$L(2,1)$-Labeling Number of the Product and the Join Graph on Two Fans

Sumei Zhang, Qiaoling Ma
School of Mathematical Sciences, University of Jinan, Jinan, China
Email: ss_maql@ujn.edu.cn

Received April 18, 2013; revised May 18, 2013; accepted May 25, 2013
Copyright © 2013 Sumei Zhang, Qiaoling Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

$L(2,1)$-labeling number of the product and the join graph on two fans are discussed in this paper, we proved that $L(2,1)$-labeling number of the product graph on two fans is $\lambda(G) \leq \Delta+3, L(2,1)$-labeling number of the join graph on two fans is $\lambda(G) \leq 2 \Delta+3$.

Keywords: Labeling Number; Join Graph; Product Graph

1. Introduction

Throughout this paper, we consider connected graphs without loops or multiple edges. For a graph $G, V(G)$ and $E(G)$ are used to denote the vertex set and edge set of $G, \delta(G)$ and $\Delta(G)$ denote the minimum degree and the maximum degree of a graph G, respectively. For a vertex $v \in V(G)$, the neighborhood of v in G is $N_{G}(v)=\{u \in V(G), u$ is adjacent to v in $G\}$. Vertices in $N_{G}(V)$ are called neighbors of $v,\left|N_{G}(V)\right|$ denotes the number of vertices in $N_{G}(V)$. The other terminology and notations are referred to [1].
For a given graph G, an integer $k>0$, an $L(2,1)$ labeling of G is defined as a function $f: V(G) \rightarrow\{0,1,2, \cdots, k\}$ such that $|f(u)-f(v)| \geq 2$ if $u v \in E(G)$; and $|f(u)-f(v)| \geq 1$ if $d_{G}(u, v)=2$, where $d_{G}(u, v)=2$, the distance of u and v, is the length (number of edges) of a shortest path between u and v. the $L(2,1)$-labeling number, denoted $\lambda(G)$, is the least integer k such that G has a $L(2,1)$-labeling.
The Motivated by the channel assignment problem introduced by Hale in [2], the $L(2,1)$ labeling have been studied extensively in the past decade. In 1992, in [3] Griggs and Yeh proposed the famous conjecture, for any graph $G, \lambda(G) \leq \Delta^{2}$.

Griggs and Yeh in [3] proved that the conjecture true fop path, tree, circle, wheel and the graph with diameter 2, G. J. chang and David Kuo in [4] proved that $\lambda(G) \leq$ $\Delta^{2}+\Delta$ for any graph. Recently Kral D and Skrekovski R in [5] proved the upper is $\lambda(G) \leq \Delta^{2}+\Delta-1$. It is dif-
ficult to prove the conjecture. Now, the study of $L(2,1)$ labeling is focus on special graph. Georges [6,7] give some good results. Zhang and Ma studied the labeling of some special graph, giving some good results in [8-11].

In this paper, we studied the $L(2,1)$-labeling number of the product and the join graph on two fans.

2. $L(2,1)$-Labeling Number of the Join Graph on Two Fans

Definition 2.1 Let F_{m} be a fan with $m+1$ vertices $u_{0}, u_{1}, u_{2}, \cdots, u_{m}$, in which $d\left(u_{0}\right)=m$.

Definition 2.2 Let G and H be two graphs, the join of G and H denoted $G \vee H$, is a graph obtained by starting with a disjoint union of G and H, and adding edges joining each vertex of G to each vertex of H.

Theorem 2.1 Let $G=F_{m} \vee F_{n}$, if $m \geq 4, n \geq 4$, then $\lambda(G) \leq \Delta+3$.
Proof. In $F_{m} \vee F_{n}$, for arbitrary vertex u and v, such that $d_{G}(u, v) \leq 2$, clearly $\Delta(G) \leq n+m+1$.

Let k denote the maximum labeling number of F_{n}
First, we give a $L(2,1)$-labeling of F_{n} as follows, $f\left(v_{0}\right)=0$.
If $j=1,2, \cdots, n-5, n-4$,

$$
\begin{aligned}
& f\left(v_{j}\right)=j+3 \text { when } j(\bmod 4)=1, \\
& f\left(v_{j}\right)=j \text { when } j(\bmod 4)=2, \\
& f\left(v_{j}\right)=j+2 \text { when } j(\bmod 4)=3,
\end{aligned}
$$

$$
f\left(v_{j}\right)=j-1 \text { when } j(\bmod 4)=0
$$

If $n(\bmod 4)=0$, let

$$
\begin{aligned}
& f\left(v_{n-3}\right)=n, \quad f\left(v_{n-2}\right)=n-2, \\
& f\left(v_{n-1}\right)=n+1, f\left(v_{n}\right)=n-1 .
\end{aligned}
$$

If $n(\bmod 4)=1$, let

$$
\begin{aligned}
& f\left(v_{n-3}\right)=n-3, \quad f\left(v_{n-2}\right)=n, \\
& f\left(v_{n-1}\right)=n-2, f\left(v_{n}\right)=n+1 .
\end{aligned}
$$

