
iBusiness, 2010, 2, 342-347 
doi:10.4236/ib.2010.24044 Published Online December 2010 (http://www.scirp.org/journal/ib) 

Copyright © 2010 SciRes.                                                                                    iB 

Cross Entropy Method for Solving Generalized 
Orienteering Problem 

Budi Santosa, Nur Hardiansyah 
 
Indusrial Engineering, Institut Teknologi Sepuluh Nopember Surabaya, Surabaya, Indonesia. 
E-mail: budi_s@ie.its.ac.id 
 
Received August 16th, 2010; revised October 11th, 2010; accepted November 27th, 2010. 

ABSTRACT 

Optimization technique has been growing rapidly throughout the years. It is caused by the growing complexity of prob-
lems that require a relatively long time to solve using exact optimization approach. One of complex problems that is 
hard to solve using the exact method is Generalized Orienteering Problem (GOP), a combinatorial problem including 
NP-hard problem. Recently, there has been plenty of heuristic method development to solve this problem. This research 
is an implementation of cross entropy (CE) method in real case of GOP. CE is an optimization technique that relatively 
new, using two main procedures; generating sample solution and parameter updating to produce better sample for next 
iteration. At this research, GOP problem that occurs at finding optimal route consist of 27 cities in eastern China is 
investigated. Results indicate that CE method give better performance than those of Artificial Neural Network (ANN) 
and Harmony Search (HS). 
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1. Introduction 

Transportation model is a classic problem that still inter- 
esting to be discussed. One of transportation problem is 
the Traveling Salesman Problem (TSP). TSP is a prob- 
lem where a salesman must visit a set of cities, where 
each city must not be visited more than once, and the 
finishing point is the same as the starting point. The re- 
sult of this problem is a tour that gave the shortest tour 
distance. One of the TSP problems is Multi Objective 
Vending Problem (MVP), which is not a necessary for a 
salesman to visit each city. One of MVP is the Orien- 
teering Problem (OP). This problem is a combinatorial 
problem that including in NP-Hard Problem. 

Orienteering Problem is one type of TSP with score. 
Score is a benefit or a satisfaction that gained from visit- 
ing the node (city). The objective of an OP is to define 
the tour that front end the same node, that maximize total 
score without break over the maximum distance con-
straint. This problem inspired by outdoor sport that usu-
ally played at mountain or forest that called orienteering. 
Orienteering is a sport where contestants define their 
own direction among control point or specially defined 
on map. There is various kind of orienteering, the most 
common of orienteering is doing by walking. This activ-
ity route is outstretched about 2 km for beginners and 
children, up to 12 km for professional. 

Various kind of analytics method has been used to 
solve the orienteering problem. At the beginning, the 
orienteering problem was solved using exact approach 
that usually using mathematics model such as Dynamic 
Programming, Branch and Bound, Binary Integer Pro- 
gramming, and branch and cut to find the best solution as 
discribed in [1]. With the growing of a problem, when 
the size of a problem growing too, the computation time 
is exponentially growing and the method that mentioned 
before, became unable to be used. Therefore many re- 
searchers focused on a heuristics algorithm. 

The objective of solving orienteering problem using 
heuristics method is to find the best solution efficiently. 
Some applied methods are Greedy Insertion, Sweep- 
based insertion, Greedy insertion, path improvement, 
Random insertion, path improvement as described in [1]. 
Besides heuristics method, some meta-heuristics method 
also applied on solving orienteering problem. Some of 
them are Artificial Neural Network by Wang et al. [2], 
Genetic Algorithm [3], Harmony Search [4], particle 
Swarm Optimization [5] and ant colony and tabu search 
as described in [1]. 

2. Cross Entropy Method 

Cross entropy (CE) is a quite new approach in optimiza- 
tion and learning algorithm. Pioneered by Reuven Rubi- 
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ensten in 1997, CE method has been used widely in 
many problems, such as combinatorial optimization, 
continuous optimization, noisy optimization, and rare 
event simulation [6]. At these problems, cross entropy 
can find optimal or near optimal solution with a less 
computational time. The basic idea of the CE method is 
to transform the original (combinatorial) optimization 
problem to an associated stochastic optimization problem, 
and then handling the stochastic problem efficiently by 
an adaptive sampling algorithm. Through this process 
one constructs a random sequence of solutions which 
converges (probabilistically) to the optimal or at least a 
reasonable solution. Once the associated stochastic opti- 
mization is defined, the CE method follows these two 
phases: 

1) Generation of a sample of random data (trajectories, 
vectors, etc.) according to a specified random mechanism. 

