
Optics and Photonics Journal, 2013, 3, 94-98 
doi:10.4236/opj.2013.32B024 Published Online June 2013 (http://www.scirp.org/journal/opj) 

A Neuro-inspired Adaptive Motion Detector 

Xiaopin Zhong1, Lin Ma2 
1College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China 

2Shaanxi international trust co.,ltd. Xian’an, China 
Email: xzhong@szu.edu.cn, linn.mars@gmail.com 

 
Received 2013 

ABSTRACT 

In this paper, a novel motion detector is proposed to perceive the weak changes in a image sequence. This is inspired by 
the mechanism of fixational eye movement and dynamics of vertebrate’s cortex. We realized respectively an artificial 
model of visual attention selection, called dual-probe adaptive model (DPAM), and an active tremor operation (ATO) 
approach. It is found that between them there exists a resonance phenomenon. The phenomenon is enhanced when the 
ATO and the DPAM are in-phase and is suppressed when they are anti-phase. Based on this, we construct a novel mo-
tion detector combined by the ATO and the DPAM to resonate with the motion direction. This allows capturing moving 
edges even in the image sequences with lighting change and noisy background. Simulation and Experimental results 
demonstrate the effectiveness. 
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1. Introduction 

Motion detection is an important basic process in many 
video analysis tasks [1], such as object detection, behav-
ior recognition and video encoding. There exist a number 
of typical approaches for motion detection. However, 
they consider in an image sequence all of the areas in-
stead of the areas with motion. 

The most used two well-known methods are the tem-
poral difference [2] and the background modeling [3]. 
They can work well only when the background is ap-
proximately stationary and the foreground is relatively 
moving, i.e. they are sensitive to noise and variations in 
illumination.  

Marr-Ullman model [4] is an early motion detector 
which realized a highly sensitive 1D directional-selective 
detection by using the temporal derivative of zero-crossing 
fragment of measurement. This detector passively re-
sponds to any significantly-moving object.  

The optic flow [5] is also a successful visual motion 
detection technique. There have recently emerged some 
specific computing techniques for highly accurate optic 
flows, but then they are still computationally inefficient.  

In fact, human and primate’s visual system can not 
only localize accurately moving objects, perceive their 
moving direction and velocity. This offers the cognitive 
ability to make use of the limited computing resource. 
Bouzerdoum and Pinter [6,7] proposed a directional se-
lective multiplicative inhibitory motion detector (MIMD) 
under steady lighting condition. Based on MIMD, Wang 
and Zheng [8] further developed a multiplicative inhibi-

tory velocity detector (MIVD) by replacing the low-pass 
filter with a band-pass filter to determine the detectors 
temporal feature. This replacement allows obtaining the 
selectivity of motion vector for a motion detector. 

Inspiring by the Sterlings model of the retinal nerve 
circuits [9], a dynamic differential equation groups has 
been set up by Ma et al. [10], which could be used to 
capture the weak changing signals exactly in noisy back-
ground with few parallel computing steps. 

In the authors’ previous research [11], a group of dy-
namic differential equations has been set up to capture 
exactly the weak changing signals in noisy backgrounds. 
It is so-called the Dual-Probe Adaptive Model (DPAM). 

Inspired by the mechanism of fixational eye move-
ments of human vision [13,14], we simulated an active 
tremor operation (ATO). It is found that there is a reso-
nance phenomenon between the ATO and the DPAM. 
This allows perceiving the motion direction. Based on 
this finding, we propose then an adaptive motion detector. 
This detector can perceive edges with specific moving 
directions and adapt to changes of background and lighting. 

The paper is structured as follows. In Section II, the 
detailed adaptive motion detector is introduced and dis-
cussed. In Section III simulation and experimental results 
are shown and analyzed and we conclude in Section IV. 

