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ABSTRACT 

In this paper we apply the directional derivative technique to characterize D-multifunction, quasi D-multifunction and 
use them to obtain ε-optimality for set valued vector optimization problem with multivalued maps. We introduce the 
notions of local and partial-ε-minimum (weak) point and study ε-optimality, ε-Lagrangian multiplier theorem and 
ε-duality results. 
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1. Introduction 

The theory of efficiency plays an important role in vari- 
ous knowledge fields. It is proposed as a new frontier in 
mathematical physics and engineering in context of pri- 
orities concerning the alternative energies, the climate 
exchange and education. Pareto efficiency or Pareto op- 
timality is a central theory in economics with broad ap- 
plications in game theory, social sciences, management 
sciences, various industries etc. In set valued vector op- 
timization problems, it is important to know when the set 
of efficient points is nonempty to establish its main 
properties (existence, connectedness and compactness) 
and to extend the concepts to set valued vector optimiza- 
tion in infinite dimensional ordered vector spaces. The 
notion of proper efficiency was first introduced by Kuhn 
and Tucker [1] in their well known paper on nonlinear 
programming and many other notions have been pro- 
posed since then. Some of the well known notions are 
Geoffrion proper efficiency [2], Borwein proper effi- 
ciency [3], Benson proper efficiency [4] and super effi- 
ciency [5]. Chinaie and Zafarani [6] introduced the con- 
cepts of feeble multifunction minimum (weak) point, 
multifunction minimum (weak) point and obtained 
optimality conditions for set valued vector optimiza-
tion problem having multivalued objective and con-
straints. 

While it is theoretically possible to identify the com- 
plete set of solutions, finding an exact description of this 
set often turns out to be practically impossible or com- 
putationally too expensive. In practical situations we 
often stop the calculations at values that are sufficiently 

close to the optimal solutions, that is, we use algorithms 
that find approximate of the Pareto optimal set. Stability 
aspect in set valued vector optimization deals with the 
study of behaviour of the solution set under perturbations 
of the data. One of the approaches in this regard is the 
convergence of sequence of ε-solutions to a solution of 
the original problem. These facts justify the need of 
study of approximate efficiency which is equivalent to 
ε-optimality for set valued vector optimization problems. 
Some of the researchers who contributed in this area are 
Hamel [7], Rong and Wu [8]. 

Chinaie and Zafarani [9] introduced the concepts of 
ε-feeble multifunction minimum (weak) point and ob- 
tained optimality conditions for set valued vector opti- 
mization problem having multivalued objective and con- 
straints. In this paper, we have given the notions of (local) 
partial-ε-minimum point and (local) partial-ε-weak 
minimum point, for set valued vector optimization prob- 
lem and used them to study ε-optimality, ε-Lagrangian 
multiplier theorem and ε-duality results. 

This paper is organized as follows: In Section 2 we 
have given the preliminaries and results related to quasi 
D-multifunction. In Section 3 we apply the directional 
derivative technique used by Yang [10] to characterize 
ε-optimality conditions for set valued vector optimization 
problem in terms of ε-feeble multifunction minimum 
point given by Chinaie and Zafarani [9]. In Section 4, we 
introduce (local) partial-ε-minimum point and (local) 
partial-ε-weak minimum point, and show that it is dif-
ferent from ε-feeble mutifunction minimum point. Also, 
we prove that every local partial-ε-minimum (weak) 
point is a partial-ε-minimum (weak) point if the objective 
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function of set valued vector optimization problem is 
strict quasi D-multifunction and constraint function is 
quasi D-multifunction and show that this result is not true 
in the case of local ε-feeble multifunction minimum point. 
In Section 5, we obtain ε-Lagrangian multiplier theorem 
in terms of partial-ε-weak minimum point and in Section 
6, we establish ε-weak duality and ε-strong duality for 
dual problem of set valued vector optimization prob-
lem. 