2) Update of the parameters of the random mechanism, 
on the basis of the data, in order to produce a “better” 
sample in the next iteration. 

This procedure provides the general frame. When we 
are facing a specific problem, like other metaheuristics, 
we have to modify CE to fit with our problem. Recently, 
CE had been applied in credit risk assessment problems 
for commercial banks [7]. Rubinstein used cross entropy 
to solve combinatorial and rare-event, estimation [8], 
Derek Magee applied cross entropy on a sequential 
scheduling approach to combining multiple object classi-
fiers [9], Kroese and Hui used cross entropy in network 
reliability estimation [10]. CE application has been 
widely adopted in the case of a difficult combinato- 
rial such as the maximal cut problem, Traveling Sales- 
man Problem (TSP), quadratic assignment problem, 
various kinds of scheduling problems and buffer alloca- 
tion problem (BAP) for production lines [6]. 

3. Problem Formulation 

Orienteering Problem is one type of TSP with score. 
Score is a benefit or a satisfaction that gained from vis-
iting the node (city). The objective of an OP is to define 
the tour that front end the same node, that maximize 
total score without break over the maximum distance 
constraint. This problem inspired by outdoor sport that 
usually played at mountain or forest that called orien-
teering. Orienteering is a sport which the contestant 
define their own direction among control point or spe-
cially defined on map. There are various kind of an 
Orienteering, the most common of an orienteering is 
doing by walking. This activity route outstretched about 
2 km for a beginner and children, and until 12 km for 
professional. This time will be used eastern region of 
China as a case. 

 

Figure 1. Map of 27 cities in eastern part of China [4]. 
 

If a traveler visits eastern part of China, as shown in 
Figure 1 [4], and he/she wants to travel as many cities as 
possible with the purpose of best fulfilling multiple fac-
tors such as 1) natural beauty, 2) historical interest, 3) 
cultural event, and 4) business opportunities under the 
limited total moving distance, his/her travel can become 
generalized orienteering problem where each city has 
certain quantified scores for all factors and the estimation 
of a tour is performed based on the summation of those 
scores in the tour. The GOP is a generalization of the 
orienteering problem (OP) and the main difference be-
tween the two is that each city in GOP has multiple 
scores while each city in OP has only one score. In this 
case, Total distance (DMAX) is set to 5000 km. 

The objective function of Generalized Orienteering 
Problem is maximizing the score of the resulting route as 
follows. 
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4. CE Method for GOP 

To solve GOP using CE we propose the following 
procedure 

1) Initialization 
Determine α (smoothing parameter), ρ (proportion of 

elite sample), N (number of sample), weight (W) of each 
criteria in the objective function, maximum distance 
allowed and p (initial ttransition matrix). To generate 
initial transition matrix with size of n × n, where n is the 
number of city, use the following formula 
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Each cell in the transition matrix, p(i,j), indicates the 
probability of visiting city j from city i. In initial step 
each city has the same probability to be visited from 
another city. 

2) Route Generation 
Generate N routes that visit all cities based on the 

transition matrix obtained in step 1.  
3) Subtour forming 
To form subtours, we have to fix the maximum dis- 

tance allowed. A route is formed by connecting one city 
with other city and so on until the maximum distance is 
reached. A city is allowed to be visited once. We use the 
following distance formula, where the earth assumed to 
be a sphere: 
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4) Score Calculation 
After we have the routes, we can compute the score of 

each route by applying Equation (1). The score represents 
the fitness. In this case we seek to have maximum score. 

5) Elite sample selection 
After the score of each route is computed, we chose an 

elite sample with size of ρ*N from the whole sample (N). 
First, we sort the scores from the highest to the lowest. 
Then, we chose the highest score from this elite sample. 
Use this elite sample to update the next transition matrix. 
By this step a route with maximum score will have 
higher probability than other routes. 

6) Parameter updating 
After we get the elite sample, we calculate the empiri-

cal probability by the following formula: 

,
,
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where ni,j denotes how many times city i and j are 
connected in all routes in the generated sample. We then 
update the transition matrix using the following formula: 

   , 1 oldp i j r p       

where pold is the transition matrix form previous iteration 
and r is the empirical probability. 

7) Stopping Criteria Checking 
If the stopping criteria is met then stop. Otherwise, 

repeat steps 3 until 7. One of the stopping criteria 
commonly used in CE is the maximum absolute differ- 
ence between two consequtive transition matrix. If this 
value is less than , then stop. 