2. Adaptive Motion Detector 

2.1. Dual-Probe Adaptive Model (DPAM) 

In fact, the so-call DPAM is a family of dynamic spatial 
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temporal filters, and the parameter settings determine the 
actual performance of a corresponding detector in re-
sponse to the input video. We denote first the model by 
the equations as follows. 
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where ,  denotes the  component 
of the input intensity vector . 
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The formula 4 is exactly the dual push-pull probes 
output equation of the model, where  and  
are the output dual probes of the model. The readers are 
referred to [11] for the analysis and discussion of the 
model parameters. 
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2.2. Active Tremor Operation Based Detector 

In the neurobiological research, three types of uncon-
scious eye movements are regarded during gazing a tar-
get. They are high frequency tremor, microsaccades and 

slow drifts [12,16]. Further research illustrates that the 
role of microsaccades and drifts is to latch down objects 
and to compensate the noisy control of muscle [12]. Only 
the tremor is believed to be related to visual perception, 
i.e. visual fading on retina is inhibited by tremors [15]. 

Inspired by this point, we introduce an active tremor 
operation (ATO) into the DPAM model [10,11]. Ac-
cording to the analysis in reference [11], when the update 
coefficient is close to zero, the DPAM is reduced to a 
typical image change detector. It is called DPAM-m de-
tector because the output is like an M type cell of human 
retina [18]. With this additional ATO, the selective-in- 
hibitory visual fading is then realized in a DPAM-m de-
tector. We call this the ATO-DPAM-m detector in the 
followings. See Figure 1 for the processing structure. 

For convenience, we redefine the ATO and introduce 
the basic process. 

Definition 1: Active Tremor Operation (ATO) is a pe-
riodic translational operation of global image on digital 
video flows. This operation repeats a same translation of 
all pixels of a frame with an identical direction, ampli-
tude and frequency. 

As shown in Figure 2, for video flow  constructed 
by image sequence 

( )u k
( )I k , suppose that the translation 

amplitude and the frequency of ATO are  and 0.25 
round/s respectively, i.e. 
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where  denotes the coordinates of a pixel in image p I , 
and (d k)  is a function of time k. 

In the case of ATO-DPAM-m detector, the push-pull 
outputs denoted by  and  mean the On- 
type response and the Off-type response respectively. 
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We found that there exists a resonance in the response 
of an ATO-DPAM-m detector. This is because in the 
DPAM-m detector, a visual fading occurs for the part 
without change in the image sequence and an enhance-
ment response occurs for the part with change. In other 
words, ATO enhances DPAM if they are in-phase and 
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Figure 1. Structure of ATO-DPAM-m detector. 
 

 

Figure 2. An example of ATO process. 
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ATO inhibits DPAM if they are anti-phase. Therefore, 
the output of ATO-DPAM-m detectors has the selective 
ability and is highly related to the direction and the phase 
of ATO. This provides a solid foundation of motion de-
tectors with directional selectivity. 

To differentiate the directions, we use subscript  
 for the responds, i.e.  and , 

where P means the positive operational direction and N 
for the negative one. As shown in Figure 3 for example, 
it is shown in a synthesized image sequence 
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that there occurs in-phase enhancement or anti-phase 
inhibition according to the relationship between d  
and velocity v, and the ATO phases. 

2.3. Adaptive Motion Detector (AMD) 

We consider further a pair of ATO-DPAM-m detectors 
with inverse directions, i.e. a positive directional detector 
called ATOP-DPAM- m and a negative one called 
ATON-DPAM-m. See in Figure 4 for the configuration. 
The parameters of both detectors are all identical except 
that the difference of their phase is   and particularly 

 is set to 0.01. We then obtain a new ATO-based 
adaptive motion detector. 

hsa

 

 
(a)           (b)            (c)            (d) 

 
(e)           (f)            (g)            (h) 

