spherical harmonics. Besides its mathematical
interest, the Dunkl operator has quantum-mechanical
applications; it is naturally involved in the study of one-
dimensional harmonic oscillators governed by Wigner’s
commutation rules [4-6].
Put

[(y+1)

) "

and

“Corresponding author.
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Q(x)=exp(-[a(t)dt), xeR @)
The authors [7] have proved that the integral transform

Xt (0)=aQ(x)[ f(m)(1-t) " (1+t)at @)

is the only automorphism of the space E(R) of C”
functions on R, satisfying

X&f:AXfande(O):f(O),

forall f e E(R). The intertwining operator X has been
exploited to initiate a quite new commutative harmonic
analysis on the real line related to the differential-dif-
ference operator A in which several analytic structures
on R were generalized. A summary of this harmonic
analysis is provided in Section 2. Through this paper, the
classical theory of wavelets on R is extended to the dif-
ferential-difference operator A. More explicitly, we call
generalized wavelet each function g in L (R,|X|27 . dx)
satisfying almostall A eR:

0<C, =R ()(@a)f L,

where F, denotes the generalized Fourier transform
related to A given by

Fo(9)(2)=[ a(x)¥_, (x)[x""dx, 1<R,

WY_, being the solution of the differential-difference
equation
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Af(X)=-iAf(x). f(0)=1.

Starting from a single generalized wavelet g we con-
struct by dilation and translation a family of generalized
wavelets by putting

Uap (X)='T"g,(X), a>0, beR,

where 'T® stand for the generalized dual translation
operators tied to the differential-difference operator A,
and g, is the dilated function of g given by the relation

Fi(9.)(2)=Fy(9)(a2).

Accordingly, the generalized continuous wavelet trans-
form associated with A is defined for regular functions f
on R by

(f a,b J‘ f gab | |27+1

In Section 3, we exhibit a relationship between the
generalized and Dunkl continuous wavelet transforms.
Such a relationship allows us to establish for the gener-
alized continuous wavelet transform a Plancherel for-
mula, a point wise reconstruction formula and a Calderon
reproducing formula. Finally, we exploit the intertwining
operator X to express the generalized continuous wavelet
transform in terms of the classical one. As a consequence,
we derive new inversion formulas for dual operator ‘X
of X.

In the classical setting, the notion of wavelets was first
introduced by J. Morlet, a French petroleum engineer at
ELF-Aquitaine, in connection with his study of seismic
traces. The mathematical foundations were given by A.
Grossmann and J. Morlet in [8]. The harmonic analyst Y.
Meyer and many other mathematicians became aware of
this theory and they recognized many classical results
inside it (see [9-11]). Classical wavelets have wide ap-
plications, ranging from signal analysis in geophysics
and acoustics to quantum theory and pure mathematics
(see [12-14] and the references therein).

2. Preliminaries

Notation. We denote by
e L’(R), 1< p<oo, the class of measurable functions
f on R for which || f || <o, where

110, =1 P &) it pes

and || f], =esssup,|f (X)|

. , 1 < p <o, the class of measurable functions
f on R for which ||f||p!Q = ||Qf||w <o, where Q is
given by (2).

e Ljg(R), 1< p<oo, the class of measurable func-
tions f on R for which ||f || =|f
Remark 1. Clearly the map

1/Q

Copyright © 2013 SciRes.

ME (x) = Q(x) f (x) @

is an isometry
e from L}(R) onto L?(R);
e from LY(R) onto Lo (R).

2.1. Generalized Fourier Transform

The following statement is proved in [7].
Lemma 1. 1) For each A1 eC, the differential-dif-
ference equation

Au=iiu, u(0)=1,
admits a unique C” solution on R, denoted ¥, given
by
¥, (1) =Q(x) e (i2%). ©

where e denotes the one-dimensional Dunkl kernel
defined by

@crwxm+if;ywaa<mcx

j, being the normalized spherical Bessel function of
index y given by

n'l"(n+y+1)

(ZEC).

