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ABSTRACT 

Usually, electromagnetic evanescent waves are some kinds of near fields. However, it looks as if the evanescent waves 
inside a cut-off waveguide had nothing to do with any near field. In this paper, we will show that the evanescent waves 
inside a cut-off waveguide can also be regarded as the near fields of an aerial array. 
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1. Introduction 

From the point of view of classical field theory, an eva-
nescent wave is a standing wave with an intensity that 
exhibits exponential decay with distance from the 
boundary at which the wave was formed. As far as elec-
tromagnetic evanescent waves are concerned, for exam-
ple, they are formed when waves travelling in a medium 
undergo total internal reflection at its boundary; they also 
are found in the near field region of an antenna, where 
the antenna emits electromagnetic fields into the sur-
rounding near field region, and a portion of the field en-
ergy is re-absorbed provided that there is no receiver, 
while the remainder is radiated as electromagnetic waves. 
In quantum mechanics, the evanescent-wave solutions of 
the Schrödinger equation give rise to the phenomenon of 
quantum tunneling. In optics, evanescent wave coupling 
is a process by which electromagnetic waves are trans-
mitted from one medium to another by means of the 
evanescent, exponentially decaying electromagnetic field. 
Mathematically, the process is the same as that of quan-
tum tunneling, except with electromagnetic waves in-
stead of quantum-mechanical wavefunctions. As a result, 
people call the process photonic quantum tunneling. 

Usually, electromagnetic evanescent waves are some 
kinds of near fields (e.g., the ones in total internal reflec-
tion). However, it looks as if the evanescent waves inside 
a cut-off waveguide had nothing to do with any near field. 
In this paper, by means of another way of looking at the 
guided waves, we will show that the evanescent fields 
inside a cut-off waveguide can be regarded as the near 
fields of an aerial array. 

2. Another Way of Looking at the Guided 
Waves 

Let us assume that a hollow rectangular waveguide is 
placed along the direction of z-axis, and the waveguide is 
a straight perfect metal pipe with the transversal dimen-
sions a and b (a>b, the cross-section of the waveguide 
lies in 0≤x≤a and 0≤y≤b).  

For convenience let us just consider the TE10 mode, in 
which the transverse electric field is perpendicular to 
z-axis and with only a y-component Ey that will vary with 
x and z. In terms of the frequency ω and wave-number 
vector ( , , )x y zk k kk  (with ), the transverse 
electric field Ey can be written as 

0yk 

0sin exp[i( )],y x zE E k x t k z          (1) 

where E0 is a constant factor. For the TE10 mode, 
πxk a  and 2 2 2 2πzk c  a  are the wavenum-

bers along the x- and z-axis directions, respectively, 
where c is the velocity of light in vacuum. The cutoff 
frequency of the TE10 mode is c πxk c c a   . There 
are no charges in the free space inside the waveguide, 
such that Ey must satisfy the wave equation 

2 2 2 2

2 2 2 2 2
0.y y y yE E E E

x y z c t

   
   

   
       (2) 

According to the traditional waveguide theory one has: 
1) for c ,   the electromagnetic field inside the wave- 
guide is the propagation mode (i.e., the travelling wave), 
and its phase and group velocities are 

2
p c1 ( )zv k c       

and         2
g c1 ( )zv k c       , 
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respectively. For the moment, one has 2πz gk  , 
where 2

0 01 ( 2 )g a     is the wavelength of the 
oscillation along the z-direction (i.e., the guide wave-
length), and it is different from the free-space wavelength 

0 2πc   of electromagnetic waves of the same fre-
quency. 2) for c  , i.e., 0 2a  , the wave number 

zk  (and also g ) becomes imaginary, it follows from Eq. 
(1) that E E0sin ey xk x xp( ),t)exp(iz    where  

2 2
c ,c     

then the electromagnetic field inside the waveguide oscil-
lates with time as exp(i )t  and varies with z as exp( ),z  
and is called the evanescent field. 

For our purpose, let us discuss another way of looking 
at the guided waves [1]. For the TE10 mode described 
above, the vertical dimension (in y) had no effect, so we 
can ignore the top and bottom of the waveguide and 
imagine that the waveguide is extended indefinitely in 
the vertical direction. Then the waveguide can be imag-
ined as just consisting of two vertical plates with the 
separation a. Let’s say that the source of the fields is a 
vertical wires placed in the middle of the waveguide, 
with the wire carrying a current that oscillates at the fre-
quency ω. In the absence of the waveguide walls such a 
wire would radiate cylindrical waves. Consider that the 
waveguide walls are perfect conductors, the conditions at 
the surface will be correct if we add to the field of the 
wire the field of one or more suitable image wires. The 
image idea works just as well for electrodynamics as it 
does for electrostatics, provided that we also include the 
retardations. Now let’s take a horizontal cross section, as 
shown in Figure 1, where W1 and W2 are the two guide 
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Figure 1. The line source S0 between the conducting plane 
walls W1 and W2. 

