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ABSTRACT

In this paper, a novel motion detector is proposed to perceive the weak changes in a image sequence. This is inspired by
the mechanism of fixational eye movement and dynamics of vertebrate’s cortex. We realized respectively an artificial
model of visual attention selection, called dual-probe adaptive model (DPAM), and an active tremor operation (ATO)
approach. It is found that between them there exists a resonance phenomenon. The phenomenon is enhanced when the
ATO and the DPAM are in-phase and is suppressed when they are anti-phase. Based on this, we construct a novel mo-
tion detector combined by the ATO and the DPAM to resonate with the motion direction. This allows capturing moving
edges even in the image sequences with lighting change and noisy background. Simulation and Experimental results

demonstrate the effectiveness.
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1. Introduction

Motion detection is an important basic process in many
video analysis tasks [1], such as object detection, behav-
ior recognition and video encoding. There exist a number
of typical approaches for motion detection. However,
they consider in an image sequence all of the areas in-
stead of the areas with motion.

The most used two well-known methods are the tem-
poral difference [2] and the background modeling [3].
They can work well only when the background is ap-
proximately stationary and the foreground is relatively
moving, i.e. they are sensitive to noise and variations in
illumination.

Marr-Ullman model [4] is an early motion detector
which realized a highly sensitive 1D directional-selective
detection by using the temporal derivative of zero-crossing
fragment of measurement. This detector passively re-
sponds to any significantly-moving object.

The optic flow [5] is also a successful visual motion
detection technique. There have recently emerged some
specific computing techniques for highly accurate optic
flows, but then they are still computationally inefficient.

In fact, human and primate’s visual system can not
only localize accurately moving objects, perceive their
moving direction and velocity. This offers the cognitive
ability to make use of the limited computing resource.
Bouzerdoum and Pinter [6,7] proposed a directional se-
lective multiplicative inhibitory motion detector (MIMD)
under steady lighting condition. Based on MIMD, Wang
and Zheng [8] further developed a multiplicative inhibi-
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tory velocity detector (MIVD) by replacing the low-pass
filter with a band-pass filter to determine the detectors
temporal feature. This replacement allows obtaining the
selectivity of motion vector for a motion detector.

Inspiring by the Sterlings model of the retinal nerve
circuits [9], a dynamic differential equation groups has
been set up by Ma et al. [10], which could be used to
capture the weak changing signals exactly in noisy back-
ground with few parallel computing steps.

In the authors’ previous research [11], a group of dy-
namic differential equations has been set up to capture
exactly the weak changing signals in noisy backgrounds.
It is so-called the Dual-Probe Adaptive Model (DPAM).

Inspired by the mechanism of fixational eye move-
ments of human vision [13,14], we simulated an active
tremor operation (ATO). It is found that there is a reso-
nance phenomenon between the ATO and the DPAM.
This allows perceiving the motion direction. Based on
this finding, we propose then an adaptive motion detector.
This detector can perceive edges with specific moving
directions and adapt to changes of background and lighting.

The paper is structured as follows. In Section Il, the
detailed adaptive motion detector is introduced and dis-
cussed. In Section 111 simulation and experimental results
are shown and analyzed and we conclude in Section 1V.

2. Adaptive Motion Detector
2.1. Dual-Probe Adaptive Model (DPAM)
In fact, the so-call DPAM is a family of dynamic spatial
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temporal filters, and the parameter settings determine the
actual performance of a corresponding detector in re-
sponse to the input video. We denote first the model by
the equations as follows.

{Si (k) =as -Si(k—1) +as -hi(k—1)+bs - 0; (k)

hi (k):ahs'<3(k),Kh,i>+ahh h.(k—l) (1)
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b® (k) = b (k)

BIH (k) :(bH (k)*Kb)i (3)
b (k) = (b (k) * Ko

{Gﬁ(k) =bP (k) — (A (k) +b" (k)) @

G (k) = b ()~ (A (k) +B° (k)

where u;i(k), i=1---,N denotes the i component
of the input intensity vector u(k). si(k) and hi(k)
stand for the i" component of the state variable feed-
forward vector s(k) and feedback vector h(k) respec-
tively. Kyi >0 is the unit vector of coefficient of the
lateral inhibition effect of h to s; in the surrounding
of Gi(k) pathway. This is to simulate a local grade po-
tential of nerve cells. b, >0 denotes the gain coefficient
of photoreceptor. an,s and as, represent the transfer co-
efficient of s;(k) and the feedback coefficient of h;(k —1)
to si(k). ans >0 and an, >0 are the coefficient of re-
newal equation and confined to the convex combination
App + Aps = 1.

