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1. Introduction 
 
Studies of the models of quantum electrodynamics in 
two-space one-time dimensions involving the Chern- 
Simons (CS) theories [1-10] are of wide interest and 
form a rather broad field of investigations in various 
contexts. Effective theories with excitations, with frac- 
tional statistics are supposed to be described by gauge 
theories with Chern-Simons term. The statistics (Bose- 
Fermi) transmutation has some important experimental 
consequences in the physics of high - c  supercon- 
ductivity [3]. Wilczek studied [5] the possibility of exotic 
statistics appearing in two-space one-time dimensions 
where the objects obeying this unusual statistics are 
called anyons [3,5]. The above studies are of very wide 
interests [1-10] and they provide rather natural motiva- 
tions for our present studies. 

T

Very recently, we have studied [8-11] the CS theory [8] 
and the CS-Higgs (CSH) theory in the symmetry phase 
of the Higgs potential [9] as well as the CSH theory in 
the so-called broken (or frozen) phase of the Higgs po- 
tential [10] using the usual instant-form (IF) of dynamics 
(on the hyperplanes: 0 = =x t  constant ), under appro- 
priate gauge-fixing conditions. 

In the present work we quantize the pure CS theory on 

the light-front (LF) using the Hamiltonian, path integral 
and BRST formulations [8-16] under appropriate gauge- 
fixing, using the LF dynamics (on the hyperplanes  

defined by the LC time: (
 0 1

= =
2

x x
x constant  

 )  

[17,18]. It may be important to mention here that because 
the LF coordinates are not related to the conventional IF 
coordinates by a finite Lorentz transformation, the des- 
criptions of the same physical result may be different in 
the IF and LF dynamics and the LF quantization (LFQ) 
often has some advantages over the conventional IF 
quantization (IFQ) and a study of both the IFQ and the 
LFQ of a theory determines the canonical structure and 
constrained dynamics of a theory rather completely 
[8-18]. 

Different aspects of this theory have been studied by 
several authors in various contexts [1-10]. For further 
details of the motivations for a study of the different 
aspects of the Chern-Simons theories by various authors 
including a comparative description of different studies, 
we refer to our earlier work of Reference [8-11]. In the 
next section, we study its LF Hamiltonian and path 
integral formulations and its BRST formulation is 
studied in Section 3. The summary and discussion is 
finally given in Section 4. 
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2. Hamiltonian and Path Integral  
Formulations 

 
In this section we quantize the pure CS theory on the LF, 
using the Hamiltonian, path integral formulations under 
appropriate gauge-fixing. The pure Chern-Simons theory 
in two-space one-time dimensions is defined by the  

action [1-10]: 

  3
1 1 1 2

= ,  = ,  =
2 2

S A d x A A 
  

  


         


(1) 

  012
012: 1, 1, 1 ;  , 0,1, 2;  1g diag            (2) 

Here   is the Chern-Simons parameter. The LF [5] 
action of the theory reads:  

2

2 2 2 2 2 2

=

:=
2

S dx dx dx

A A A A A A A A A A A A


 

      
   

               




                  (3) 

 
In the following, we would consider the Hamiltonian 

formulation of the theory described by the above action. 
The canonical momenta obtained from the above equa- 
tion are:  

   
 

 
2

2
2

:= = 0,  := = ,  : =
2 2

A E
AA A

  
 

 

  
     

    
  

A




                (4) 

 

Here ,  and  are the momenta 
canonically conjugate respectively to 

   2:=E 
A , A  and 2A . 

The above equations however, imply that the theory po- 
ssesses three primary constraints:  

1 2 2 3= 0;  = 0;  = 0
2 2

A E A
                

   
                       (5) 

 
The symbol  here denotes a weak equality (WE) in 

the sense of Dirac [12,13], and it implies that these above 
constraints hold as strong equalities only on the reduced 
hypersurface of the constraints and not in the rest of the 
phase space of the classical theory (and similarly one can 
consider it as a weak operator equality (WOE) for the 
corresponding quantum theory). 



