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ABSTRACT 

We consider a singular differential-difference operator Λ on R which includes as a particular case the one-dimensional 
Dunkl operator. By using harmonic analysis tools corresponding to Λ, we introduce and study a new continuous wave- 
let transform on R tied to Λ. Such a wavelet transform is exploited to invert an intertwining operator between Λ and the 
first derivative operator d/dx. 
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1. Introduction 

In this paper we consider the first-order singular differ- 
ential-difference operator on R 

         d 1

d 2

f x f xf
f x q x f

x x


       
 

x  

where 1 2    and q is a  real-valued odd func- 
tion on R. For q = 0, we regain the differential-difference 
operator 

C
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,
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which is referred to as the Dunkl operator with parameter 
1 2   associated with the reflection group Z2 on R. 

Those operators were introduced and studied by Dunkl 
[1-3] in connection with a generalization of the classical 
theory of spherical harmonics. Besides its mathematical 
interest, the Dunkl operator has quantum-mechanical 
applications; it is naturally involved in the study of one- 
dimensional harmonic oscillators governed by Wigner’s 
commutation rules [4-6]. 
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The authors [7] have proved that the integral transform 
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is the only automorphism of the space  of C E R   
functions on R, satisfying 
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and 0 0 ,

d
X f X f Xf f

x
    

for all  .f E R  The intertwining operator X has been 
exploited to initiate a quite new commutative harmonic 
analysis on the real line related to the differential-dif- 
ference operator Λ in which several analytic structures 
on R were generalized. A summary of this harmonic 
analysis is provided in Section 2. Through this paper, the 
classical theory of wavelets on R is extended to the dif- 
ferential-difference operator Λ. More explicitly, we call 
generalized wavelet each function g in  2 12 , dL x x

 
R  

satisfying almost all : R
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d
0 ,g

a
C F g a
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where F  denotes the generalized Fourier transform 
related to Λ given by 

       2 1
d ,  ,F g g x x x x


 

   R R  

  being the solution of the differential-difference 
equation *Corresponding author. 
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     , 0 1f x i f x f    .

,

 

Starting from a single generalized wavelet g we con- 
struct by dilation and translation a family of generalized 
wavelets by putting 

   , , 0,t b
a b ag x T g x a b  R  

where  stand for the generalized dual translation 
operators tied to the differential-difference operator Λ, 
and ga is the dilated function of g given by the relation 

t bT

     .aF g F g a    

Accordingly, the generalized continuous wavelet trans- 
form associated with Λ is defined for regular functions f 
on R by  

       2 1

,,g a bf a b f x g x x
   R .  

In Section 3, we exhibit a relationship between the 
generalized and Dunkl continuous wavelet transforms. 
Such a relationship allows us to establish for the gener- 
alized continuous wavelet transform a Plancherel for- 
mula, a point wise reconstruction formula and a Calderon 
reproducing formula. Finally, we exploit the intertwining 
operator X to express the generalized continuous wavelet 
transform in terms of the classical one. As a consequence, 
we derive new inversion formulas for dual operator  
of X. 

t X

In the classical setting, the notion of wavelets was first 
introduced by J. Morlet, a French petroleum engineer at 
ELF-Aquitaine, in connection with his study of seismic 
traces. The mathematical foundations were given by A. 
Grossmann and J. Morlet in [8]. The harmonic analyst Y. 
Meyer and many other mathematicians became aware of 
this theory and they recognized many classical results 
inside it (see [9-11]). Classical wavelets have wide ap- 
plications, ranging from signal analysis in geophysics 
and acoustics to quantum theory and pure mathematics 
(see [12-14] and the references therein). 

2. Preliminaries 

Notation. We denote by 
   ,  1 ,pL p   R  the class of measurable functions 

f on R for which 
,

,
p

f     where  

  12 1

,
d , if

pp

p
f f x x x p





 R ,   
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esssup .xf f x

 
 R  

   ,  1 ,p
QL p  R  the class of measurable functions 

f on R for which 
, ,p

f


,
p Q

f Q    where Q is 
given by (2). 

  1 ,  1 ,p
QL p  R  the class of measurable func- 

tions f on R for which 
,1 ,

.
p Q

Remark 1. Clearly the map 
p

Q   

     Mf x Q x f x               (4) 

is an isometry 
 from  p

QL R  onto  pL R ; 
 from  pL R  onto  1

p
QL R . 

