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ABSTRACT 

 2,1L

 2,1L

-labeling number of the product and the join graph on two fans are discussed in this paper, we proved that 

-labeling number of the product graph on two fans is   3G    ,  2,1L -labeling number of the join graph 

on two fans is .   2 3G   
 
Keywords: Labeling Number; Join Graph; Product Graph 

1. Introduction 

Throughout this paper, we consider connected graphs 
without loops or multiple edges. For a graph  ,G V G  
and  are used to denote the vertex set and edge 
set of  and 

 E G
,G   G  G

G
u

 denote the minimum de- 
gree and the maximum degree of a graph G, respectively. 
For a vertex , the neighborhood of v in G is 

is adjacent to v in . Vertices in 

G  are called neighbors of v, 

v V
 ,G


u V   N v

 V
G

N
G

 G  denotes the 
number of vertices in . The other terminology 
and notations are referred to [1]. 

N V
GN V

For a given graph G, an integer , an 0k   2,1L - 
labeling of G is defined as a function  

   : 0,1,2, ,f V G k   such that     2f u f v   if 
; and  uv E G     1  , 2Gd u vf u f v  if  , 

where , the distance of u and v, is the length 
(number of edges) of a shortest path between u and v. the 

 ,v  2Gd u

 2,1L -labeling number, denoted  G , is the least in- 
teger  such that G has a k  2,1L -labeling. 

The Motivated by the channel assignment problem in- 
troduced by Hale in [2], the  2,1L  labeling have been 
studied extensively in the past decade. In 1992, in [3] 
Griggs and Yeh proposed the famous conjecture, for any 
graph .   2,G G  

Griggs and Yeh in [3] proved that the conjecture true 
fop path, tree, circle, wheel and the graph with diameter 
2, G. J. chang and David Kuo in [4] proved that  G   

 for any graph. Recently Kral D and Skrekovski 
R in [5] proved the upper is 

2  
  2 1G      . It is dif- 

ficult to prove the conjecture. Now, the study of  2,1L - 
labeling is focus on special graph. Georges [6,7] give 
some good results. Zhang and Ma studied the labeling of 
some special graph, giving some good results in [8-11]. 

In this paper, we studied the  2,1L -labeling number 
of the product and the join graph on two fans. 

2.  2,1L -Labeling Number of the Join 
Graph on Two Fans 

Definition 2.1 Let mF  be a fan with m + 1 vertices 
, in which . 0 1 2, , , , mu u u u  0d u m

Definition 2.2 Let G and H be two graphs, the join of 
G and H denoted , is a graph obtained by starting 
with a disjoint union of G and H, and adding edges join- 
ing each vertex of G to each vertex of H. 

G H

Theorem 2.1 Let mG F Fn  , if , then 4,m n 4
  3G    . 
Proof. In nmF F , for arbitrary vertex u and v, such 

that  , 2vGd u  , clearly   1G n m    . 
Let k denote the maximum labeling number of nF  
First, we give a  2,1L -labeling of nF  as follows, 
 0 0f v  . 
If 1, 2, ,j n 5, 4,n    

  3jf v j   when ,  mod 4 1j 

 jf v j  when  mod 4 2j  , 

  2jf v j   when ,  mod 4 3j 
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  1jf v j   when  mod 4 0j  . 

If , let   mod 4 0n 

 3nf v n  , ,  2 2nf v n  

   1 1, 1n nf v n f v n     . 

If , let   mod 4 1n 

 3 3nf v n   ,  2nf v n  , 

   1 2, 1n nf v n f v n     . 

If , let   mod 4 2n 

 3 1nf v n   ,  2 1nf v n   , 

   1 3,n nf v n f v    n



. 

If , let   mod 4 3n 

   3 2, 4n nf v n f v n   , 

   1 1, 1n nf v n f v n     . 

Clearly, . 1k n 
Then we label the vertex of mF  as follows, 
If  1, 2 , 5, 4,i m m  

   0 max 1, 2, , 2if u f u i m    , 

  3if u k i    when ,  mod 4 1i 

 if u k  i  when ,  mod 4 2i 

  2if u k i    when ,  mod 4 3i 

  1if u k i    when .  mod 4 0i 

If , let   mod 4 0m 

   3 2, 2m mf u k m f u k m      ,  

   1 1, 1;m mf u k m f u k m        

If , let   mod 4 1m 

   3 23, ,m mf u k m f u k     m  

   1 2, 1;m mf u k m f u k m        

If , let   mod 4 2m 

   3 21, 1,m mf u k m f u k m        

   1 3, ;m mf u k m f u k     m

,



 

If , let   mod 4 3m 

   3 2, 4m mf u k m f u k m       

   1 1, 1.m mf u k m f u k m        

From above,  
If ,  is the maximum number 

in 

 mod 4 0m   1mf u 

mF , and  1 1mf u k m    , then  

 0 1 2

1 3

f u k m

n m

3k m

n m

      

4.      
 

If  d 4 1mom  ,  mf u  is the maximum number in 

mF , and   1mf u k m   , then  

 0 1 2

1 3

f u k m

n m

3k m

n m

      

4.      
 

If  d 4 2mom  ,  2mf u   is the maximum number 
in mF , and  2 1mf u k m    , then  

 0 1 2

1 3

f u k m

n m

3k m

n m

      

4.      
 

If  d 4 3mom  ,  mf u  is the maximum number in 

mF , and   1mf u k m   , then  

 0 1 2

1 3

f u k m

n m

3k m

n m

      

4.      
 

So  0f u  is the maximum number in m nG F F  , 
and  0f u 4n m   , and .  G n   1m 

Obviously, f is a  3  2,L- -labeling of G, 1
Then   3G    . 

3.  2,1L -Labeling Number of the Product 
Graph on Two Fans 

Definition 3.1 The Cartesian product of graph G and H, 
denoted G H , which vertex set and edge set are the 
follows: 

     
      , ,

H V G V H

u v u V G v V H

  

  

V G
 

    
   

, , and

or and .

E G H u v u v v v

uu E G u u vv E H

    

    

n

 

Theorem 3.1 Let mG F F  , if , 
then 

3 2n m n  
  2 3G    . 

Proof. In  , 0mF d u m , the other vertices  
 1, 2, ,iu m , In  0,nF d v n , the other vertices  

 
  

1, 2, , ,

, ,1 ,1

jv j

ij ij i j

n

V w w u v i m j n



     



n

 

denote the vertex of mG F F  , Obviously,  
 G m n   , for . 3n 
We give a  2,1L -labeling of G as follows, First, let  

 
 
 

00

1

2

0

2 , 1, 2, ,

2 3, 1, 2, ,

j

j

f w

f w j j n

,f w j j



 

  



 n

 

We have the maximum labeling number is 2n + 3. 
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Then let  

    
    
   

, 1 2,

,1 2,

,0

, 3, 4, , , 1,2, ,

, 3, 4, , , 1,2, , 1 ;

2 2 2, 1,2, , ,

i j i j

i i n

i

f w f w i m j n

f w f w i m j n

f w n i i m

 



  

  

   

 

 





2

 

From above,  is the maximum labeling 
number. 

2 2n m 

Finally, let    0,0 2 2 2, 1,2, , ,f w n i i m    
2 2 3n m 
 

 Ob- 
viously,  is the maximum labeling number 
in these  0,0 2 2 2, 1,2, , ,f w n i i m    

 G m n  

 since n ≤ 
m < 2n, then the maximum labeling number no more than 

, and , so 2 2n m 3   2 3G    . 
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