The canonical Hamiltonian density corresponding to 
 is:  

2

2 2 2 2

:=

     =
2

c A A E A

A A A A A A A A


   
  

   
 

      
        











 (6) 

After including the primary constraints 1 , 2  and 

3  in the canonical Hamiltonian density c  with the 
help of the Lagrange multiplier field 

H
us,  and  the 

total Hamiltonian density  could be written as: 
v

TH

 
2

2 2 2 2

=
2 2

     
2

T s A u E A

A A A A A A A A

 



  

     
 

                


v

        



 (7) 

The Hamilton’s equations of motion of the theory that 
preserve the constraints of the theory in the course of 
time could be obtained from the total Hamiltonian (and 
are omitted here for the sake of bravity):  

2=T TH dx dx                (8) 

The preservation of 1 , 2  and 3  for all times 
does not give rise to any further constraints. The theory 
is thus seen to possess only three constraints i  (with i = 
1, 2, 3), where all i  are primary constraints. Further, 
the matrix of the Poisson brackets among the constraints 

i  is seen to be a singular (in fact, a null) matrix 
implying that the set of constraints i  is first-class and 
that the theory under consideration is gauge-invariant. 

The physical degrees of freedom of the system are 
governed by the reduced Hamiltonian density of the 
theory (which is obtained by implementing the cons- 
traints of the theory strongly). Also, in the present case, 
A  plays the role of gauge variable and the two pairs 

( A ,  ) and ( 2A , ) are the pair of inessential 
eliminable variables and a pair describing the physical 
degrees of freedom of the system. Accordingly, we 
choose, in the present case, the first pair namely, (

E

A , 
 ) as the pair describing the physical degrees of 

freedom and the other pair as the pair of inessential 
eliminable variables. So for writing the reduced Hamil- 
tonian density of the theory, we choose A  and   as 
the independent variables and the remaining phase space 
variables as the dependent variables. The later ones are 
then expressed in terms of the independent variables as:  

Copyright © 2010 SciRes.                                                                                 JMP 
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2= 0;  = ;  =
2 2

E A
    A


          (9) 

Finally the reduced Hamiltonian density of the theory 
describing the physical degrees of freedom of the system 
expresed in terms of the independent variables is then 
obtained as:  

2= 2R A A A   
                (10) 

where =R RH dx  is the reduced Hamiltonian of the 
theory and it describes the physical degrees of freedom 
of the system. Here we remind ourselves that as an 
alternative to the above, we could have equivalently 
expressed it in terms of the other pair namely, ( 2A , ) 
instead of the pair (

E
A , ). 

Using the above equation we then obtain the field 
equations derived from the Heisenberg equations of 
motion as:  

 

 

2

2

= , = 2

= , = 0

= , =

= , = 2

R

R

R

R

i H A

A i A H

i H A

A i A H A





  
 

 


  


  
 

         
    
     
        



   (11) 

The vector gauge current of the theory  
 2, ,J J J J    is: 

 

 



2 2
2 2

2 2
2 2

2 2 2 2

= =
2

= =
2

= =
2

J j d x d x A A

J j d x d x A A

J j d x d x A A

  





 

  

  


  


 
 

     
   
    

 

 

 






   (12) 

The divergence of the vector gauge current density of 
the theory could now be easily seen to vanish satisfying 
the continuity equation: j  = , implying that the 
theory possesses at the classical level, a local vector- 
gauge symmetry. The action of the theory is indeed seen 
to be invariant under the local vector gauge transfor- 
mations:  

0

2 2

2

2

= ,  = ,  = ,  =

= ,  = ,  = ,  =
2 2

= ,  = = = 0s u v

A A s u

A o E

v

       
       

    


  

  
 



     


    

    

 



 

(13) 

where  2, ,x x x     is an arbitrary function of its  

arguments. In order to quantize the theory using Dirac’s 
procedure we now convert the set of first-class 
constraints of the theory i  into a set of second-class 
constraints, by imposing, arbitrarily, some additional 
constraints on the system called gauge-fixing conditions 
or the gauge constraints. For this purpose, for the present 
theory, we could choose, for example, the following set 
of gauge-fixing condition:  

= A 0                 (14) 

Here the gauge 0A   represents the light-cone 
coulomb gauge which is a physically important gauge. 
Corresponding to this gauge choice, the theory has the 
following set of constraints under which the quantization 
of the theory could e.g. be studied: 

1 1 1

2 2 2 2

3 3 3

4

= = = 0

= = =
2

= = = 0
2

= = 0

A

E A

A

  
  

  











 

    

   
 

 

0


     (15) 

The matrix R  of the Poisson brackets among the 
set of constraints i  with  is seen to be 
nonsingular with the determinant given by  

( = 1, 2,3,4)i

     
1

2 22
2 2=det R x y x y               (16) 

The other details of the matrix   are omitted here 
for the sake of bravity. Finally, following the standard 
Dirac quantization procedure, the nonvanishing equal 
light-cone-time commutators of the theory, under the 
gauge: 