2. Preliminaries and Definitions 

Let X be locally convex topological vector space, Y, Z be 
real locally convex Hausdorff topological vector spaces; 
let  be pointed closed convex cones with  ,D Y E Z 

and int .D Eint   

 for all y D

D

iD

  0 .y D \

 

Let Y be the dual space of Y, the positive dual cone D+ 
of D is given by  

  : 0,D f Y f y    . 

The set of strictly positive functions in is denoted 
by , that is  

 : 0,  for all iD fY f y    

For a set A Y , we write  

 cone : 0,A a a A   

t iD D 
int D

. 

If D is convex cone in Y, then in  and 
equality holds if    [1].  

A partial order D 1 2Dy y in Y is defined by   iff, 
, for all . 2 1y y D 1 2

Through out this paper, we denote  and  
,y y 

: intoD D
Y

 : 0 .oD D 

:

  
Let F U Y

:

, be a multifunction defined on a non 
empty subset U of X with values in Y, which is partially 
ordered by cone D.  

Now, for a multifunction F U Y , denote by domF 
and imF the domain and the image of F, respectively. In 
other words 

  : ,X F xdomF x      

   im .
x X

F F X  F x


  

,

 

The set  

 
  

gr : , : dom

x X

F x y x

x F


 

 
F y F x

x



  

:

 
is called the graph of F.  

Definition 2.1: [10,11] Let U be convex subset of X. 
Let F U Y  be a multifunction:  

1) F is said to be a D-multifunction on U if, for all 

1 2,x x U  and  0,1 ,t  we have  

        1 2 1 21 1 ;tF x t F x F tx t x D     

1 2,

 

2) F is said to be a quasi D-multifunction on U if, for 
all  x x U 0,1 ,t  we have:   and 

          1 2 1 21 ;F x D F x D F tx t x D     

1 2, ,

 

3) F is said to be a strictly quasi D-multifunction on U 
iff, for all  x x U 1 2 and 0,1 ,x x t  we have:    

         1 2 1 21 .oF x D F x D F tx t x D     

:

 

Yang [10] gave the following definitions: 
Definition 2.2: A function f X Y  is said to be a 

continuous selection of F if f is continuous and 
    ,f x F x . for all x X  Denote by CS (F) the set 

of all continuous selections of F. 
Definition 2.3: Let  

   0 0, : : there exists 0, ,0S x V v X x tv V t       

0

 

be the cone of feasible directions. Then the limit set of F 
at x  in the direction  

   

   
   

,

0 0

0 0
00 ,

, is , :

: lim , , ,

o

n un

y
F

n n
nt v

n

v S x F Y x v

f x t u y
z z u S x V

t




       
  

 CS F   with f fwhere 0 0x y
0

. 
x  in all directions The union of all limit sets of F at 

 0 ,v S x V


 is denoted by  

 0 0, , .oy
FY x S x V

,

 

We need the following assumption: 
Assumption 2.1: Let x y X . If  

  1 ,z F tx t y    

   for all 0,1 , ,t y F x   then there exists a continu-
ous selection  f CS F  such that  

  1 ,z f tx t y    

for all 0,1t

:

.  
Theorem 2.1: Let U be convex subset of X and 

F U Y



. If assumption 2.1 holds and F is D-multi-
function, then for any  

,  and ,x x U y F x   

   , .y
F

 

x y Y x x x D
  F   

 
Proof: Since F is D-multifunction therefore, for 
 0,1 , , ,t x x U   we have  

       1 1 ;tF x t F x F tx t x D       

which gives that  

      1 1tF x t y F tx t x D      . 

  ,w F x  by assumption 2.1, there exist  If 
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 f CS F  such that  

     .t x D  

 

1 1tw t y f tx     

That is,  

 1f tx t
w y

t


 
 

x y
D

 


 , .x x x D 

 

Thus,  

y
Fw y Y
    

Hence,  

   – , .y
FF x y Y
 x x x D 

:

 

Theorem 2.2: Let U be convex subset of X, 
F U Y  be quasi D-multifunction on U and assump-
tion 2.1 hold then, for any 

    x D, , ,x x U y F x y F       

 , .x x D

 

implies that, 

y
FY x 


    . 

