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ABSTRACT 

In this paper we investigate the influence of the next-nearest-neighbor coupling on the spectrum of plasmon excitations 
in graphene. The nearest-neighbor tight-binding model was previously considered to calculate the plasmon spectrum in 
graphene [1]. We extend these results to the next-nearest-neighbor tight-binding model. As in the calculation of the 
nearest-neighbor model, our approach is based on the numerical calculation of the dielectric function and the loss func- 
tion. We compare the plasmon spectrum of the two models and discuss the differences in the dispersion. 
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1. Introduction 

Graphene, a single layer of carbon atoms arranged as a 
honeycomb lattice, is a semimetal with remarkable phy- 
sical properties [2,3]. This is due to the band structure of 
the material which consists of two bands touching each 
other at two nodes. The electronic spectrum around these 
two nodes is linear and can be approximated by Dirac 
cones. However, calculations of many physical proper- 
ties demand the knowledge of the full electron dispersion 
in the entire Brillouin zone, not only in the vicinity of the 
nodes. This statement becomes particularly relevant 
when we take into account the fact that graphene can be 
gated or doped, such that the Fermi energy can be freely 
tuned. 

One of the main open issues in the physics of graphene 
is the role played by electron-electron interaction. In 
doped graphene long range Coulomb interaction leads to 
a gapless plasmon mode which can be described theo- 
retically within the random phase approximation (RPA). 
Although this is a standard problem in semiconductor 
physics, it was studied initially in the case of graphene 
only in the Dirac approximation around the nodes [4-6]. 
The linear approximation leads to a frequency of the 
plasmon that is proportional to the square root of the 
wavevector. 

Later the plasmon dispersion law was also calculated 
for the more realistic band structure, obtained in the  

framework of the tight-binding model with nearest-nei- 
ghbor hopping [1,7]. This model is characterized by two 
symmetric bands, which implies a chiral symmetry. The 
latter connects the eigenstates of energy E directly with 
eigenstates of energy −E by a linear transformation. This 
symmetry, which also realizes a particle-hole symmetry, 
is broken by a next-nearest-neighbor hopping term. Usu- 
ally, the physical properties change qualitatively under 
symmetry breaking. Here we would like to study the ef- 
fect of particle-hole symmetry breaking due to next-near- 
est-neighbor hopping on the plasmon dispersion. For this 
purpose we extend the nearest-neighbor hopping ap- 
proximation used in [1] by taking into account the next- 
nearest-neighbor hopping. 

We consider an electron gas which is subject to an 
electromagnetic potential  ,iV  q . The response of 
the electron gas is to create a screening potential 

 ,sV  q  which is caused by the rearrangement of the 
electrons due to the external potential. Therefore, the 
total potential, acting on the electrons, is [8] 

    , ,i sV V V ,  q q q          (1) 

can be evaluated self-consistently [9] and is expressed 
via the dielectric function. Then the total potential reads 
[8] 

    1
,

, iV V , 
 

q
q

q          (2) 
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2. Nearest and Next-Nearest Hopping Model 

The tight-binding Hamiltonian for electrons in graphene 
with both nearest and next-nearest-neighbor hopping has 
the form [2] (we use units such that h = 1) 
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i j
i j

i j j
i j
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 c
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      (3) 

where  annihilates (creates) an electron with 
spin  on site Ri on sublattice A (an equiva- 
lent definition is used for sublattice B),  is 
the nearest-neighbor hopping energy (hopping between 
different sublattices), and 

 †
, ,i ia a 

 ,   
2.8 eVt 

t  is the next nearest-nei- 
ghbor hopping integral (hopping in the same sublattice). 
The value of  is not well known but ab initio calcula- 
tions find  depending on the tight-bin- 
ding parametrization [2]. 

t
0.02 0.2t t  t

The matrix representation of the Hamiltonian is 

0

1 2 0

      

  
ih h ih

H
h ih h


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2 
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

            (4) 

The non-diagonal terms in the Hamiltonian correspond 
to the nearest-neighbor hopping [1]: 

  
3 3

1 2
1 1

cos , sinj j
j j

h t h t
 

    b k b k     (5) 

where b1,2,3 are the nearest-neighbor vectors on the ho- 
neycomb lattice: 

     1 2 31 2, 3 2 , 1 2, 3 2 , 1,0d d   b b b d 



 

and is the lattice constant ( Å) the diagonal terms 
correspond to next-nearest-neighbor hopping: 

1.42
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cos j
j

h t
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where, 
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the energy bands derived from this Hamiltonian have the 
form [2] 

     
   
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where the plus sign applies to the upper (π or conduction) 
and the minus sign the lower (π* or valence) band. It 
should be noticed that the presence of  shifts the posi-  t

tion of the Dirac point in energy and it breaks elec- 
tron-hole symmetry. In both cases, nearest-neighbor and 
next nearest-neighbor hopping, the electronic dispersion 
is an even function [1] 

,lE E ,lk -k                  (8) 

The dispersion law for next nearest-neighbor hopping 
is presented on Figure 1, and the eigenvectors of the 
Hamiltonian read 

1 2 1 2

2 2 2 2
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      (9) 

where the first eigenvector is for the upper band and the 
second eigenvector for the lower band. 