R

0A   are obtained as:  

   

   

   

   

   

   

2 2 2

2 2

2 2

2 2

2 2

2 2

, ,  , , ,

  =

, ,  , , ,

  =
2

, ,  , , ,

  =
4

A x x x A x x x

i
x y x y

A x x x x x x

i
x y x y

x x x E x x x

i
x y x y

 


 

  

    

 

     

 

    

 

  


 

  

 

  


 

       (17) 

Also, for the later use, for considering the BRST for- 
mulation of the theory we convert the total Hamil-tonian 
density into the first-order Lagrangian density 0I :  

           0 2

2 2 2 2 2 2

:=

      =
2

I s u v TA A E A s u v H

A A A A A A A A A A A A


   
     

       
   

              
               



            (18) 
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In the path integral formulation, the transition to 
quantum theory is made by writing the vacuum to 
vacuum transition amplitude for the theory called the 

generating functional  kZ J  of the theory [8-11,14,15] 
under the gauge-fixing under consideration, in the pre- 
sence of the external sources kJ  as:  

    3
2= exp k

k k s u vZ J d i d x J A A E A s u v H    
      T

                         (19) 

 
Here, the phase space variables of the theory are: 

 2, , , , ,k A A A s u v    with the corresponding respec- 
tive canonical conjugate momenta: 

 , , , , ,k sE 
u v       . The functional measure 

 d  of the generating functional  kZ J  under the 
above gauge-fixing is obtained as:  

            

        

 

2 2
2 2 2

2

=

  0

   0 0 0
2 2

s u v

d x y x y dA dA dA ds du

d d dE d d d

A E A A

  



   

   

  

  

   

      

                       

dv

                   (20) 

 
The Hamiltonian and path integral quantization of the 

theory under the gauge:  is now complete. 0A 
 
3. BRST Formulation 
 
For the BRST formulation of the model, we rewrite the 
theory as a quantum system that possesses the genera- 
lized gauge invariance called BRST symmetry. For this, 
we first enlarge the Hilbert space of our gauge-invariant 
theory and replace the notion of gauge-transformation, 
which shifts operators by c-number functions, by a 
BRST transformation, which mixes operators with Bose 
and Fermi statistics. We then introduce new anti-com- 
muting variables c and c  (Grassman numbers on the 
classical level and operators in the quantized theory) and  

a commuting variable  such that[8-11,16]:  b

2 2 2

2

ˆ ˆ ˆ ˆ= ,  = ,  = ,  =

ˆ ˆ ˆ ˆ= ,  = ,  = ,  =
2 2

ˆ ˆ ˆ ˆ= ,  = = = 0

ˆ ˆ ˆ= 0,  = ,  = 0

u v s

A c A c v c s c

A c o E c

u c

c c b b

   
    

   

  



c

  

  
 

 

    

     

    



  

(21) 
with the property 2̂  = 0. We now define a BRST- 
invariant function of the dynamical variables to be a 
function f  such that . Now the BRST gauge- 
fixed quantum Lagrangian density 

ˆ = 0f
BRST  for the theory 

could be obtained by adding to the first-order Lagrangian 
density 



0I , a trivial BRST-invariant function, e.g. as 
follows:  

2 2 2 2 2 2

1ˆ:=
2 2BRST A A A A A A A A A A A A c A b
         

    

                  

    

       (22) 

 
The last term in the above equation is the extra 

BRST-invariant gauge-fixing term. After one integra- 
tion by parts, the above equation could now be written 
as:  

    2
2 2 2 2 2 2

1
:=

2 2BRST A A A A A A A A A A A A b b A c c
         

      
                     

   (23) 

 
Proceeding classically, the Euler-Lagrange equation 

for  reads:  b

=b A                  (24) 

the requirement  then implies  ˆ = 0b

ˆ ˆ=b A  


                 (25) 

which in turn implies  

= 0c                   (26) 

The above equation is also an Euler-Lagrange equa- 
tion obtained by the variation of BRST  with respect to 
c . In introducing momenta one has to be careful in 
defining those for the fermionic variables. We thus 
define the bosonic momenta in the usual manner so that  

 
:= =BRST b

A






 

 
        (27) 

but for the fermionic momenta with directional deriva- 
tives we set  
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   
:= = ;  := =c BRST c BRSTc c

c c 
 

 
  

   

 

     