The formula 2 is an adaptive threshold equation, where
A (k) isthe i™ component of vector of A(k), denotes
the adaptive threshold; aa =0 is the coefficient of re-
newal equation; and Ka; (Kai >0) is the unit vectors
of coefficient of the lateral inhibition effect of A (k) to
A;j(k) in the surrounding of G;(k) pathway, which is
similar to Ky; and wider than it.

For convenience, we define in formula 3 four interme-
diate variables b (k), b°(k), b" (k) and b°(k) to
build respectively the corresponding vectors b" (k) ,
b®(k), b"(k) and bP(k). They are also known as
bipolar variables named after bipolar cell of retina.

The formula 4 is exactly the dual push-pull probes
output equation of the model, where G* (k) and G~ (k)
are the output dual probes of the model. The readers are
referred to [11] for the analysis and discussion of the
model parameters.

2.2. Active Tremor Operation Based Detector

In the neurobiological research, three types of uncon-
scious eye movements are regarded during gazing a tar-
get. They are high frequency tremor, microsaccades and
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slow drifts [12,16]. Further research illustrates that the
role of microsaccades and drifts is to latch down objects
and to compensate the noisy control of muscle [12]. Only
the tremor is believed to be related to visual perception,
i.e. visual fading on retina is inhibited by tremors [15].

Inspired by this point, we introduce an active tremor
operation (ATO) into the DPAM model [10,11]. Ac-
cording to the analysis in reference [11], when the update
coefficient is close to zero, the DPAM is reduced to a
typical image change detector. It is called DPAM-m de-
tector because the output is like an M type cell of human
retina [18]. With this additional ATO, the selective-in-
hibitory visual fading is then realized in a DPAM-m de-
tector. We call this the ATO-DPAM-m detector in the
followings. See Figure 1 for the processing structure.

For convenience, we redefine the ATO and introduce
the basic process.

Definition 1: Active Tremor Operation (ATO) is a pe-
riodic translational operation of global image on digital
video flows. This operation repeats a same translation of
all pixels of a frame with an identical direction, ampli-
tude and frequency.

As shown in Figure 2, for video flow u(k) constructed
by image sequence 1(k), suppose that the translation
amplitude and the frequency of ATO are Ad(k) and 0.25
round/s respectively, i.e.

Up (K) = Up+aaq (k), )

where p denotes the coordinates of a pixel inimage 1|,
and Ad(k) isa function of time k.

In the case of ATO-DPAM-m detector, the push-pull
outputs denoted by G*(k) and G (k) mean the On-
type response and the Off-type response respectively.

We found that there exists a resonance in the response
of an ATO-DPAM-m detector. This is because in the
DPAM-m detector, a visual fading occurs for the part
without change in the image sequence and an enhance-
ment response occurs for the part with change. In other
words, ATO enhances DPAM if they are in-phase and

) G (k)
u(k) ATO f(k) DPAM .
) Mmoo Gk

Figure 1. Structure of ATO-DPAM-m detector.
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Figure 2. An example of ATO process.
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ATO inhibits DPAM if they are anti-phase. Therefore,
the output of ATO-DPAM-m detectors has the selective
ability and is highly related to the direction and the phase
of ATO. This provides a solid foundation of motion de-
tectors with directional selectivity.

To differentiate the directions, we use subscript -,
(~=P,N) for the responds, ie. Gi(k) and G.(k),
where P means the positive operational direction and N
for the negative one. As shown in Figure 3 for example,
it is shown in a synthesized image sequence u,(K) = lp.
that there occurs in-phase enhancement or anti-phase
inhibition according to the relationship between Ad
and velocity v, and the ATO phases.

2.3. Adaptive Motion Detector (AMD)

We consider further a pair of ATO-DPAM-m detectors
with inverse directions, i.e. a positive directional detector
called ATOP-DPAM- m and a negative one called
ATON-DPAM-m. See in Figure 4 for the configuration.
The parameters of both detectors are all identical except
that the difference of their phase is # and particularly
ans IS set to 0.01. We then obtain a new ATO-based
adaptive motion detector.

