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ABSTRACT 

Phase noise has a great influence on the performance of coherent optical communication. In this paper, martingale the-
ory is introduced to analyze the phase noise effect for the first time as far as we know. Through Fubini’s Theory and 

martingale representation theory, we proved that 
0

1
exp( ) ( )

t

sjW l s ds
T

 , which denotes the phase noise effect, is a pre-

dictable martingale. Then Ito’s formula for solution to stochastic differential equation is utilized for the analysis of 
phase noise effect. Using our method, a nonrecursive formula for the moments of phase noise is derived and signal- 
noise-ratio (SNR) degradation in coherent optical OFDM due to phase noise is calculated with our method. 
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1. Introduction 

Phase noise greatly limits the performance of coherent 
optical communication [1], especially on the condition 
that recent advances in modulation formats and multi- 
symbol detection are more and more widely introduced 
in optical communication system nowadays[2-3]. There-
fore, the impact of phase noise has been investigated in a 
lot of great works. Generally, evaluating the impact of 
phase noises is difficult, because it’s too hard to fully 
assess the stochastic property of laser phase noise (LPN) 
Wiener process and nonlinear effect induced phase noise 
accurately. 

There are mainly two methods to evaluate phase noise 
effect: alternative moment method [4] and perturbation 
method [5]. Both of these two methods try to find a cer-
tain kind of expansion to approach the random process. 
Thus, the two methods will either be ineffective in some 
cases [6] or not accurate enough [7]. 

In this paper, we introduce martingale theory to ana-  

lyze phase noise. Random process 
0

1
exp( ) ( )

t

sjW l s ds
T

   

is proved to be a predictable martingale, which is meas-
urable with respect to proper nature filtration. Thus, the 
process can be substituted to Ito’s formula for solution to 
stochastic differential equation. Then we take advantage 
of Ito’s formula to derive a non-recursive formula for the 
moments of phase noise. And the SNR degradation caused 
by LPN is approximated through Ito isometry. These two 

works are examples of the application of martingale the-
ory for the analysis of phase noise in coherent optical 
communication. 

2. Model and Theory 

Phase noise, frequency offset and nonlinear noise are the 
significant impairments of coherent optical communica-
tion. The signal before detection can be described as 

  Re exp ( 2t k t N effE A j t W n         L   (1) 

where k  is the phase of modulation,   represents the 
frequency offset and tW  is a Wiener-Levy process which 
is related to LPN. The stochastic characteristics of Wie-
ner-Levy process in a laser are known: 

1 2

2
1 2 1 22t tW W t t t t              (2) 

Here ( )Hz  denotes full 3dB line width of laser. 

NL  and effn  corresponds to nonlinear noise and addi-
tive Gaussian noise respectively. According to [8], for 
the frequency offset C  , random process 2 tt W 

 tt W 
 

is a Brownian motion with drift and  
denotes a geometric Brownian motion. As it is stated in 
[4-5], if we simply look into the impact of frequency 
offset and LPN, phase noise effect can be denoted as 

exp 2

 
0

1
exp 2

T

ss W ds
T

  . 

Our idea starts from the equation stated in [7] 
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0

1 1
exp( ) ( ) exp ( )

T

sjW l s ds j W l s ds
T T 0

T

s
           (3) 

0 0

1
exp( ) ( ) exp ( )

n
T

s sjW l s ds j n W l s ds
T T
          

1 T 


 (4) 

In coherent optical communication systems, the sym-
bol period is very small because of high-speed transmis-
sion. Thus, (3-4) can be quite accurate according to integral 
property. If the time window  is a rectangle over 
the whole symbol period, which is most frequently used 
in reality, we could simply to investigate the integral of a  

( )l s

Brownian motion 
0

1 t

t sY W
T

  ds . 

Let 
0

1
exp 2

t

tS j t W d
T

        
 s s





. Now we will 

prove that the real rand process 
0

1 t

sW ds
T   is a predict-  

able martingale, and so that t , the geometric random 
process, can be adapted to Ito Formula. 

S

Stochastic Fubini’s Theorem: The stochastic process 

sW  is a martingale with respect to a filtration   0t t 
  

and probability measure P. Then the underlying filtration 
probability space can be represented as   0

, .
t 



0

, , t  

 t t

 

If  is a bounded random 

variable, and is predictable for filtration 

( , , ) :t r w R R R    


 , then 

for  0T 

[0, ] [0, ]0 0
( , , ) ( ) ( , , ) ( )

t t

TR R T ss r w l r drdW s r w l r dW dr       (5) 

Utilizing (10), yielding 

0 0 0

0 0

1 1
1

1 1
   1 ( )

t t s

t s s

t t t

s ss

Y W ds dW ds
T T

dsdW t s dW
T T

 

  

  

  
       (6) 

Now the equation above can be utilized to prove 

0

1 t

sW ds
T   is a predictable martingale. 

Martingale Representation Theorem: Let Ws be a 
Brownian motion on a standard filtered probability space 

  0
, , ,t t

P
     if Mt is a square integrable random 

variable measurable with respect to  
0t t 

 , then there 

exists a predictable process ϑt which is adapted to 
 

0t t 
  such that 

0 0

t

t sM M    ds                (7) 

Therefore, the stochastic process 
0

1 t

sW ds
T   (i.e. 