2)Forall xeR, 2eC and n=0,1,---, we have

an

o b () S QU e, ©

3) For each xe R and 1 eC, we have the Laplace
type integral representation

¥, (x)=a, Q[ (1-t’

where a, is given by (1).
The generalized Fourier transform of a function f in
Ly (R) is defined by

Y et )

J' f |Zy+1 (8)

Remark 2. 1) By (6) and (7), it follows that the gener-
alized Fourier transform F, maps continuously and
injectively L, (R) into the space C,(R) of continu-
ous functions on R vanishing at infinity.

2) Recall that the one-dimensional Dunkl transform is
defined for a function f e L. (R) by

_[ f( —iax |x|2’+1 9)

Notice by (5), (8) and (9) that
F\=F M, (10)

where M is given by (4).
Two standard results about the generalized Fourier
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transform F, are as follows.
Theorem 1 (inversion formula). Let fely(R)
such that F,(f)e L (R) Then for almost all xeR

we have
F((QEX) =m [ F(F)(2)¥, (9" a2,

where

= (11)
272 (T (7 +1))

Theorem 2 (Plancherdl). 1) For every felg(R),
we have the Plancherel formula

REXEYCSIEN
= rn;/_[R|FA ( f )(ﬂ'

2) The generalized Fourier transform F, extends
uniquely to an isometric isomorphism from Lg(R)
onto L (R).

)2 |X27+1 dX

I o

2.2. Generalized Convolution

Recall that the Dunkl translation operators z';,Xe R,
are defined by

y)=|. f(2)du,(z (12)

where 44, is a finite signed measure on R, of total
mass 1, with support

== =X JU 4= b+ v

and such that ﬂ;y"S 2. For the explicit expression of
the measure 44, see [15].

Define the generalized translation operators T, Xxe R,
associated with A by

TH)=QIR0], gy (0

By (12) and (13) observe that
T (v)=Q(X)Q(Y)7 (f/Q)(¥)- (14)
The generalized dual translation operators are given by

T o

We claim the following statement.

Proposition 1. 1) Let f be in Lj,(R), 1<p<w.
Then for all xeR, T*f is a well defined element in
L{;Q(R), and

(Qf)(y)- (15)

T*f

pl/Q 2Q " f "p 1/Q

2) Letfbein L§(R), 1< p<o. Then forall xeR,
'T*f is well defined as a function in LS(R), and

Copyright © 2013 SciRes.

3)For feld(R),
Fo(‘TF)(2) =¥, () (F)(2).

4) Let 1<p, p, <o such that 1/p +1/p,=1. If
h elfy(R) and h, eLE(R), then we have the dual-
ity relation

p‘ngQ(X)"f”p,Q

p=1or2, we have

JoT(h)(y Iyl”“
=IRh(y YY)y dy.
Proof. 1) By (14) and [13 Equation (8)] we have
pI/Q ‘ _Q ) (f /Q)”p,y
<2Q(x || It /QII oy = 2Q09T],0-

2) By (15) and [13, Equation (8)] we have
[T, =Rl =C3)(
<20t =2 ],
3) By (5), (10), (15) and [1, Theorem 11] we have
F (‘T F)(A)=F,(QT*f)(4)
=Q(X)F,(5*(Qf))(2)
=Q(x)e (-iAx)F,(Qf)(4)
:\P%( )FA(f)(’l)'

4) By (14), (15) and [1, Theorem 11] we have

[T (M) Iylz”1
=Q(x)JRry(n/Q)( Y)QU)h, ()" dy
=Q(¥) [, (R/Q)(¥)7( Qm Iyl”“
=[O TR dy.
This concludes the proof. |

The generalized convolution product of two functions f
and g on R is defined by

tH9()=[, T (H)(X)g(y)y""dy. 16

Remark 3. Recall that the Dunkl convolution product
of two functions f and g on R is defined by

fx,g(x)=[ o (F)(-y)a(y)y"dy a7
By virtue of (15), (16) and (17) it is easily seen that
(Qf)*, (Q9)(x)
f# = L . 18
9() o) (18)

By use of (10), (18) and the properties of the Dunkl
convolution product mentioned in [16], we obtain the
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next statement.
Proposition 2. 1) Let p,p,,p; €[l,»] such that

L+L_1=L If feLg‘(R) and gely (R), then
(S o) p;

f#gely (R) and
It #al, o <2 1l oll9l,, o
2) For fely(R) and geld(R), p=1or2, we

have

Fo(f#9)=F,(f)F.(9).

