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ABSTRACT 

The study of local stability of thermal engines modeled as an endoreversible Curzon and Ahlborn cycle is shown. It is 
assumed a non-linear heat transfer for heat fluxes in the system (engine + environments). A semisum of two expressions 
of the efficiency found in the literature of finite time thermodynamics for the maximum power output regime is consid- 
ered in order to make the analysis. Expression of variables for local stability and power output is found even graphic 
results for important parameters in the analysis of stability, and a phase plane portrait is shown. 
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1. Introduction 

As it is known the limits in the performance of thermal 
engines in the Classical Equilibrium Thermodynamics con- 
text correspond to reversible processes [1-4]. This situa- 
tion represents a very hard obstacle in the analysis of 
thermal engines and leads to non adequate values for va- 
riables of processes whose values far from to the experi- 
mental values were reported in the literature. These limits 
have been partially overcome by helping of the named 
Finite Time Thermodynamics [5-7]. In order to analyze 
the performance of thermal engines, many papers in this 
context have considered that the heat flux between the 
system and its environs is made by Newton heat transfer 
law [5-14], for the named Curzon and Ahlborn engine [7]. 
Nevertheless a more real model has to consider all possi- 
bilities of heat transfer. Thus, some authors have used 
particularly the Dulong and Petit heat transfer law be- 
cause it allows a better model than the Newton heat trans- 
fer model is [15-18]. In [15-17] numerical results appear 
near to the experimental values reported in the literature 
for power plants working at maximum power output, and 
in [17,18] for nuclear plants working at maximum ecolo- 
gical function [14]. 

It is important to point out that all of the above-cited 
papers have been focused on the thermodynamics prop- 
erties of the system, through an objective function to ana- 
lyze the performance of thermal engines, and only the 
steady state has been analyzed.  

Nevertheless, other authors have analyzed the intrinsic 
properties of the systems as the response to a perturba- 
tion on the steady state of important quantities for the per- 
formance of thermal engines [19,20]. More recently the 
local stability of thermal engines has been made consi- 
dering Newton heat transfer [21-24] and Stefan-Boltz- 
mann heat transfer [25], besides it has been made con- 
sidering a working substance different to ideal gas [26]. 

In the present paper, we consider a heat transfer like 
the Dulong-Petit heat transfer law in order to make the 
analysis of a thermal engine for local stability. The im- 
portant quantities in the performance of the thermal en- 
gine are found by the heat transfer cited, as the expres- 
sion of power output and the dynamic equations for an 
endoreversible Curzon and Ahlborn engine. We assume 
for simplicity an expression of efficiency as a semi-sum 
of two expressions found by two different authors [16- 
18], which contains the same necessary parameters of the 
present work, including a comparison by plotting of them. 
To make this paper self-contained, a review of some well- 
known results on the Carnot, and Curzon and Ahlborn 
engines concerning to steady state variables is also inclu- 
ded. 

2. Properties of the Steady States  

2.1. Steady States Variables 

Let us consider a system which consists of two reservoirs 
at temperatures  (hot reservoir) and  (cold reser- 1T 2T
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voir), which are related as 1 2 ; and the thermal en- 
gine working at temperatures x and y, which are related 
as 

T T

x y

x y T

. There is a resistance for the heat flow between 
the thermal engine and its reservoirs with a heat conduc- 
tance denoted by α, as is shown in Figure 1. In case of 
Carnot engine, 1  and 2T   , and in case of Cur- 
zon and Ahlborn engine the temperatures are related by 

1 2 . The engine produces the work W. The 
heat 1  flows from the hot reservoir to the engine and 
the heat 2  flows from the engine to the cold reservoir, 
assuming a constant thermal conductance by the given 
parameter 

T x 
Q

y 

Q

T

  in both fluxes. 
According to the first and second laws of thermody- 

namics, for Carnot engine the heats exchanged in the sys- 
tem  and are given by 1Q 2Q

1

x
Q W

x y



                (1a) 

and 

2 .
y

Q W
x y




                (1b) 