walls and S0 is the source wire. Assume that the direction 
of the current in the wire is positive. Now if there were 
only one wall, say W1, one could remove it if an image 
source (with opposite polarity) were placed at the posi-
tion marked S1. But with both walls in place there will 
also be an image of S0 in the wall W2, which is shown as 
the image S2. This source, too, will have an image in W1, 
which is called S3. Now both S1 and S3 will have images 
in W2 at the positions marked S4 and S6, and so on. For 
our two plane conductors with the source halfway be-
tween, the fields are the same as those produced by an 
infinite line of sources, all separated by the distance a. 
For the fields to be zero at the walls, the polarity of the 
current in the images must alternate from one image to the 
next. In other words, they oscillate 180  out of phase. 
The waveguide field is, then, just the superposition of the 
fields of such an infinite set of line sources. 



The walls can be replaced by the infinite sequence of 
image sources. 

Let us look at the fields which arrive at a large dis-
tance from the array of image sources. The fields will be 
strong only in certain directions which depend on the 
frequency—only in those directions for which the fields 
from all the sources add in phase. At a reasonable dis-
tance from the source the field propagates in these spe-
cial directions as plane waves. Such a wave is sketched 
in Figure 2, where the solid lines represent the wave  
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Figure 2. One set of coherent waves from an array of 
line sources. 
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crests and dashed lines represent the troughs. The wave 
direction will be the one for which the difference in the 
retardation for two neighboring sources to the crest of a 
wave corresponds to one-half a period of oscillation. In 
other words, the difference between r2 and r0 in the fig-
ure is one-half of the free-space wavelength: 2 0r r   

0 2 . The angle θ in then given by 0sin 2a  . 
There is, of course, another set of waves traveling 

downward at the symmetric angle with respect to the 
array of sources. The complete waveguide field (not too 
close to the source) in the superposition of these two sets 
of waves, as shown in Figure 3. The actual fields are 
really like this, of course, only between the two walls of 
the waveguide. 

At points like A and C, the crests of the two wave pat-
terns coincide, and the field will have maximum, and 
points like B, both waves have their peak negative value, 
and the field has its minimum (largest negative) value. 
As time goes on the field in the guide appears to be trav-
eling along the waveguide with wavelength g , which is 
the distance from A to C. That distance is related to θ by 

0cos g   , using 0sin 2a  , one has 

2
0 0 0cos 1 ( 2 ) ,g a              (3) 

which is just what we found before. 
Now we see why there is only wave propagation above 

the cutoff frequency c . If the free-space wavelength is 
longer than 2a, there is no angle where the waves shown 
in Figure 2 can appear. The necessary constructive in-
terference appears suddenly when λ0 drops below 2a, or 
when ω goes above c πc a  . If the frequency is high 
enough, there can be two or more possible directions in 
which the waves will appear. In general, it could happen 
when 0 a 

sin

. These additional waves correspond to the 
higher guide modes. It has also been made evident by our 
analysis why the phase velocity of the guided waves is 
greater than c and why this velocity depends on ω. As ω 
is changed, the angle of the free waves of Figure 2 
changes, and therefore so does the velocity along the 
waveguide. Although we have described the guided wave 
as the superposition of the fields of an infinite array of 
line sources, one can see that we could arrive at the same 
result if we imagined two sets of free-space waves being 
continually reflected back and forth between perfect 
mirrors—remembering that a reflection means reversal 
of phase. These sets of reflecting waves would all cancel 
each other unless they were going at just the angle θ 
given in 0 / 2a  . 

3. Evanescent Fields Inside A Cut-Off 
Waveguide as Near Fields 

As shown in Figures 1-3, if we are close to the sources, 
the field is very much like the static fields. Here the av-
erage source strength is zero, because the sign alternates 

 

Figure 3. The waveguide field can be viewed as the super-
position of two trains of plane waves. 
 
from one source to the next. In other words, close to the 
source, we see the field mainly of the nearest source; at 
large distances, many sources contribute and their aver-
age effect is zero. So now we see why the waveguide 
below cutoff frequency gives an exponentially decreas-
ing field. At low frequency, in particular, the static ap-
proximation is good, and it predicts a rapid attenuation of 
the fields with distance (on the other hand, at high fre-
quencies the retardation of the fields can introduce addi-
tional changes in phase which can cause the fields of the 
out-of-phase sources to add instead of canceling, such 
that the waves can propagate, just as discussed in Section 
2). This implies that evanescent fields inside the cutoff 
waveguide have a close relationship with near fields. 