2.3. Intertwining Operators

According to [7], the dual of the intertwining operator X
given by (3), takes the form

XF(y ayJ'XHY\ x)Q(x) Sgn(x)(XZ _ yz)
x(x+y)dx

7-1/2

It was shown that "X is an automorphism of the
space D(R) of C” compactly supported functions on
R, satisfying the intertwining relation

diys ='XA f, feD(R),
dx

where A is the dual operator of A defined by
~ df 1) f(x)-f(-x)
Af (X)=—+| y+=— | ———=—q(x)f (X).
(9= (73 ] a9
Moreover, we have the factorizations
X=MoV,

(19)
X =V, oM,

where V, and t\{V are respectively the Dunkl inter-
twining operator and its dual given by

x=a] t)(-r)"
f (x)sgn(x)(x’ —yz)H/2 (x+y)dx

Using (19) and the properties of V, and ‘Vy pro-
vided by [17], we easily derive the next statement.

Proposition 3. 1) If fel”(R) then Xf e LI/Q(R)
and [[Xf, o <[],

2)If fely(R) then 'Xf el'(R) and
], <[fle-

3) For every f e L°°(R) and ge LIQ(R), we have
the duality relation

jR Xf (x)g(x)

4)Forevery f el,(R) we have the identity

(1+t)dt,

v, T(y)= ayj\x\z\y\

2y+1
X7 dx=]_f(y)'Xg(y)dy.

Copyright © 2013 SciRes.

Fo(f)=F,o'X(f), (20)

where F, denotes the usual Fourier transform on R given
by

= [ h(x)e™dx, hel'(R).
5) Let f,geLg(R).Then
X (f#g)="Xf *'Xqg,

where * denotes the usual convolution product on R
given by

x)=[_h(x=y)h,(y)dy.
6)Let fely(R) and gel”(R). Then
X('Xf *g)=Q f#[xgj @1
Q’
3. Generalized Wavelets

Notation. For a function f on R put

), XeR.

f7(x)=f(-x
3.1. Dunkl Wavelets

Definition 1. A Dunkl wavelet is a function ge L (R)
satisfying the admissibility condition
o 2 da
0<C; =["|F, (9)(at) ~ < (22)

for almost all 1eR.
Notation. For a function g in L?/ (R) and for
(a,b)e(0,0)xR we write
925 (X)=7,"97 (%), (23)

where 7.° are the Dunkl translation operators given by

(12), and
9;(x)=

Definition 2. Let gelL’(R) be a Dunkl wavelet.
The Dunkl continuous wavelet transform is defined for
smooth functions f on R by

S, (f)(ab) jf )L, (X

1 X

gL, (N7 (29)
which can also be written in the form

S (f)(ab)=fx () (b). (26)

where * is the Dunkl convolution product given by
17).

The Dunkl continuous wavelet transform has been in-
vestigated in depth in [17] from which we recall the fol-

lowing fundamental properties.
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Theorem 3. Let LC(R) b Dunkl let.
Then 9L (R) be 2 Dunkd wavele Ga ( >=—Q2§ii)gﬁfa)’ XeR. (29)
1)Forall fe Li (R) we have the Plancherel formula )
- Remark 5. Notice by (24) and (29) that
[0 7 dx (08} (%)
e 2 o, da 9a (X) =27 (30)
:c_gfo Jels5 (F)(ab)[ Jof " db==. Q(x)

Proposition 4. 1) Let a>0 and gelf(R) for

2) For feL'y(R) such that Fy(f)eLly(R), we some 1< p<c. Then g,ell(R) and
have

[9allp0 =" l0l,q

where g is such that 1/p+1/gq=1.