(28) 
implying that the variable canonically conjugate to  is c
 c   and the variable conjugate to c  is . For 
writing the Hamilotonian density from the Lagrangian 
density in the usual manner we remember that the former 
has to be Hermitian so that:  

 c 

   

 

2

2

2 2 2 2

=

         

1
         =

2

         
2

BRST s

u v c c BRST

s u v c c

H A A E A s

u v c c L

s u v

A A A A A A A A


   
   

   


  

     
 

       
          
         

         

 

(29) 
The consistency of the last two equations could now 

be easily checked by looking at the Hamilton’s equations 
for the fermionic variables. Also for the operators 

, ,c c c  and c , one needs to satisfy the anticom- 
mutation relations of  with c c  or of c  with , 
but not of , with 

c
c c . In general,  and c c  are 

independent canonical variables and one assumes that  

          , = , = , = 0;  , = 1 ,c c c c c c c c c c        

(30) 
where ,  means an anticommutator. We thus see that 
the anticommulators in the above equation are non-trivial 
and need to be fixed. In order to fix these, we demand 
that c satisfy the Heisenberg equation:  

{ }

 , =BRSTc  i c               (31) 

and using the property 2 2 0c c   one obtains  

   , = ,BRSTc c c c             (32) 

The last three equations then imply :  

    , = 1 , =c c c c i             (33) 

Here the minus sign in the above equation is nontrivial 
and implies the existence of states with negative norm in 
the space of state vectors of the theory. The BRST 
charge operator  is the generator of the BRST trans- 
formations. It is nilpotent and satisfies . It mixes 
operators which satisfy Bose and Fermi statistics. 
According to its conventional definition, its commutators 
with Bose operators and its anti-commutators with Fermi 
operators for the present theory satisfy: 

Q
2 0Q 

 

 

     

2

2

, = , = , = ,  

, = , =
2

, =
2

A Q A Q A Q c

Q E Q c

c Q E A A





 





  

       

    

        

   (34) 

All other commutators and anti-commutators invol- 
ving vanish. In view of this, the BRST charge ope- 
rator of the present theory can be written as:  

Q  

   2 2=
2

Q dx dx i c E A A
  


             (35) 

nd
This equation implies that the set of states satisfying 

the co itions:  

2= 0,  = 0,  = 0
2 2

A E A
             

   
 

be

(36) 

long to the dynamically stable subspace of states   
satisfying | >= 0Q  , i.e., it belongs to the set of 
BRST-invariant states. In order to understand the con- 
dition nee vering the physical states of the
th perators  and 

ded for reco
eory we rewrite the o

 
c c  in terms of 

fermioni  and creatio  operators. For
he

c annihiliation

 derived ea

n  this 
purpose we consider Euler lagrange equation for t  
variable c rlier. The solution of this equation 
gives (for the light-cone time x    the Heisenberg 
operators  c   and correspondingly  c   in terms of 
the fermionic Annihilation and creation operators as:  

      †= ,  =c G F c G F           (37) 

Which at e light-cone time = 0th   imply     

     

        †

0 = ,  0 =

0 = ,  0 =

c c F c c

c c G c c G



    

 

     
   (38) 

†F

By imposing the conditions (obtained earlier):  

   
    , = 1 , =

c

c c c c i



 



  
  (39) 

we then obtain  

2 2= = , = , = 0,  c c c c c    

2 =F †2F    † †= , = , = 0,F F G G  

    † †, = 1 , =G F G F i  

Now let denote the fermionic vacuum  

             (41) 

Defining to have norm one, the last three e
tions imply 

| 0 >   for which 

| 0 >= | 0 >= 0  G F

| 0 >  
 

qua- 

† †< 0 >= ,  < 0 0 >=F0 G

so that  

i GF i        (42) 

† †G F| 0 > 0,,  | 0 > 0            (43) 

The theory is thus seen to possess negative norm states 
in the fermionic sector. The existence of these ne
norm states as free states of the fermionic p

gative 
art of BRST  

is , however, irrelevant to the existence of physicsl 
in the orthogonal subspace of the Hilbert space. In terms 

(40)

states 

Copyright © 2010 SciRes.                                                                                 JMP 



U. KULSHRESHTHA  ET  AL. 390
 

 

of annihilation and creation operators BRST  is:  

 2 †

2 2 2 2

1
=

2

 
2

BRST s u vs u v G G

A A A A A A A A



  

     
 

        

         





(44) 

and the BRST charge operator is:  

   2 2=
2

Q dx dx iG E A A
           (45) 