2.1. Generalized Fourier Transform 

The following statement is proved in [7]. 
Lemma 1. 1) For each  C , the differential-dif- 

ference equation 

 , 0 1u i u u ,    

admits a unique C  solution on R, denoted  , given 
by 

      ,x Q x e i x               (5) 

where e  denotes the one-dimensional Dunkl kernel 
defined by 

         1 ,
2 1

z
e z j iz j iz z     


C  

j  being the normalized spherical Bessel function of 
index   given by 
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   C  

2) For all xR ,  C  and  we have 0,1, ,n  

    Ime .
n

n x

n x Q x x 



 


         (6) 

3) For each xR  and  C , we have the Laplace 
type integral representation 

       
1 21 2

1
1 1 ei xtd ,x a Q x t t t

 
 




       (7) 

where a  is given by (1). 
The generalized Fourier transform of a function f in 
 1

QL R  is defined by 

       2 1
d .F f f x x x


 

  R x       (8) 

Remark 2. 1) By (6) and (7), it follows that the gener- 
alized Fourier transform F  maps continuously and 
injectively  1

QL R  into the space  of continu- 
ous functions on R vanishing at infinity. 

 0C R

2) Recall that the one-dimensional Dunkl transform is 
defined for a function  by  1f L R

       2 1
d .F f f x e i x x


    R x      (9) 

Notice by (5), (8) and (9) that 

,F F M                 (10) 

where M is given by (4). f f


 
Two standard results about the generalized Fourier 
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transform F  are as follows. 
Theorem 1 (inversion formula). Let  1

Qf L R
x

 
such that . Then for almost all    1F f L  R R  
we have 

         2 2 1
d ,f x Q x m F f x


   

 R  

where 

  22 2

1
.

2 1
m  


 

            (11) 

Theorem 2 (Plancherel). 1) For every  2
Qf L R , 

we have the Plancherel formula 
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2) The generalized Fourier transform F  extends 
uniquely to an isometric isomorphism from  2

QL R  
onto  2L R . 

2.2. Generalized Convolution 

Recall that the Dunkl translation operators , ,x x R   
are defined by 

     ,dx
x y ,f y f z z

  R           (12) 

where ,x y
  is a finite signed measure on R, of total 

mass 1, with support 

, , ,x y x y x y x y            

and such that , 2x y
  . For the explicit expression of 

the measure , ,x y
  see [15]. 

Define the generalized translation operators Tx, xR , 
associated with Λ by 

       
   ,d .     (13) x

x y

f z
T f y Q x Q y z

Q z
 R

By (12) and (13) observe that 

        .x xT f y Q x Q y f Q y        (14) 

The generalized dual translation operators are given by 

   
    .t x xQ x

T f y Qf y
Q y 

         (15) 

We claim the following statement. 
Proposition 1. 1) Let f be in  1 ,p

QL R  1 .p    
Then for all   is a well defined element in ,xR xT f

 1 ,p
QL R  and 

  ,1,1
2x

p Qp Q
T f Q x f  

2) Let f be in  . Then for all   ,p
QL R 1 p   xR , 

 is well defined as a function in  and t xT f   ,p
QL R

  ,,
2t x

p Qp Q
T f Q x f  

3) For   ,p
Qf L R  p = 1 or 2, we have 

       .F T f x F f t x       

4) Let 11 p , 2p    such that 1 21 1p p 1.  If 
 1ph L1 1 Q  and R  R2

2
p
Qh L , then we have the dual- 

ity relation 
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Proof. 1) By (14) and [13, Equation (8)] we have 
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2) By (15) and [13, Equation (8)] we have 
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3) By (5), (10), (15) and [1, Theorem 11] we have 
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4) By (14), (15) and [1, Theorem 11] we have 
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This concludes the proof.                      ■ 
The generalized convolution product of two functions f 

and g on R is defined by 

       2 1
# dt y .f g x T f x g y y y

  R     (16) 

Remark 3. Recall that the Dunkl convolution product 
of two functions f and g on R is defined by 

       2 1
dxf g x f y g y y y


 

  R     (17) 

By virtue of (15), (16) and (17) it is easily seen that 

       
 

# .
Qf Qg x

f g x
Q x
          (18) 

By use of (10), (18) and the properties of the Dunkl 
convolution product mentioned in [16], we obtain the 
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next statement. 
Proposition 2. 1) Let  1 2 3, , 1,p p p    such that  

1 2

1 1 1
1

3p p p
    If  1p

Qf L R  and  2 ,p
Qg L R  then  

 3# p
Qf g L R  and  

3 1, ,
# 2

2 ,p Q p Q
f g f g

p Q
. 