0=l S () b)ais (0l a0) 2

for almost all x e R. 2)For a>0 and gel§(R), p=1or2, wehave
3) Assume that F (g)eL”(R). For f el (R) and 3
0<s<d<om, the function ’ Fr(9.)(4)=F.(9)(ad).
Proof. 1) By (30) and [13, Equation (13)], we have
fgé .[ J.R ¢ )(ab)gl,(x |b|2/+1db By ey [ qu (et
9all,e =11Qaall,,, =(
belongs to L’ (R) and satisfi 2y I
elongs to 7( ) .an sa 156 ies _ g2/ "Qg”w =a e "g"p,Q'
lim |f*°— f" =0 i
£-0,5—00 27 2) By (10), (30) and [13, Equation (11)], we have
3.2. Generalized Wavelets L (9.)(2)=F, (Q@.)(2)=F, ((Q);)(2)
Definition 3. We say that a function ge Lé(R) is a =F, (Qg)(M)z FA(g)(M)’
generalized wavelet if it satisfies the admissibility condi- which achieves the proof. -
tion Definition 4. Let ge L5 (R) be a generalized wave-
s 2 da let. We define for regular functions f on R, the general-
0<Cy = J.o |FA (9)(at) ‘a <% 27) ized continuous wavelet transform by
for almostall 2eR 2| 2+
: f)(ab) f( dx, (31
Remark 4. 1) The admissibility condition (27) can ( & J. gab( )(Q(X)) |X| % G
also be written as where a>0, beR,
o da
0<CQ=JOIFA(9)(1)27 Guo (%)= T04 (%), (32)
d ﬁ and 'T° are the dual generalized translation operators
=[/|IF.(g . given by (15).

- Remark 6. A combination of (15), (23) and (32)
2) If g is real-valued we have FA(g)(—/i)= Fu(9)(4)s  yields
so (27) reduces to

Q) gy
- Bap (X) = — = (QQ),, (X). (33)
0<C,=[[|F(9)(2f L #07q(y Fel
, . . Proposition 5. Let gelg(R) be a generalized
3)If 0#gely(R) is real-valued and satisfies wavelet. Then for all felj(R), p =1 or 2, we
37>0 such that F,(g)(1)-F,(9)(0)=0(2"), as  paye
A — 0", then (27) is equivalent to F, (g)(0)=0.

4) According to (10), (22) and (27), gely(R) isa @, (f)(ab)=Q(b)S, (Qf)(a,b)
generalized wavelet if and only if, QgeL’(R) is a ) 5 (34)
Dunkl wavelet, and we have = (Q(b)) f #(ga) (b)v

C, =Cf,. (28) where # is the generalized convolution product given by
(16).
Notation. For a functiongon R and a >0, put Proof. By (18), (25), (26), (30), (31) and (33), we have

Copyright © 2013 SciRes. APM
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y (1)(ab)

=Q(b) [, Q(x) () (Qa),, (x) [ ax
=Q(b) S, (Qf)(a.b)

=Q(b)(Qf)*, | (Qa); ] (b)
=Q(b))(Qf)*, [Qa.] (b)

~Q(b)

(@)=, [Q(g.) |(b)
=(Q(b)* f #(g) (b),

which ends the proof. ]
A combination of Theorem 3 with identities (28), (33)
and (34) yields the following basic results for the gener-
alized continuous wavelet transform.
Theorem 4 (Plancherel formula). Let ge Ly (R)
be a generalized wavelet. Then for all f e LZQ(IFS we

have
Ji £ OO (@)Y
Ll Ay o da
Loy Bt

Theorem 5 (inversion formula). Let ge L, (R) bea
generalized wavelet. If f e LIQ(R) and FA(f € Lly(R)

then we have
_ |bry+1 EEE
9=l i@ F)(ab)gus(x o) db] -

for almost all xeR.