If $n(\bmod 4)=2$, let

$$
\begin{aligned}
& f\left(v_{n-3}\right)=n-1, \quad f\left(v_{n-2}\right)=n+1, \\
& f\left(v_{n-1}\right)=n-3, f\left(v_{n}\right)=n
\end{aligned}
$$

If $n(\bmod 4)=3$, let

$$
\begin{aligned}
& f\left(v_{n-3}\right)=n, f\left(v_{n-2}\right)=n-4, \\
& f\left(v_{n-1}\right)=n-1, f\left(v_{n}\right)=n+1 .
\end{aligned}
$$

Clearly, $k=n+1$.
Then we label the vertex of F_{m} as follows, If $i=1,2 \cdots, m-5, m-4$,

$$
\begin{aligned}
& f\left(u_{0}\right)=\max \left\{f\left(u_{i}\right) \mid i=1,2, \cdots, m\right\}+2 \\
& f\left(u_{i}\right)=k+i+3 \text { when } i(\bmod 4)=1 \\
& f\left(u_{i}\right)=k+i \text { when } i(\bmod 4)=2 \\
& f\left(u_{i}\right)=k+i+2 \text { when } i(\bmod 4)=3 \\
& f\left(u_{i}\right)=k+i-1 \text { when } i(\bmod 4)=0
\end{aligned}
$$

If $m(\bmod 4)=0$, let

$$
\begin{aligned}
& f\left(u_{m-3}\right)=k+m, f\left(u_{m-2}\right)=k+m-2 \\
& f\left(u_{m-1}\right)=k+m+1, f\left(u_{m}\right)=k+m-1
\end{aligned}
$$

If $m(\bmod 4)=1$, let

$$
\begin{aligned}
& f\left(u_{m-3}\right)=k+m-3, f\left(u_{m-2}\right)=k+m, \\
& f\left(u_{m-1}\right)=k+m-2, f\left(u_{m}\right)=k+m+1 ;
\end{aligned}
$$

If $m(\bmod 4)=2$, let

$$
\begin{aligned}
& f\left(u_{m-3}\right)=k+m-1, f\left(u_{m-2}\right)=k+m+1, \\
& f\left(u_{m-1}\right)=k+m-3, f\left(u_{m}\right)=k+m ;
\end{aligned}
$$

If $m(\bmod 4)=3$, let

$$
\begin{aligned}
& f\left(u_{m-3}\right)=k+m, f\left(u_{m-2}\right)=k+m-4 \\
& f\left(u_{m-1}\right)=k+m-1, f\left(u_{m}\right)=k+m+1
\end{aligned}
$$

From above,
If $m(\bmod 4)=0, f\left(u_{m-1}\right)$ is the maximum number
in F_{m}, and $f\left(u_{m-1}\right)=k+m+1$, then

$$
\begin{aligned}
f\left(u_{0}\right) & =k+m+1+2=k+m+3 \\
& =n+1+m+3=n+m+4
\end{aligned}
$$

If $m(\bmod 4)=1, f\left(u_{m}\right)$ is the maximum number in F_{m}, and $f\left(u_{m}\right)=k+m+1$, then

$$
\begin{aligned}
f\left(u_{0}\right) & =k+m+1+2=k+m+3 \\
& =n+1+m+3=n+m+4 .
\end{aligned}
$$

If $m(\bmod 4)=2, f\left(u_{m-2}\right)$ is the maximum number in F_{m}, and $f\left(u_{m-2}\right)=k+m+1$, then

$$
\begin{aligned}
f\left(u_{0}\right) & =k+m+1+2=k+m+3 \\
& =n+1+m+3=n+m+4
\end{aligned}
$$

If $m(\bmod 4)=3, f\left(u_{m}\right)$ is the maximum number in F_{m}, and $f\left(u_{m}\right)=k+m+1$, then

$$
\begin{aligned}
f\left(u_{0}\right) & =k+m+1+2=k+m+3 \\
& =n+1+m+3=n+m+4 .
\end{aligned}
$$

So $f\left(u_{0}\right)$ is the maximum number in $G=F_{m} \vee F_{n}$, and $f\left(u_{0}\right)=n+m+4$, and $\Delta(G)=n+m+1$.

Obviously, f is a $(\Delta+3)-L(2,1)$-labeling of G,
Then $\lambda(G) \leq \Delta+3$.

3. $L(2,1)$-Labeling Number of the Product Graph on Two Fans

Definition 3.1 The Cartesian product of graph G and H, denoted $G \times H$, which vertex set and edge set are the follows:

$$
\begin{aligned}
V(G \times H)= & V(G) \times V(H) \\
= & \{(u, v) \mid u \in V(G), v \in V(H)\} \\
E(G \times H)= & \left\{(u, v)\left(u^{\prime}, v^{\prime}\right) \mid v=v^{\prime}\right. \text { and } \\
& \left.u u^{\prime} \in E(G) \text { or } u=u^{\prime} \text { and } v v^{\prime} \in E(H)\right\} .
\end{aligned}
$$

Theorem 3.1 Let $G=F_{m} \times F_{n}$, if $3 \leq n \leq m<2 n$, then $\lambda(G) \leq 2 \Delta+3$.