2) For  1
Qf L R  and   ,p

Qg L R  p = 1 or 2, we 
have 

     # .F f g F f F g    

2.3. Intertwining Operators 

According to [7], the dual of the intertwining operator X 
given by (3), takes the form 

         
 

1 22 2sgn

d

t

x y
Xf y a f x Q x x x y

x y x








 

 

  

It was shown that t  is an automorphism of the 
space  of C  compactly supported functions on 
R, satisfying the intertwining relation 

X
 RD 

 d
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d
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x
   R  

where  is the dual operator of Λ defined by 

         d 1
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Moreover, we have the factorizations 

,

,t t
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               (19) 

where V  and tV  are respectively the Dunkl inter- 
twining operator and its dual given by 

       
1 21 2

1
1 1V f x a f tx t t t



 




   d ,  
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Using (19) and the properties of V  and tV  pro- 
vided by [17], we easily derive the next statement. 

Proposition 3. 1) If  f L R  then  1 QXf L R   
and 

,1
.

Q
Xf f

 
  

2) If  1
Qf L R  then  1t Xf L R  and  

1,1
.ft

Q
Xf  

3) For every  f L R  and  1 ,Qg L R  we have 
the duality relation 

       2 1
d t d .Xf x g x x x f y Xg y y

   R R
 

4) For every  we have the identity  1
Qf L R

   ,t
u F f F X f              (20) 

where Fu denotes the usual Fourier transform on R given 
by 

     1e d ,i x
uF h h x x h L  R R.  

5) Let  1, Qf g L R . Then 

 # ,t t tX f g Xf Xg   

where * denotes the usual convolution product on R 
given by 

     1 2 1 2 d .h h x h x y h y y  R  

6) Let  1
Qf L R  and  .g L R  Then 

  2
2

#t .
Xg

X Xf g Q f
Q

 
   

 
        (21) 

3. Generalized Wavelets 

Notation. For a function f on R put 

   ~ , .f x f x x  R  

3.1. Dunkl Wavelets 

Definition 1. A Dunkl wavelet is a function  2g L R  
satisfying the admissibility condition 

   2

0

d
0 ,g

a
C F g a

a


 


           (22) 

for almost all . R  
Notation. For a function g in  2L R  and for  

   , 0,a b   R  we write  

   , ,b
a b ag x g x


               (23) 

where b

  are the Dunkl translation operators given by 

(12), and 

  2 2

1
, .a

x
g x g x

aa


 
   
 

R          (24) 

Definition 2. Let  be a Dunkl wavelet. 
The Dunkl continuous wavelet transform is defined for 
smooth functions f on R by 

 2g L R

       2 1

,, dg a bS f a b f x g x x x
   R ,

a


    (25) 

which can also be written in the form 

      
~

, ,gS f a b f g b
         (26) 

where   is the Dunkl convolution product given by 
(17). 

The Dunkl continuous wavelet transform has been in- 
vestigated in depth in [17] from which we recall the fol- 
lowing fundamental properties. 
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Theorem 3. Let  be a Dunkl wavelet. 
Then 

 2g L R

1) For all  we have the Plancherel formula  2f L R
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3) Assume that    .F g L

 R  For  2f L R  and 
0 ,      the function  
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belongs to  2L R  and satisfies 
,

2,0,
lim 0.f f 

  
   

3.2. Generalized Wavelets 

Definition 3. We say that a function  2
Qg L R  is a 

generalized wavelet if it satisfies the admissibility condi- 
tion 
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d
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a
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for almost all . R  
Remark 4. 1) The admissibility condition (27) can 

also be written as 
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2) If g is real-valued we have      F g F g    , 
so (27) reduces to 
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0

d
0 .gC F g






     

3) If  20 Qg L  R  is real-valued and satisfies  
0   such that        0F g F g O    

  0 0.F g

, as 
 then (27) is equivalent to 0  ,   

4) According to (10), (22) and (27),  2g L RQ  is a 
generalized wavelet if and only if,  2Qg L R  is a 
Dunkl wavelet, and we have 

.g QgC C                (28) 

Notation. For a function g on R and , put 0a 

     
 2 2

,a

Q x a g x a
g x x

a Q x  . R       (29) 

Remark 5. Notice by (24) and (29) that 
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Proposition 4. 1) Let  and 0a   p
Qg L R  for 

some 1 p .    Then  p
a Qg L R  and 

 2 1

,,

q
a p Qp Q

g a g   

where q is such that 1 1 1p q .   
2) For  and  p = 1 or 2, we have 0a    ,p

Qg L R

     .a F g F g a    

Proof. 1) By (30) and [13, Equation (13)], we have 
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2) By (10), (30) and [13, Equation (11)], we have 
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which achieves the proof.                        ■ 
Definition 4. Let  be a generalized wave- 

let. We define for regular functions f on R, the general- 
ized continuous wavelet transform by 