Now because 




| >= 0Q  , the set of states annihiliated 
by t for which the constraints 

l states for which  
Q  contains not only the se

of the theory hold but also additiona

2

| >= | >= 0

| 0,  | 0,  | 0
2 2

F G

A E A

 
                  

   


 

(46) 

The Hamiltonian is also invariant under the anti-BRST 
transformation given by: 

2 2 2

2

ˆ ˆ ˆ ˆ= ,  = ,  = ,  =

ˆ ˆ ˆ ˆ= ,  = 0,  = ,  =
2 2

ˆ ˆ ˆ ˆ= ,  = = = 0

ˆ ˆ ˆ= 0,  = ,  = 0

s u v

A c A c s c v c

A c c E c

   
    


   

  
 

     

     

with generator or anti-BRST charge 

u c

c c b b

   

  

     



(47) 

  2=
2

Q dx dx i c E A A
  


        2

 


 

which in terms of annihilation and creation operators 
reads:  

(48) 

   22
A A

    
(49) 

We also have  

†
2=Q dx dx iG E        



 = , = 0;  = , = 0BRST BRSTQ Q H Q Q H         (50) 

with  

2=BRST BRSTH dx dx           

an pose the dual condition that both 
and 

(51) 

d we further im Q  
Q  annihilate physical states, implying that:  

| >= 0  | >= 0Q and Q          

which the constraints of the theory hold, 
satisfy both of these conditions and are i
states satisfying both of these conditions, since although 

   (53) 

there are no states of this operator with 

  (52) 

The states for 
n fact, the only 

with  

 † †= 1G G GG           

† | >= 0G   and 
† | >= 0F  , and hence no free eigenstates of the 

fermionic part of BRST  that are annihiliated by each of 
G , †G , F , and †F . Thus the only states satisfying 

| >= 0Q   and | >= 0Q   are those that satisfy the 
constrai  th becausee ry. Now theo  | >= 0Q nts of , the 

states annihilated by cont

theory, the dual condition: 

set of  Q  ains not only the set 
of states for which the constraints of th  but 
also additional states for which the constraints of the 
theory do not hold in particular. This situation is, 
however, easily avo d by aditionally imposing on the 

| >= 0Q

e theory hold

ide
  and | >= 0Q  . 

Thus by imposing both of these conditions on the theory 
simultaneously, one finds that the states for which the 
constraints of the theory hold satisfy both of these 
conditions and, in fact, these are the only states satisfying 
both of these conditions because in view of the condi- 
tions on the fermionic variables c  and c  one cannot 
have simultaneously c , c  and c , c , applied to 
| >  to give zero. Thus the only states satisfying 

| >= 0Q   and | >= 0Q   are those that satisfy the 
constraints of the theory and they belong to the set of 
BRST-invariant as well as to the set of anti-BRST- 
invariant states. 

Alternatively, one can understand the above point in 
terms of fermionic annihiliation and creation operators as 
follows. The condition | >= 0Q   implies that the set 

tes annihiliated by Q  contains not only the states 
for which the constraints of the theory hold but also 
additional states for which the constraints do not hold. 
However, 

of sta

| >= 0Q   guarantees that the set of states 
annihiliated by Q  contains only the states for which the 
constraints hold, simply because † | > 0G    and 

† | > 0F   . Thus in this alternative way also we see 
that the states satisfying | >= | >= 0Q Q   are only 
those states that satisf the constraints of the theory and 
also that these states belong to the set of BRST- invariant 
and anti-BRST invariant states. This completes the 
BRST formulati  of the theory. 
 
4 S ry and Discussion 
 
IFQ of the present theory has been studied by us in Refe- 
rence [8] (on the hyperplanes x0 = t = constant [17,18]). In 
the present work the theory has been quantized using the 
LF dynamics (on the the hyperpl

 

on

. umma

anes of the LF defined 
y the light-cone time b 0 1= / 2 =x x x constan    t

here that a study of 
determines 

[17,18]. It is important to mention 
oth of the IFQ and LFQ for a theory really b

the dynamics of the system (a la Dirac) completely, 
necessitating the present study. For further details on the 
Dirac’s different rela- tivistic forms of dynamics, we 
refer to the work of Reference [17,18]. 
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r, for a LF theory seven out of ten
The LFQ has several advantages over the conven- 

sional IFQ. In particula  
Poincare generators are kinematical while the IF theory 
has only six kinematical generators [17,18]. In our treat- 
ment, we have made the convention to regard the light- 
cone variable x    as the LF time coordinate and the 
light-cone variable x  has been treated as the longitu- 
dinal spatial coordinate. The temporal evolution of the 
system in x  is generated by the total Hamil- tonian of 
the system. 