Proof. In $F_{m}, d\left(u_{0}\right)=m$, the other vertices $u_{i}(1,2, \cdots, m)$, In $F_{n}, d\left(v_{0}\right)=n$, the other vertices

$$
\begin{aligned}
& v_{j}(j=1,2, \cdots, n), \\
& V=\left\{w_{i j} \mid w_{i j}=\left(u_{i}, v_{j}\right), 1 \leq i \leq m, 1 \leq j \leq n\right\}
\end{aligned}
$$

denote the vertex of $G=F_{m} \times F_{n}$, Obviously, $\Delta(G)=m+n$, for $n \geq 3$.

We give a $L(2,1)$-labeling of G as follows, First, let

$$
\begin{aligned}
& f\left(w_{00}\right)=0 \\
& f\left(w_{1 j}\right)=2 j, j=1,2, \cdots, n \\
& f\left(w_{2 j}\right)=2 j+3, j=1,2, \cdots, n
\end{aligned}
$$

We have the maximum labeling number is $2 n+3$.

Then let

$$
\begin{aligned}
& f\left(w_{i, j+1}\right)=f\left(w_{i-2, j}\right),(i=3,4, \cdots, m, j=1,2, \cdots, n) \\
& f\left(w_{i, 1}\right)=f\left(w_{i-2, n}\right),(i=3,4, \cdots, m, j=1,2, \cdots, n-1) \\
& f\left(w_{i, 0}\right)=2 n+2 i+2,(i=1,2, \cdots, m)
\end{aligned}
$$

From above, $2 n+2 m+2$ is the maximum labeling number.

Finally, let $f\left(w_{0,0}\right)=2 n+2 i+2,(i=1,2, \cdots, m)$, Obviously, $2 n+2 m+3$ is the maximum labeling number in these $f\left(w_{0,0}\right)=2 n+2 i+2,(i=1,2, \cdots, m)$, since $n \leq$ $m<2 n$, then the maximum labeling number no more than $2 n+2 m+3$, and $\Delta(G)=m+n$, so $\lambda(G) \leq 2 \Delta+3$.

REFERENCES

[1] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," Macmillan, New York, 1976.
[2] W. K. Hale, "Frequency Assignment: Theory and Applications," IEEE Proceedings, Vol. 68, No. 12, 1980, pp. 1497-1514. doi:10.1109/PROC.1980.11899
[3] J. R. Griggs and R. K. Yeh, "Labeling Graphs with a Condition at Distance 2," SIAM Journal on Discrete Mathematics, Vol. 5, No. 4, 1992, pp. 586-595. doi:10.1137/0405048
[4] G. J. Chang and D. Kuo, "The $L(2,1)$-Labeling Problem on Graphs," SIAM Journal on Discrete Mathematics, Vol. 9, No. 2, 1996, pp. 309-316.
doi:10.1137/S0895480193245339
[5] D. Král and R. A. Škrekovski, "Theorem about the Channel Asscgnment Problem," SIAM Journal on Discrete Mathematics, Vol. 16, No. 3, 2003, pp. 426-437. doi:10.1137/S0895480101399449
[6] J. P. Georges, D. W. Mauro and M. I. Stein, "Labeling Products of Complete Graphs with a Condition at Distance Two," SIAM Journal on Discrete Mathematics, Vol. 14, No. 1, 2000, pp. 28-35. doi:10.1137/S0895480199351859
[7] J. P. Georges, D. W. Mauro and M. A. Whittlesey, "Relating Path Covering to Vertex Labelling with a Condition at Distance Two," Discrete Mathematics, Vol. 135, 1994, pp. 103-111. doi:10.1016/0012-365X(93)E0098-O
[8] S. M. Zhang and Q. L. Ma, "On List (2,1)-Labelling of Some Planar Graphs," Ars Combinatoria, Vol. 84, 2007, pp. 231-241.
[9] S. M. Zhang and Q. L. Ma, "Labelling Some Planar Graphs with a Condition at Distance Two," Journal of Applied Mathematics and Computing, Vol. 24, No. 1-2, 2007, pp. 421-426.
[10] S. M. Zhang and J. H. Wang, " $L(\mathrm{p}, \mathrm{q})$-Labeling of Planar Graph with High Maximum Degree," Journal of Shandong University, Vol. 42, No. 4, 2007, pp. 39-43.
[11] S. M. Zhang and Q. L. Ma, " $L(\mathrm{~d}, 1)$-Total Labeling of Outerplannar Graphs," Journal of Jinnan University, Vol. 20, No. 3, 2006, pp. 258-260.