In fact, in frustrated total internal reflection, evanes-
cent fields are directly identical with near fields consist-
ing of virtual photons [2,3], these virtual photons corre-
spond to the elementary excitations of electromagnetic 
interactions. Now we will show that evanescent fields 
inside an undersized waveguide are also identical with 
near fields and then consist of virtual photons. As we 
know, the near fields of a dipole antenna fall off with the 
distance r from the antenna like 1 nr  ( ). However, 
if we assume that an aerial array formed by an infinite set 
of infinite-length line sources arranging in a periodic 
manner, then the near fields of the aerial array falls off 
like 

2n 

exp( )r , from which one can show another way 
of understanding why a waveguide attenuates the fields 
exponentially for frequencies below the cutoff frequency.  

As mentioned in Section 2, the guided wave can be 
described as the superposition of the fields of an aerial 
array formed by an infinite set of infinite-length line 
sources arranging in a periodic manner (with the period 
of 2a), there is a out-of-phase between two neighboring 
line sources (because the sign alternates from one source 
to the next). In view of the fact that if we are close to 
these line sources, the field is very much like the static 
fields, let us firstly study the static field of a grid of line 
sources. To associate the static field with the above 
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guided wave in the limit of 0  , the grid is taken as 
an array of parallel wires lying in a plane, where the 
wires are infinitely long and with a uniform spacing of a 
between them, and carry uniform charge with the sign 
alternates from one source to the next, such that the 
grid’s period is 2a. At a large distance above the plane of 
the wires, the electric field vanishes because of the grid 
being neutral in total. While, as we approach the grid of 
wires, the field begins to deviate from which one found 
at large distances from the grid. The closer one gets to 
the grid, the larger the variations. Traveling parallel to 
the grid, one observes that the field fluctuates in a peri-
odic manner. Any periodic quantity can be expressed a 
sum of sine waves (Fourier’s theorem). If the wires lie in 
the xy-plane and run parallel to the y-axis, one has 

( , ) ( )sin π ,yn nE x z F z nx a           (4) 

where n is the harmonic number (we have assumed long 
wires, so there should be no variation with y). A com-
plete solution would be made up of a sum of such terms 
for . Eq. (4) must satisfy Laplace’s equation 
in the region above the wires (there are no charges), i.e., 

1, 2,3...n 

2 2 2 2 0yn ynE x E z      , using Eq. (4) one has 
2 2 2

2 2

d π
,

d
n

n

F n
F

z a
                 (5) 

it follows that ( ) exp( )n n nF z E z  , where πn n a  , 
, and  are the constant coefficients, then Eq. (4) 

becomes 
1n  nE

( , ) sin(π )exp( ).yn n nE x z E nx a z         (6) 

That is, each Fourier component of the field will de-
crease exponentially with a characteristic distance 1 n  

πa n . In other words, the near fields of the aerial array 
falls off like exp( )n z . Comparing Eq. (1) with Eq. (6), 
one can find that the static field with n=1 is equivalent to 
the guided wave of the TE10 mode in the limit of 0  , 
such that the evanescent field inside the cut-off 
waveguide is equivalent to the near field of the aerial 
array. To show that the TE10 mode with the frequency 

c0     is equivalent to the near field of the aerial 
array, that is, to obtain Eq. (1) with c0     from Eq. 
(6) with n=1, one ought to make the replacement of 

c0 0     , such that one has the following 
replacements: 

c0 0 ,                   (7) 

1 exp(i 0 ) exp(i ),t t              (8) 

2 2 2 2
c c

π 1 1
0 i ,zk

a c c
             (9) 

( , ) ( , , )y y y yE E x z E E x z t         (10) 

2 2 2 2 2

2 2 2 2 2 2
( ) 0 ( )yE

x z x z c t

    
     

    
0,yE  (11) 

0

0

π
( , ) sin( )exp( )

π
( , , ) sin( )exp(i ),

y

y

x
E x z E z

a
x

E x z t E t z
a



 

 

 
 


  (12) 

where 1  , 1y yE E , 2 2 2 2πzk c a  . As 
shown in presence of the decay factor Fi

)z
gures 2-3, the 

exp(   impli  field y ex-
ists in the neighborhood of the aerial array, and then is 
the nea ield of the aerial array. , evanescent 
fields inside an undersized waveguide can also be de-
scribed as near fields, such that the field quanta of eva-
nescent fields inside the undersized waveguide are also 
virtual photons. 

It is important to note that, from the point of view of 
quantum mechanics, as a wavepacket falls off with a 
di

es that the ( , , )yE x z t  mainl

r f Therefore

stance L, it is the probability of photons propagating 
the distance of L that decays with L. Therefore, though a 
wavepacket inside a barrier contains an exponentially 
decay factor such as exp( )r , it is not implies that 
inside the barrier the wavepacket exponentially decays 
with the propagation d   That is, the particle or 
wave packet which has entered the barrier is not attenu-
ated, because the reflection takes place at the barrier 
front, where the barrier length only determines exponen-
tially how many photons are reflected at the front already. 
All discussions here are similar for any evanescent field 
inside a cut-off waveguide. 

4. Conclusions and Discusses 

istance r.

fields inside a cut- 
 near fields, owing 
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