Theorem 6 (Calderon’s formula). Let ge L} (R)
be a generalized wavelet such that F,(g)el”(R).
Then for f elg(R) and 0<&<8<oo, the function

2y+1
X

dx

t)|27+1 (161
57 (x e b) g., (X) | db—
(e (g
belongs to L (R) and satisfies
lim [0 —f] =
£50,650 2,Q

3.5. Inversion of the I ntertwining Operator ‘X
Using Generalized Wavelets

In order to invert "X we need the following two technical
lemmas.
Lemma2. Let 0#£gel' NL*(R) such that
F, (g) el (R) and satisfying
3>y such that F, (9)(2) =012},  (39)

as A —0. Let G=Xg/Q*. Then Gely(R) and

Copyright © 2013 SciRes.

F,(9)(4
F(0)(1)= )
2mm, 4]
where m, is given by (11).
Proof. We have

9(x) :i F,(9)(4)e™d4, ae.

As by (3) and (7),

we deduce that

Xg(x)=m [ h(2)¥,(x)|2

2y+1

di, ae. (36)
with

h(2)- (@)
2mm 2"

Clearly, helL,(R). So it suffices, in view of (36)
and Theorem 2, o prove that h belongs to he L (R).
We have

o) 12
=(2mm ) IRIﬂI R (a)(2) 0
=(2mm ) ([ + [ ) R0 ()] 02
=(27m)” (1, +1,).

By (35) there is a positive constant k such that

2v+1

L<k[ A" dA=——<w,
|41 n—y
From the Plancherel theorem for the usual Fourier
transform, it follows that

2 JW' |,1| 2771|FU(g)(
=2 Jo(x)

which ends the proof. ]

Lemma 3. Let 0#gel'NL*(R) be real-valued
such that F,(g)el'(R) and satisfying 37 >2y+1
such that

A da<[ |F,(g)(4)da

2
| dx < oo,

F.(9)(4)=0(4"), (37)

as A—>0". Let G=Xg/Q*. Then GelL(R) is a
generalized waveletand F, (G)e L”(R).

Proof. By using (37) and Lemma 2 we see that
Gely(R), F,(G) isbounded and

F.(G)(2)=0(2"*")as 1 >0".

Thus, in view of Remark 4 3), the function Xg/ Q’
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satisfies the admissibility condition (27). ]
Recall that the classical continuous wavelet transform
is defined for suitable functions f on R by

w(1)(a)=[, 1 (95e 2 Jax o)

where a>0, beR, and gel’(R) is a classical
wavelet on R, i.e, satisfying the admissibility condition

0<c(g):j:

for almost all 1eR. A more complete and detailed
discussion of the properties of the classical continuous
wavelet transform can be found in [10].

Remark 7. 1) According to [10], each function satis-
fying the conditions of Lemma 3 is a classical wavelet.

2) In view of (20), (27) and (39), geD(R) is a gen-
eralized wavelet, if and only if, 'Xg is a classical wave-
let and we have

Fu(g)(m)2%<w, (39)

C(th)=

In the next statement we exhibit a formula relating the
generalized continuous wavelet transform to the classical
one.

Proposition 6. Let g be as in Lemma 3. Let
G=Xg/Q’. Then forall fe L3(R), p=1or2, we
have

O (£)(2.0) = X[ (XF)(2)|(0).
Proof. By (34) we have
@4 (f)(ab)=(Q(bB))’ F#(G,) (b).
X|(9Z)
-1

by virtue of (3), (24) and (29). So using (21) and (38) we
find that

But

antien-oy 1o L Lo

[ X *(gZ) }(b)

1

:WX[Wg(tXf)(a,-)J(b),

which gives the desired result.

Combining Theorems 5, 6 with Lemma 3 and Proposi-
tion 6 we get

Theorem 7. Let g be as in Lemma 3. Let G= Xg/Qz.

Copyright © 2013 SciRes.

Then we have the following inversion formulas for the
integral transform ‘X :

) If fely(R) and F,(f)eL,(R) then for al-
most all X e R we have

f(x):CiGjow _[RX[Wg(tXf)(a,.)J(b)Ga‘b(x)

2,/+l
da
(R)

2) For feLQﬂ (R

and 0< &< <o, the func-

tion
£o9 (x :_Hx[ (X ) () ](0) Gy (X)
Q)
satisfies
lim [£0—f[ =0
£—0,0 >0 2.Q
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