0

1 t

sW ds
T   according to (16)) can be represented by Ito 

integral, which is called as predictable representation 

property[13]. It means the geometric random process St 

can also be a solution of Ito’s formula. 
Ito’s Formula: let partial derivative of function exits 

and is continuous, then 

( , ) '( , ) ( , )

1
                 ''( , )

2

t t t

t

df t W f t W dW f t W dt

f t W dt

 




t

       (8) 

By substituting f with , yielding tS
2

2
( 2 )

2t t t

t t
dS j S dW j S dt

T T
     t     (9) 

3. Applications 

In the section, the analysis above will be used to intro-
duce some meaningful utilization in optical coherent 
communication, including moments of phase noise, SNR 
degrade due to LPN. These discussions here will reveal 
the way to apply martingale theory for analyzing phase 
noise effect. 

3.1. Non-recursive Formula for the Moments of 
Phase Noise 

Reference [9] proved a recursive formula for the mo-
ments of phase noise. Method of moments is very im-
portant in performance evaluation of digital communica-
tion systems [6]. Here a different approach is revealed to 
get a non-recursive formula for the moments of phase 
noise. By substituting (4) into (6), a new stochastic dif-
ferential equation can be denoted as 

2
2

2
2 ( 1)

2
n n
t t t

n t t
dS j S dW j n n n S dt

T T

   
 

       
 

n
t  

(10) 

Integrating and then taking expectation on both side of 
the equation, yielding 

2 2
0 20

1
2 ( 1)

2

tn n n
t sE S E S j n n n s E S d

T
   

s                  

(11

Since the expectation of Wiener process is zero
so

) 

, by 
lving the integral equation (11), we can get 

2 2

0 2

2

2

1
exp 2 ( 1)

2

( 1)
exp 2

n n

tE S S j n n n t t
T

n n t
j n t

T

  

 
 

   


  

     
 
   

  
  
  

    (12) 

(Note: 0 0
0

1
exp 2 1

t

s

t

S j t W ds
T

 


        
  ) 

The result is much simpler than that of [9], and it’s 
easy for calculation. Figure 1 shows the first three mo 
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Figure 1. The first three moments as function of laser lin

ents as function of laser line width. We can observe 

3.2. SNR Degradation Due to Phase Noise in  

Cohe  systems are very sensitive to the 

 

t

e 
width. 
 
m
that the expectation value of both recursive and non-re- 
cursive formula is almost the same except that the third 
moments of recursive solution suffers fierce shock when 
laser line width is below 400 kHz. It’s quite unreasonable 
because phase noise effect should be smaller if laser line 
width degrades. Therefore, the non-recursive formula is 
more effective than the recursive formula given by [9]. 

Optical OFDM 

rent optical OFDM
phase noise of laser. The impact of phase noise in wire-
less OFDM has been widely evaluated, including [10-11].
Here, we show a totally different method to give an 
evaluation on phase noise effect in optical OFDM system. 
As it’s widely known, if we simply investigate the effect 
of phase noise, the signal before deciding could be writ-
ten as 

0 ,k k kx a I n                 (13) 

where 0 0

1
exp( )

T

sI jW ds
T

  , and the SNR degradation  

se noise can be denduo to pha oted by [10] 

2
0

10
(1 )(1 )

ln10
D E SNR             (14) 

Thus, the key point is to calculate 2
0 0( )E E I . Ex-

pand (3) by Taylor series, yielding 

2

0 0 0

1
exp( ) 1

2

T

s s sjW ds W ds W ds
T T T

       (15) 

Therefore, we can firstly get 

1 T Tj

2 2
2 21 T

0 0 0

2

2

0 0

1
( ) 1

2

1 1
1

T

s s

T T

s s

E I E W ds W ds
T T

E W ds E W ds
T T

  

  

   
    
    

    
    

    

 

 
   (16) 

Now Ito isometry can be applied to calculate (15). Ito 
isometry: if f is an elementary function, then 

    
0 0

, ,sE f s w dW E f s w ds     
   

2
2t t 

   (17) 

Therefore, the derivation for the mean variance of is 

 

2

0

2 3
2 20

1 T
[ ] ( )

1 1
         

3

t s

t

E Y E t s dW
T

t s ds t
T T

       

  




        (18) 

So (16) can be simplified as  2 2
0

1
1

6
E I T  . 

Similarly, we can get  2 2
0

1

60
I T  . And from 

 get that Ito’s Formula, it’s easy to 2s2
sEW  . So the  

parameter will be    I . 
22 2

0 0E E I   0

into (14), the SNR de adation due 
to

Substituting 2
0E gr 

 phase noise in coherent optical OFDM can be ex-
pressed by 

 11
2

6ln10
D N T    SNR        (19) 

The result fits well with [10], yet the method is much 
simpler. Figure 2 shows the relationship between laser 
width and SNR degradation when the transmission rate is 
set at 40Gbps with 64 carrier frequencies. If BER is set 
to be 710 , the value of SNR for M-QAM and M-PSK 
are app mated by 10( 1)Mroxi   and 215 / sin ( / )M  [10]. 
 

 

Figure 2. SNR degradation as function of laser line width. 
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It

4. Conclusions 

ngale theory was introduced to ana-

’s easy to observe that MPSK modulated signal suffers 
more SNR degradation due to phase noise. And with the 
increasing of signal constellation’s size, the signal be-
comes more and more sensitive to the phase noise. If the 
laser line width is 1MHz and the modulation format is 
64QAM, extra 2.5dB SNR needs to be compensated for 
the phase noise effect. 

In the paper, Marti
lyze the effect of phase noise for the first time. Through 
stochastic Fubini’s theorem and martingale representa- 

tion theorem, we proved the process 
0

1 t
W ds  is a pre- sT 

dictable martingale which can be applied to Ito Form
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