5. Illustration 

To explain how this method works, we give an example 
below. 

As example for solving the problem using CE, we use 
the simple samples, with 5 cities, with 4 scores for each 
criteria. For weight, we use W0 = (0.25 0.25 0.25 0.25). 
The results will be checked by comparing with the enu-
merative results for validation (Figure 2). There is data 
shown in Tables 1 and 2. 

 
Table 1. Distance matrix. 

 1 2 3 4 5 

1 0.00 106.91 364.05 549.32 264.08 

2 106.91 0.00 277.33 442.44 263.55 

3 364.05 277.33 0.00 305.77 269.00 

4 549.32 442.44 305.77 0.00 562.55 

5 264.08 263.55 269.00 562.55 0.00 
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Table 2. Scores of each node. 

No Nama S1 S2 S3 S4 

1 Beijing 8 10 10 7 

2 Tianjin 6 5 8 8 

3 Jinan 7 7 5 6 

4 Qingdao 7 4 5 7 

5 Shijiazhuang 5 4 5 5 

 

2

5

3

1

4

264.08

269.00

562.55

263.55

106.90

549.32

364.05

277.33

442.44

305.77

 

Figure 2. Validation node. 

1) Initialization 
For initialization let α (smoothing parameter) = 0.8, ρ 

(proportion of elite sample) = 0.3, N (number of sample 
every iteration) = 10, and the weight that used (0.25 0.25 
0.25 0.25).  

We generate initial transition matrix with size of n × n 
where n is the number of city, in this case n = 5, by using 
the following formula 
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Using this formula we obtain the following transition 
matrix: 

In this phase we generate routes that visit all cities 
based on the transition matrix in Figure 3. The results 
are shown in Table 3. 

 

0 0.25 0.25 0.25 0.25

0.25 0 0.25 0.25 0.25

0.25 0.25 0 0.25 0.25

0.25 0.25 0.25 0 0.25

0.25 0.25 0.25 0.25 0

p

 
 
 
 
 
 
  

 

Figure 3. Transition matrix. 

Table 3. Initial routes that generated at iteration 1. 

No Route 

1 1-4-5-3-2 

2 1-3-4-2-5 

3 1-4-5-2-3 

4 1-3-2-4-5 

5 1-4-5-3-2 

6 1-2-5-4-3 

7 1-2-4-2-5 

8 1-3-5-4-2 

9 1-3-24-5 

10 1-2-5-3-4 

 

2) Subtour 
To form subtour, we have to fix the maximum dis- 

tance allowed. A subtour is part of route that cut based 
on maximum distance, in this example the maximum 
distance is set to 1000 km. From Table 3 we obtained 
the resulting subtours in Table 4. 

Notice that routes number 1, 3 and 5 consist only the 
fisrt city. This means that the distance to next visited city 
is more than 1000 km. 

3) Score Computation 
Applying Equation (1) we obtain scores as shown in 

Table 5. 
 

Table 4. Resulting subtours. 

No Route Distance (km) 

1 1 0.00 

2 1-3-1 728.11 

3 1 0.00 

4 1-3-2-1 748.29 

5 1 0.00 

6 1-2-5-1 634.54 

7 1-2-1 213.81 

8 1-3-5-1 897.14 

9 1-3-2-1 748.29 

10 1-2-1 213.81 

 
Table 5. Score of each route. 

No Route Score 

1 8.75 

2 9.16 

3 8.75 

4 9.72 

5 8.75 

6 9.50 

7 9.42 

8 9.25 

9 9.72 

10 9.42 
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0 0.3167 0.5833 0.0500 0.0500

0.0500 0 0.0500 0.0500 0.3167

0.3167 0.5833 0 0.0500 0.0500

0.8500 0.0500 0.0500 0 0.0500

0.5633 0.0500 0.0500 0.0500 0

p

 
 
 
 
 
 
  

 

4) Elite Sample Selection 
Using ρ = 0.3 we have an alite sample of size 3 out of 

10. From the score in Table 5 we choose three best 
values. 

5) Parameter Update 
Empirical probability from Elite Sample is shown in 

Figure 4. 
We then update the transition matrix using the 

following formula: 

   , 1 oldp i j r p       

where pold is (probability matrix from the previous 
iteration), in this example is p in Figure 3, and r is 
probability matrix in Figure 4 and Table 6. For example 
to update p(1,2) with α=0.8 the calculation is as follows: 

   1,2 0.8 0.3333 1 0.8 0.25 0.3167p        

The new p is shown in Figure 5. 
 