For the endoreversible Curzon and Ahlborn engine we 
can consider an engine working in steady state, so the 
temperatures are now x  and y  with 1 2T x  
[20]. Here, and thereafter, the variables with over-bars 
represent steady state quantities. The endoreversible hy- 
pothesis is now,  

y T  

1 2

1 2

J J

T T
                    (2) 

which asserts that an engine working between two reser- 
voirs at temperatures x  and y  behaves as a Carnot  
 

 

Figure 1. Thermal engine working between both x and y 
temperatures. The reservoirs are at temperatures  and 

. The fluxes to the engine and from the engine are respec- 

tively 

T1

2T

J1  and J2 . 

engine, despite the fact that it works in finite-time cycles 
[10]. J  and 21 J  are the steady state heat flows from 
the x  to the engine and from the engine to y , respec- 
tively, and because the Curzon and Ahlborn engine is 
usually supposed working in steady state, the fluxes be- 
fore mentioned are  

 1 1J T x                (3a)  

and 

 2 2J .y T                 (3b) 

This means that 

1

x
J P                 (4a)  

x y




and 

2

y
J P                  (4b) 

x y




P  is the power output in steady state. The efficiency 
in steady state for this internally reversible Curzon and 
Ahlborn engine is written as 

y
                 (5) 1  

x

and by using (4b) we can write  

2

1

1
J

WP
J

   
1

P
 or ,        (6)  

J

and it follows that 

1 2 11
2 1

T T T
x


 

   
              (7a) 

and 

 1 2 11 1
2 1

T T T
y 


 

    
.         (7b) 

2.2. Effect of a Non-Linear Heat Transfer Law 

Consider now a heat transfer law as, 

 0

d
,

d

kQ
T T

t
                (8) 

which contains as a particular case the Dulong and Petit 
heat transfer law, where d dQ t  is the rate of heat trans- 
fer,   is the thermal conductance, 0  is the tempera- 
ture of environs, T is the temperature of the body and k is 
a parameter as , which in case of Dulong and Petit 
heat transfer is as 

T

1k 
1.1 1.6k   [27,28].  

Heat fluxes J1 2, J  can be written now as 

 1 1

k
J T x   and  2 2 , 1

k
J y T k   ,   (9) 

and (6) with (9) permits  
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 
 

1

2

,
k

k

T x
x y

y T




               (10) 

and then, 

 
   

1

1
,

1 1

k

k

 

 

 

  
1

1
x T            (11) 

and, 

   
   

1

1 ,
1 1

k

k

 

 

 

  
1

1
1y T            (12) 

where has been definite 2 1T T  . 
On other hand, the Curzon and Ahlborn engine gives 

more realistic values of efficiency with this heat transfer 
than it gives with the Newton heat transfer, in case of 
maximum power output regime [15]. Results in [14,15] 
are compared with different reported values of power 
plants. More recently, at maximum power output regime 
and at maximum ecological function regime, assuming 

5 4k  , analytical approximated expressions for the ef- 
ficiency were found as [16,18],  

2 98 1

10

   1
1OPDP  

        (13a) 

and 

2 646 1
1 .

 1 649

36OEDP

   
       (13b) 

Besides, by a variational approach, the efficiencies in 
the maximum power output regime and in the ecological 
function regime were obtained respectively [17] as, 

   1

8 8MP
 1 2 160 ,

               (14a) 

and 

   1
1

8 8ME
 40 41 .

               (14b) 

Analyzing the results of several studies in the literature 
of finite time thermodynamics, it is found that the effi- 
ciency of Curzon and Ahlborn cycle CAN , named Cur- 
zon-Ahlborn-Novikov efficiency, is adequate for con- 
ventional plants, and the named ecological efficiency 

E  is adequate for modern plants (including nuclear 
plants). So, we consider hereafter a thermal engine in the 
maximum power output regime. 

Comparing the efficiencies in (13a) and (14a) the fol- 
lowing property is found, 

  ,OBS MP
   OPDP              (15) 

and the semisum      1 2S OPDP MP  is closer than 
the efficiencies in (15) to experimental efficiencies.  