—

© ® (@) (h)

Figure 3. The environmental adaptive threshold and the
response of left tremor of a horizontal ATO-DPAM-m de-
tector with different phases and amplitudes for video flow

Uy(k) = I formed by a left moving image 1’ with ve-

locity v. (a) a stripe image example in the video flow; (b) the
environmental adaptive threshold; (c) and (d) demonstrate

the ATO-R response yielded by GZ(k) output for in-phase
edges and that yielded by G:(k) output for antiphase edges
respectively when the ATO phase is z/2; (e) and (f) show
the ATO-R response yielded by éf(k) output for in-phase
edges and that yielded by &;(k) output for antiphase edges
respectively when the ATO amplitude Ad > v and the phase
is 3z/2.(g) and (h) show the visual fading on the output of
Gi(k) and G;(k) respectively when the ATO amplitude
Ad =v and the ATO phase is 37z/2 .
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According to the property of in-phase enhancement and
anti-phase inhibition, we compare the different combina-
tions of output response G: (k) and G: (k), yielding a
new set of outputs, i.e.

G# (k) = G5 (k) -G (k) -G (k)
Gr (k) = Gr (k) -G (k) -G (k) ©)
Gi (k) =G (k) -G (k) - Gp (k)

G (k) =G (k) -G (k) -G (K)

where Gp(k) and Gr(k) denote the positive On-type
output and Off-type output respectively. They selectively
respond to On-type and Off-type moving edges whose
moving directions are not identical to the positive direction
of the ATO. G{ (k) and Gn(k) represent the negative
On-type and Off-type output respectively. They selectively
respond to On-type and Off-type moving edges whose
moving directions are not identical to the negative direc-
tion of the ATO. As shown in Figure 5, the different
outputs of the proposed AMD can selectively respond to
the edges with specific motion characteristics.

In summary, the proposed AMD has realized a com-
binational selective detector to capture moving edges
based on the ATO resonance enhancement and inhibition
of edges in different moving directions. The method is
robust to backgrounds with change or switch due to the
environmental adaptive threshold.

3. Experimental Results and Analysis

In this section, we experiment using the KTH dataset [17]
and analyze the performance of the proposed adaptive

1 (k G; (k) G (k)
ATOp e ( ), DPAM-m | & G2 ()
u(k)
_ (k)
ATOy 0 (k) DPAM-m 6. ()

Figure 4. The diagram of ATO-AMD’s configuration and
its output connection.

@ (b) (© (d)

Figure 5. The AMD response to a synthesized video input.
(a) is the synthesized video input; (b) shows the adaptive
threshold A(Kk) ; (c) and (d) shows respectively the positive
and negative direction responses, where the red regions
stand for On-type and the blue regions for Off-type.
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motion detector (AMD). A number of behavior analysis
results have been reported based on the KTH dataset.
However their analysis involves only motion perception
and motion feature extraction.

We construct a four-directional motion detector com-
bination which is formed by a pair of horizontal AMDs
and a pair of vertical AMDs to detect motion in KTH
videos with the movements of jogging, arm lift, and arm
down. See in Figures 6, 7 and 8 for detection results: (a)
a frame of input video; (b) the environmental adaptive
threshold A(k); (c) and (f) show the vertical edge re-
sponses, upward and downward respectively; (d) and (e)
illustrate the horizontal edge responses, towards the left
and the right respectively. What’s more, the red regions
denote On-type moving edges and the blue regions de-
note Off-type moving edges.

(a) (b) (©)

(d) ® ®

Figure 6. Detecting results of ATO-AMD on a video with a
body moving to the right.

@) (b) ©

(d) (e) ()

Figure 7. Detecting results of ATO-AMD on a video with
arm lift movement.

Copyright © 2013 SciRes.

@ (b) ©

(d) ® ®

Figure 8. Detecting results of ATO-AMD on a video with
arm dropped down.

From the results, we find this four-directional detector
combination can detect effectively both On-type and Off-
type motion with different moving directions. For the
movements of jogging towards the right, the detector
barely responds to the movements towards the left, e.g.
Figure 6(d), while the detector for movements towards
the right brings obvious output response, e.g. Figure 6(e).
On the other hand, there occurs a little upward and down-
ward movement simultaneously with left-right movement.
Therefore the detectors for upward and downward mo-
tion can respond a bit to left-right movement. Likewise,
the other detectors generate similar results shown in Fig-
ures 6, 7 and 8.

4. Conclusions

Inspired by the neuroscience research, in this paper we
proposed a so-called dual-probe adaptive model (DPAM)
and an active tremor operation (ATO) approach to simu-
late the visual attention selection process and the fixa-
tional eye movement. We found that they enhance each
other if in-phase and inhibit each other if anti-phase.
Based on this finding, we has constructed a framework
by combining DPAMSs and ATOs in two opposite direc-
tions. This framework can agilely capture the edges with
different moving directions even in the image sequences
with lighting change and noisy background. Therefore,
the proposed method provide an important basis for the
further study on motion analysis system.
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