The Hamiltonian H in Equation (4) has a chiral sym- 
metry for h0 = 0: 

3 3
3

1 0
,

0 1
e He H  

 
    

       (10)  

which connects eigenstates of energy −E with eigenstates 
of energy E by 

3E E                 (11) 

this is not the case after we have broken the chiral sym- 
metry by the next-nearest-neighbor hopping term h0. 

3. Dielectric Function 

The longitudinal dielectric function in calculated in RPA 
[9,10]: 

  
22π

, 1 ,
e

q
  


 q q         (12)  

where κ is a dielectric constant and χ is a polarizability. 
For polarizability we used the Lindhard formula [10], 

which in our case after some straightforward calculations 
can be reduced to the expression 

    1 2, , ,      q q q        (13) 

with the intraband contribution 
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and the interband contribution 
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Figure 1. Energy dispersion of graphene with 
The figure shows a broken particle-hole symmetry. The 
Dirac nodes are shifted up by  The energy is  
in the units of the electronic ba ith  

 
where 

= 0.2t' t . 

 measured3t' .
ndw  (Δ = 3t ).
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tribution function, 

 is the Fermi-Dirac dis- 
1 ,Bk T 
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, is a chemical potential. 

The energies are 
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the integral yields the same 
polarizability form  found in the nearest-nei- 
ghbor model’s polarizability [1,7].  

4. Plasmons in Graphene  

proximation, 

ula as that

In a first ap we can consider plasmons as 
collective excitations of electrons, where the dielectric 
function vanishes [8]: 

 , 0  q               (18)  

c function is complex 

c function vanishes: 

10] 

in general, however, the dielectri
due to poles in the integrals (14) and (15). This implies 
that (18) has no solution, unless we only request that the 
real part of the dielectri

 Re ,   q 0             (19) 

assuming a real function   q  as the plasmon disp- 
ersion. 

For a numerical evaluation of the integrals it is more 
convenient to consider the loss function [6,8,

 
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q
    (20) 

q

whose broadened peak indicates the plasmon. Here a 
complex solution   q  

and the 
gives both the dispersion from 

the real part decay of the plasmons 
imaginary part. 

In the present paper the polarizability of grapheme χ is 
evaluated numerically and the corresponding dielectric 

n

from the 

function is obtained from Equation (12) for different val- 
ues of the real freque cy ω, the wave vector q  and 
chemical potential (Fermi energy) μ. Moreover, we as- 
sume κ = 4. The chemical potential level μ is selected to 
be relative to Dirac points whose existence is not affected 
by a variation of the parameter t  but are shifted by 3t  
([11]), as shown in Figure 2. 

Our results for plasmon dispersion law are sho n in 
Figures 3 and 4. 

For each figure we have selected two values for t

w

 , 
namely 0t   and 0.2t t  . The original chemical 
potentials μ that appear in Figures 3 and 4 are taken from 
the previous paper [1] and are modified by the va  
t

lue
0.2t  . 

The influence of next-nearest hopping parameter t  is 
insignificant for the plasmon dispersion law when the 
chemical otential is a irac point, as depicted in 
Figures 3 and 4. The shape of the plasmon dispersion 
law in Figure 3 does not change significantly by a varia- 

p bove D

 

 

Figure 2. The scheme shows that chemical potential μ is 
taken relative to Dirac cone. Dirac point’s level is relative to 
case and the level equals to  = 0t'  3t' . 
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(a)                                                         (b) 

Figure 3. Plasmon dispersion for . (a) Plasmon dispersion for= 0.4μ t  = 0.4μ t ,  = 0t  
 (qx = 0).

and different values of qy component (qx = 

0); (b) Plasmon dispersion for and different values of q  
 

= 0μ .4t , = 0.t' 2t  y component

  
(a)                                                         (b) 

Figure 4. Plasmon dispersion for  (a) Plasmon dispersion for and different values of qy compo- 

nent (qx = 0); (b) Plasmon dispersion for and differen  of onent (qx = 0). 

 
tion of the parameter  On the other hand, the 
result is quite differe  the chemical potential is 
below the Dirac point. shows that for different 
values of hopping pa  and for a negative 
chemical potential the sha dispersion law changes 
strongly and the dispe e is much sharper when 
the value of the hoppi ter is larger. In general, 
our calculations of the persion law show that 
there is almost no chan on dispersion with 

when chemical pote he Dirac point. 

In conclusion we have investigated the 2D tight-binding  

hamiltonian model under the influence of the next near- 
est-neighbour coupling (constant) and we theoretically 
obtained analytic expression for improved graphene po- 
larizability expression. Our work is extension to previous 
results obtained by [1] where only nearest-neighbor con- 
stant model is used. This work improves the previous 
results for graphene plasmon’s dispersion law. 

The research of next-nearest hopping tight-binding 
model gave the possibility to investigate the plasmon’s 

t in the case of low values 
e to Dirac point, by using 

al calcul ons a
persion’s laws in two cases (nearest-neighbor and next- 
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nearest tight binding model) are almost the esam  as pre- 
icted theoretically. 
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