 2
Qg L R

         2 2 1

,, dg a b ,f a b f x g x Q x x x
   R  (31) 

where  0,a  ,b R  

  , ,t b
a b a g x T g x             (32) 

and  are the dual generalized translation operators 
given by (15). 

t bT

Remark 6. A combination of (15), (23) and (32) 
yields  

   
     , ,

.a b a b

Q b
g x Qg

Q x
 x         (33) 

Proposition 5. Let  2
Qg L R


 be a generalized 
wavelet. Then for all  ,p

Qf L R  p = 1 or 2, we 
have 

       

      2 ~

, ,

# ,

g Qg

a

f a b Q b S Qf a b

Q b f g b

 


    (34) 

where # is the generalized convolution product given by 
(16). 

Proof. By (18), (25), (26), (30), (31) and (33), we have 
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which ends the proof.                           ■ 
A combination of Theorem 3 with identities (28), (33) 

and (34) yields the following basic results for the gener- 
alized continuous wavelet transform. 

Theorem 4 (Plancherel formula). Let  2
Qg L R  

be a generalized wavelet. Then for all  2
Qf L R  we 

have 
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Theorem 5 (inversion formula). Let  2
Qg L R  be a 

generalized wavelet. If  1
Qf L R  and    1F f  L R  

then we have 
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Theorem 6 (Calderon’s formula). Let  2

Qg L R
 

 
be a generalized wavelet such that  .L R

,
F g  

Then for  and 0 2
Qf L R       the function 
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QL R

,
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Q
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3.5. Inversion of the Intertwining Operator tX 
Using Generalized Wavelets 

In order to invert tX we need the following two technical 
lemmas. 

Lemma 2. Let  1 20 g L L  R  such that  
   1

uF g L R  and satisfying 

     such that ,uF g O
          (35) 

as 0.   Let 2 .G Xg Q  Then  2
QG L R  and 
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2π

uF g
F G

m








   

where m  is given by (11). 
Proof. We have 
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As by (3) and (7), 
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we deduce that 
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    R    (36) 

with 
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.
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Clearly,  1 .h L R  So it suffices, in view of (36) 
and Theorem 2, to prove that h belongs to  2 .h L R  
We have 
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g  



  

  

 





 

 





 

R

R
 

By (35) there is a positive constant k such that 
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1 1
d .
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From the Plancherel theorem for the usual Fourier 
transform, it follows that 

     

 

2 22 1

2 1

2
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which ends the proof.                           ■ 
Lemma 3. Let  1 20 g L L  R  be real-valued 

such that    1L RuF g   and satisfying 2 1     
such that 

     ,uF g O               (37) 

as 0 .   Let 2 .G Xg Q  Then  2
QG L R  is a 

generalized wavelet and    .RF G L   
Proof. By using (37) and Lemma 2 we see that 

 2
QG L R ,  F G  is bounded and 

    2 1 as 0 .F G O      
    

Thus, in view of Remark 4 3), the function 2Xg Q  
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satisfies the admissibility condition (27).            ■ 
Recall that the classical continuous wavelet transform 

is defined for suitable functions f on R by 

     1
, dg

x b
W f a b f x g x

a a

   
 R ,      (38) 

where ,  and 0a  ,bR  2g L R  is a classical 
wavelet on R, i.e., satisfying the admissibility condition 

     2

0

d
0 ,u

a
c g F g a

a



          (39) 

for almost all . R  A more complete and detailed 
discussion of the properties of the classical continuous 
wavelet transform can be found in [10]. 

Remark 7. 1) According to [10], each function satis- 
fying the conditions of Lemma 3 is a classical wavelet. 

2) In view of (20), (27) and (39),  g D R  is a gen- 
eralized wavelet, if and only if, t Xg  is a classical wave- 
let and we have 

  .t
gc Xg C  

In the next statement we exhibit a formula relating the 
generalized continuous wavelet transform to the classical 
one. 

Proposition 6. Let g be as in Lemma 3. Let 
2 .G Xg Q  Then for all   ,p

Qf L R  p = 1 or 2, we 
have 

       2 1
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Proof. By (34) we have 
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by virtue of (3), (24) and (29). So using (21) and (38) we 
find that 
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which gives the desired result. 
Combining Theorems 5, 6 with Lemma 3 and Proposi- 

tion 6 we get 
Theorem 7. Let g be as in Lemma 3. Let 2G Xg Q . 

Then we have the following inversion formulas for the 
integral transform : tX

1) If  1
Qf L R  and    1F f L  R  then for al- 

most all x R  we have 
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2) For  1 2
Q Qf L L R  and 0 ,      the func- 
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