Figure 3. The environmental adaptive threshold and the 
response of left tremor of a horizontal ATO-DPAM-m de-
tector with different phases and amplitudes for video flow 

p p kvu k I( )   formed by a left moving image I

According to the property of in-phase enhancement and 
anti-phase inhibition, we compare the different combina-
tions of output response  and , yielding a 
new set of outputs, i.e. 
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where  and  denote the positive On-type 
output and Off-type output respectively. They selectively 
respond to On-type and Off-type moving edges whose 
moving directions are not identical to the positive direction 
of the ATO.  and  represent the negative 
On-type and Off-type output respectively. They selectively 
respond to On-type and Off-type moving edges whose 
moving directions are not identical to the negative direc-
tion of the ATO. As shown in Figure 5, the different 
outputs of the proposed AMD can selectively respond to 
the edges with specific motion characteristics. 
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In summary, the proposed AMD has realized a com-
binational selective detector to capture moving edges 
based on the ATO resonance enhancement and inhibition 
of edges in different moving directions. The method is 
robust to backgrounds with change or switch due to the 
environmental adaptive threshold. 

3. Experimental Results and Analysis 

In this section, we experiment using the KTH dataset [17] 
and analyze the performance of the proposed adaptive  
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Figure 4. The diagram of ATO-AMD’s configuration and 
its output connection. 
 

 
(a)           (b)            (c)            (d) 

Figure 5. The AMD response to a synthesized video input. 
(a) is the synthesized video input; (b) shows the adaptive 
threshold ; (c) and (d) shows respectively the positive 
and negative direction responses, where the red regions 
stand for On-type and the blue regions for Off-type. 

A k( )
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motion detector (AMD). A number of behavior analysis 
results have been reported based on the KTH dataset. 
However their analysis involves only motion perception 
and motion feature extraction.  

We construct a four-directional motion detector com-
bination which is formed by a pair of horizontal AMDs 
and a pair of vertical AMDs to detect motion in KTH 
videos with the movements of jogging, arm lift, and arm 
down. See in Figures 6, 7 and 8 for detection results: (a) 
a frame of input video; (b) the environmental adaptive 
threshold A(k); (c) and (f) show the vertical edge re-
sponses, upward and downward respectively; (d) and (e) 
illustrate the horizontal edge responses, towards the left 
and the right respectively. What’s more, the red regions 
denote On-type moving edges and the blue regions de-
note Off-type moving edges. 

 

 
(a)                  (b)                (c) 

 
(d)                  (e)                (f) 

Figure 6. Detecting results of ATO-AMD on a video with a 
body moving to the right. 

 

 
(a)                  (b)                (c) 

 
(d)                  (e)                (f) 

Figure 7. Detecting results of ATO-AMD on a video with 
arm lift movement. 

 
(a)                  (b)                (c) 

 
(d)                  (e)                (f) 

Figure 8. Detecting results of ATO-AMD on a video with 
arm dropped down. 

 
From the results, we find this four-directional detector 

combination can detect effectively both On-type and Off- 
type motion with different moving directions. For the 
movements of jogging towards the right, the detector 
barely responds to the movements towards the left, e.g. 
Figure 6(d), while the detector for movements towards 
the right brings obvious output response, e.g. Figure 6(e). 
On the other hand, there occurs a little upward and down-
ward movement simultaneously with left-right movement. 
Therefore the detectors for upward and downward mo-
tion can respond a bit to left-right movement. Likewise, 
the other detectors generate similar results shown in Fig-
ures 6, 7 and 8. 

4. Conclusions 

Inspired by the neuroscience research, in this paper we 
proposed a so-called dual-probe adaptive model (DPAM) 
and an active tremor operation (ATO) approach to simu-
late the visual attention selection process and the fixa-
tional eye movement. We found that they enhance each 
other if in-phase and inhibit each other if anti-phase. 
Based on this finding, we has constructed a framework 
by combining DPAMs and ATOs in two opposite direc-
tions. This framework can agilely capture the edges with 
different moving directions even in the image sequences 
with lighting change and noisy background. Therefore, 
the proposed method provide an important basis for the 
further study on motion analysis system. 
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