Table 1 shows a comparison between efficiencies in 

(15), for the case of some conventional power plants 
working in a maximum power output regime, reported in 
[16,17]. Even more, the difference between the eficien- 
cies (13a) and (14a) is shown in Figure 2. As can be seen, 
most of the numerical values of half the sum of the above 
cited efficiencies are an approximated constant ratio of 
Curzon and Ahlborn efficiency as, 

   1 2 0.88 ,OPDP MP CAN
               (16) 

where the Curzon-Ahlborn-Novikov efficiency is 
1   . Besides, if the Carnot efficiency CCAN   is 

considered, a numerical factor of the semisum appears 
also as an approximated constant ratio of this efficiency. 
It can be verified that the semisum   1 2 PDP MP

   S O  
is related with the Carnot efficiency as,  

   1 2 0.55 .OPDP MP C
            (17)  

So, in order to analyze the local stability for a Curzon 
and Ahlborn engine it can be assumed the previous value 
for the efficiency, when the Dulong and Petit heat trans- 
fer law is considered. Figure 3 shows the difference of 
efficiencies in (17) as function of the parameter  , 
where it can be appreciated that the difference goes to 
zero, when 1

1 1
b

a ba  

2T 1T  

.  
Using the linear approximation   , in  

 
Table 1. Efficiency at maximum power output regime. 

OPDP OBS 
Power plant 

 


MP
 



Steam power plant, West 
Thurrock, U K 

298 838 0.37625 0.33577 0.360

Geothermal steam plant, 
Lardarello, Italy 

353 523 0.16198 0.14530 0.160

Steam power plant, USA 298 923 0.40380 0.36006 0.400

Combined cycle plant 
(steam-mercury), USA 

298 783 0.35620 0.31804 0.340

Central steam power (UK 
1936-1940) 

298 698 0.32089 0.28678 0.280

 

 

Figure 2. Graphic comparison of the efficiencies  

.  , ,OPDP MP CAN
  
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Figure 3. Behavior of the difference between the efficiencies 
 
MP
  and OPDP  as function of  . 

 
case of 1a  , and with (17) can be obtained the ap- 
proximate expression for the variables in steady state as,  

1 1 2

1 2

9 31
,

2 9 11

T T T

T T


 


x              (18a) 

and 

1 20.775 ;y T T 

1T 2

0.225              (18b) 

and solving for  and T  we obtain, 

1

22
,

31 9

xy

y x



T                  (19a) 

and 

2

9 10
4 .

18 31

x y
T y

x y




              (19b) 

Thus, the power output can be written as, 

   
 

2 2
1 153.45 30.6 9P J y x x .

9 31

x y

x x y

 


      (20) 

2.3. The Local Stability of the Curzon and  
Ahlborn Engine 

In order to make the analysis of local stability for an en- 
doreversible Curzon and Ahlborn engine, we follow the 
procedure developed in [21], obtaining a system of cou- 
pled differential equations to model the rate of change of 
intermediate temperature. Let us assume the temperatures 
x and y as the corresponding to macroscopic objects with 
the heat capacity C, and two differential equations for x 
and y as in [21], 

 1 1T x J   
d 1

d

x

t C
            (21a) 

and  

 2 2 ,J y T   

1

d 1

d

y

t C
            (21b) 

which are cancelled when x, y, J  and 2J  take their 

steady state values. Because the assumption of endor- 
eversibility, the heat flux from x to the working fluid is 

1J  and the heat flux from the thermal engine to y is 2J , 
so these fluxes can be written as  

1 ,
x

J P
x y




               (22a) 

and  

2

y
J P .              (22b) 

x y




It is reasonable to assume that the power output from 
the Curzon and Ahlborn engine is related to temperatures 
x and y as the power output at steady state P  depends 
on x  and y  in the maximum power output regime, 
then we have, 

   
 

2 2153.45 30.6 9 .
9 31

x y
P y x x

x x y

 
  


    (23) 

Substituting (22) and (23) into (21) we obtain the cou- 
pled differential equations for temperatures x and y of a 
Curzon and Ahlborn engine performing in the maximum 
power output regime,  

2
1 1620 180 1232 3069d

,
d 2 31 9

T y T x xy yx

t C y x

   
 


  (24a) 

and 

 
2 2 3 2

2 2360 8 3069 620 180d
.

d 2 31 9

yx y x y xT y T xy

t C x y x

    
 


 

(24b) 

To analyze the system’s stability near to steady state 
we define two adequate functions. The differential equa- 
tions in the maximum power output regime (21) are de- 
fined as the functions  ,x y  , and f g x y

 

, so (24) can 
be written as the coupled equations from which the ana- 
lysis of stability can be made,  

2
1 1620 180 1232 3069

,
2 31 9

T y T x xy y
f x y

C y x

   
 



 

 (25a) 

and  

 
2 2 3 2

2 2360 8 3069 620 180
, .