Table 6. Elite sample. 

No Rute Rute Skor 

4 1-3-2-1 9.72 

9 1-3-2-1 9.72 

6 1-2-5-1 9.50 

 

0 0.3333 0.6667 0 0

0 0 0 0 0.3333

0.3333 0.6667 0 0 0

1 0 0 0 0

0.6667 0 0 0 0

p

 
 
 
 
 
 
  

 

Figure 4. Empirical probability matrix. 
 

0 0.3167 0.5833 0.0500 0.0500

0.0500 0 0.0500 0.0500 0.3167

0.3167 0.5833 0 0.0500 0.0500

0.8500 0.0500 0.0500 0 0.0500

0.5633 0.0500 0.0500 0.0500 0

P

 
 
 
 
 
 
  

 

Figure 5. Updated transition matrice. 
 

6) Stopping Criteria Checking 
The stopping crieria used in this experiment is the 

maximum absolute difference between two consequtive 
transition matrix is less than 0.005. 

7) Optimal Route  
After doing steps 1 to 8, we found the optimal route as 

shown in Table 7. The table also shows the enumerative 
result. 
 

Table 7. Result comparison CE-GOP and enumeration. 

Method Optimal Route Distance Score 

Enumeration 1-2-3-5-1 917.3 9.79 

CE-GOP 1-2-3-5-1 917.3 9.79 

 

Table 8. Comparison between CE, HS, and ANN. 

Weight Method Distance Score Route 

CE 4993.4 12.3793 1-2-3-10-11-12-9-13-17-19-16-20-6-5-1 

HS 4993.4 12.3793 1-2-3-10-11-12-9-13-17-19-16-20-6-5-1 W0 

ANN 4993.4 12.3793 1-2-3-10-11-12-9-13-17-19-16-20-6-5-1 

CE 4946.0 13.1037 1-2-3-8-24-19-16-13-9-12-10-4-27-1 

HS 4985.4 13.0825 1-2-3-15-24-19-13-9-12-10-2-27-1 W1 

ANN 4987.7 13.0529 1-2-3-4-10-11-12-9-13-16-19-24-20-6-5-1 

CE 4974.4 12.5617 1-26-27-3-10-12-9-13-15-20-8-6-5-2-1 

HS 4910.6 12.5617 1-26-27-4-10-12-9-13-16-15-20-8-3-2-1 W2 

ANN 4875.1 12.5070 1-2-26-27-3-10-11-12-9-13-15-20-6-5-1 

CE 4987.5 12.7826 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 

HS 4987.5 12.7826 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 W3 

ANN 4987.5 12.7826 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 

CE 4956.4 12.4273 1-2-3-8-15-16-17-14-12-11-10-4-27-1 

HS 4845.2 12.4009 1-2-27-4-10-11-12-14-17-16-15-3-1 W4 

ANN 4989.8 12.3616 1-2-3-10-9-13-16-17-14-12-11-4-27-1 
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6. Experiments and Analysis  

We show the results of numerical experiments and the 
comparison with those of other methods in Table 8. 
There are five set of different weight vectors used in the 
experiments. These weights were applied on three 
methods. The values of the weight vectors are W0 = 
(0.25, 0.25, 0.25, 0.25), W1 = (1, 0, 0, 0), W2 = (0, 1, 0, 
0), W3 = (0, 0, 1, 0), and W4 = (0, 0, 0, 1). W0 = (0.25, 
0.25, 0.25, 0.25), means that each criteria has the same 
weight. By W1 = (1, 0, 0, 0), we means that only natural 
beauty is considered. The similar meaning is for W2, W3 
and W4. The last three weight vectors stress only one 
goal and ignore the other three. For W0 and W3, we see 
that all three methods produce the same routes as well as 
the score. For W1 and W4, CE produced the best result 
in terms of score. 

For W2, CE and HS produced the same results in 
terms of score with different Distance and routes. As we 
know, distance is limited by maximum value of 5000 km. 

7. Conclusions 

In this paper we show how Cross Entropy can be applied 
for solving Generalized Orienteering Problem whose 
objective is to find the best tour in eastern part of China. 
The main steps of CE consist of: generate sample, select 
elite sample with best fitness, update parameters based 
on the elite sample, generate next better sample using the 
updated parameters. This procedure can be succesfully 
translated for GOP. Generally Cross Entropy shows  
equal or solution compared to those of Harmony Search 
and Artificial Neural Network. 
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