The constrained dynamics of our LF theory reveals 
that it possesses a set of three constraints which are 
primary. Also there is no secondary Gauss law constraint 
in the theory. atrix of the Poission brackets of 
these three constrai  is singular implying that they 
form a set of first-class constraints. This implies in turn, 
that the corresponding theory is gauge-invariant. The 
theory is in

The m
nts

deed seen to possess a local vector gauge 
sy

antization procedures but is 
al

because of gau

w of this, in order to 
ac

mmetry, and correspondingly there exists a conserved 
local vector gauge current. 

Now because the set of constraints of the theory is 
first-class, one could quantize the theory under some 
suitable gauge-fixing as we have done in our present 
work for the Hamiltonian and path integral quantization 
of our theory. For this we have choosen the gauge 

0A  . The gauge 0A   represents the light-cone 
coulomb gauge. This gauge choice is not only acceptable 
and consistent with our qu

so a physically more intersting gauge choice represen- 
ting the light-cone coloumb gauge. 

However, in the above Hamiltonian and path integral 
quantization of the theory under some gauge-fixing 
conditions the gauge-invariance of the theory gets broken 

 the procedure ge-fixing converts the set of 
first-class constraints of the theory into a set of second- 
class one, by changing the matrix of the Poission 
brackets of the constraints of the theory from a singular 
one into a non-singular one. In vie

hieve the quantization of our gauge-invariant theory, 
such that the gauge-invariance of the theory is main- 
tained even under gauge-fixing, one of the possible ways 
is go to a more generalized procedure called the BRST 
quantization [8-11,16], where the extended gauge sym- 
metry called as the BRST symmetry is maintained even 
under gauge-fixing. It is therefore desirable to achieve 
this so-called BRST quantization also if possible. This 
therefore makes a kind of complete quantization of a 
theory. The light-cone BRST quantization of the present 
theory has been studied by us in the present work, under 
some specfic gauge choice (where a particular gauge has 
been choosen by us and which is not unique by any 
means). In this procedure, when we embed the original 
gauge-invariant theory into a BRST system, the quantum 

Hamiltonian density BRST  (which includes the gauge- 
fixing contribution) commutes with the BRST charge as 
well as with the anti-BRST charge. The new (extended) 
gauge symmetry which replaces the gauge invariance is 
maintained (even underthe BRST gauge-fixing) and 
hence projecting any state onto the sector of BRST and 
anti-BRST invariant states yields a theory which is 
isomorphic to the original gauge-invariant theory. 

In conclusion, in the present work we have constructed 
the quantum theory corresponding to the classical Chern- 
Simons theory defined by the action (1) (or equivalently 
defined by the LF action (2)) by quantizing the 
corresponding classical theory using three different 
quantization procedures called the Hamiltonian, path 
integral and BRST formulations using the LF quanti- 
zation on the hyperplanes of the LF defined by the 
LC-time = =x constant . In the LF Hamiltonian 
quantization of the theory we have obtained the non- 
vanishing equal LC time commutators (given by the 
Equation (16)) of the LF theory (defined by Equation 
(2)). In the Path integral quantization of the theory we 
have explicitly constructed the vacuum to vacuum 
transition amplitude of the theory called the generating 
functional of the theory given by Equations (18) and (19). 
In the BR e have explicitly constructed 
the BRST gauge-fixed quantum Lagrangian of the theory 
given by Equation (21) (or equivalently by Equation 
(22)). The quantum BRST-Hamiltonian of the theory has 
also been constructed given by Equations (28) (or equi- 
valently by Equation (43)). The BRST and anti-BRST 
charge operators of the theory have also been constructed 
defined respectively by Equation (34) (or equivalently by 
Equation (44)) and Equation (47) (or equivalently by 
Equation (48)). The methods of IFQ and LFQ are 
pioneered by non other than Dirac [17,18], where the 
advantages of LFQ over the IFQ have also been 
discussed. The reasons for the LFQ versus the usual IFQ 
are best explained in the rather recent review by Brodsky 
et al. [18] as well as in our earlier work [11,14,15]. The 
physical applications of these studies of the CS theory in 
various contexts have already been discussed in the 
introduction. The above points illustrate very clearly the 
reasons and motivations for the present studies. 
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