2 31 9

yx y x y xT y T x
g x y

C x y x

    
 



(25b) 

3. Linearization and Stability Analysis 

In order to establish the consequences of a non-linear 
heat transfer in a thermal engine working in the maxi- 
mum power output regime; we need to find the relaxation 
times for the corresponding eigenvectors in the stability 
analysis [21-25]. Moreover, if both eigenvalues are nega- 
tive real numbers, perturbations decay exponentially. In 
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this case it is possible to identify the characteristic time 
scales for each eigendirections as, 

1 11t                  (26a) 

and 

2 21t 

,

                (26b) 

where 1 2   are the corresponding eigenvectors. In the 
present case with the heat transfer law assumed we ob- 
tain the following results for the derivative of definite 
functions (25): 

 


 


2 2

6 7 2

9 11
,

57 10

 
,

528.55 9 31000

891 8.65 10 1.0
x x y

f
C


 





 


  
  (27a) 

 




6 7,

6 1

14 3 14 4

4.95

891 8.65 10 1.057 10

1.7983 10 1.5415 10 7

1.83 10 1.1175 10

y x y
f

C


  2

0 13 2.478 10  

 


   

   

   

, 

(27b) 

   

 
 

 
 

2

26 7 2

2 2

775

10

0.66884
,



 

14

,

2

2

198 1175 10 9 40

891 8.65 10 1.057

9 11 1.6356

9 31

x x y
g

C


  




  

 






 




  (28a) 

    
 

 
 

2 2

26 7 2

2 2

9 11

.057 10

.

 

 



 



0.5

,

2

198 9 40 775

891 8.65 10 1

1.6356 0.66884

9 31

y x y
g

C


 




  

 




  (28b) 

Substituting into the characteristic equation [22-26], 
and taking as an example   , we obtain the eigen- 
values,  

71.0427 10
,

5202.6

 
 

 
 6 2

0.99956

.0509 10 . 

1

2







             (29) 

and their respective eigenvectors, 

7
1

2

4.7452 10 ,

9.9994 10 ,1

    


  

u

u
       (30) 

Because both of the eigenvalues are real values, we 
can conclude that the fixed point is stable. Equations (17) 
and (20), respectively, determine the steady-state effi- 
ciency,  , and the steady state power output, P , as 
functions of 2 1T T   for an endoreversible Curzon and 
Ahlborn engine working in a maximum-power-like re- 
gime. It is straightforward shows that both   and  

are decreasing function of   parameter, as is shown in 
Figure 4.  

P

Both eigenvectors, 1  and 2  are function of   and 
consequently relaxation times also are. There is an inter- 
val of values for relaxation times 1  and 2t  in which 
they are monotone-function of 

t
 , and in the values 

0 1   it is, as we can appreciate in Figure 5. Finally, 
Figure 6 shows how all the trajectories slowly approach 
the origin in a tangential direction, so we can conclude 
that the origin is a stable point  

4. Concluding Remarks 

The present work was focused on the analysis of conse- 
quences in the stability of thermal engine when a non-li- 
near heat transfer law is assumed. Graphic analysis shows 
that the engine working in these conditions is near to the 
steady state as it is shown in Figures 5 and 6. Combining 
two expressions for efficiency as a middle of them near 
to experimental results was an adequate decision because 
it permits us to have an expression as fraction of Carnot’s 
efficiency. A comparison with other results in the litera- 
ture is necessary. It is also necessary to point out that in 
(23) and (24) some terms in these expressions were ap- 
 

 

Figure 4. Steady state power output and efficiency as func-
tion of  . 
 

 

Figure 5. Relaxation times  and , in units of t1 t2 C   vs 

 . 
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