Proof: For  , , ,x x U y F x    let  

  y F x D     

That is,  y F x D   and  .y F x D  



 
Since F is quasi D-multifunction, therefore for 

0,1 ,t

  1 ,

  

     F x D F x D F tx   t x D     

which implies that   1 .t x D  y F tx   
Then, by assumption 2.1 there is  f CS F  such 

that  

    1 ,y f tx t x D     for all 0,1 ,t
 

which gives that  

  
 r all 0,1

f t x t x y
D t

t

    
   
 
 

 , .x x D

 1
, fo .  

That is, y
FY x 


   

 
   

n
x U

D F

G x E

x

 

3. ε-Optimality in Terms of Directional  
Derivatives 

In this section, we obtain ε-optimality conditions for set 
valued vector optimization problem in terms of direc- 
tional derivatives given by Yang [10] for ε-feeble multi- 
function minimum point given by Chinaie and Zafarani 
[9]. We consider the following set valued vector optimi- 
zation problem: 

 VP  mi

s.t. 




U X :


 

where  is non empty set, F U Y :G U Z, , 
are multifunctions with nonempty values. The set of fea-
sible solutions of (VP) is denoted by V, that is 

    :V x U G x E     . 

Chinaie and Zafarani [9] gave the following defini- 
tions. 

Definition 3.1: Let x , oV D .  
1) x  is called a ε-feeble multifunction minimum 

point (ε-f. m. m. p.) of problem (VP), if there exists, 
 y F x , such that  

            (3.1) ;F V x y D   

2) x  is called a ε-feeble multifunction weak mini- 
mum point (ε-f. m. w. m. p.) of problem (VP), if there 
exists,   ,y F x

 
such that  

   – ;oF V x y D         (3.2)
 

The set of x V  which satisfies (3.1) or (3.2) is de-
noted by  ˆ ,S F D   ˆ ,WS F D  and  respectively. 

When  V x  is replaced by    N xV x  in 
(3.1) and (3.2),  N x  being neighbourhood of x , then 
we have local ε-f. m. m. p. and local ε-f. m. w. m. p. of 
problem (VP). 

We now give the necessary optimal conditions for lo-
cal ε-feeble weak minimum point [9] of (VP). 

Theorem 3.1: Let 0x V  and 0 0 y F x  be local 
ε-feeble multifunction weak minimum point of problem 
(VP). Then,  

    0 0, , , .oy o
F oY x S x V D D       

Proof Suppose 0x V  is local ε-feeble multifunction 
weak minimum point of problem (VP) and f is any con-
tinuous selection of F such that  0 0y f x . 

Then, 

     0 0 0 ,oF V x N x y D      

 0N x

 

 is neighbourhood of x0. where 
If  

 0 0, ,oy
Fz Y x S x V



, 

 then there exists v, 0 ,nu S x V nu v 0nt, , 

   
 

 
such that  

, 0 ,
lim

n un

o n n o

t v
n

f x t u

t
z

y


 
 , 

 ffor some CS F
0n n n

.  
x x t u 0n N; then there exist  such that  Let 

   0 0 0, for alln V x N xx n n  ; 

   0 0, for alln
oF y D n nx       . 

Since f is any continuous selection of F such that 
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 0 0y f x

0 0, for allD n n

 , therefore: 
0 0,oy

Fk Y x x x 

       –n
of x f x      ; 

     0–
 , fon

n

f x f x

t
 

 
  


 0or allD n n 

 oz D

. 

It follows that   

0

. 
Now, we give the sufficient conditions for ε-feeble 

multifunction minimum point of problem (VP). 
Theorem 3.2: Let x V , 

 0 0y F x , , :oD F U Y  

:G U Z

 

be a D-mulifunction and  be quasi D-multi- 
function and f be continuous selection of F such that  

 0 0 .y f x

 0for all , ,x S x V

 

If  

   0 0, ,oy
FY x x x D       

then x0 is ε-feeble multifunction minimum point of problem 
(VP). 

Proof: Let x0 be not ε-feeble multifunction minimum 
point of problem (VP), then there exists  0 0y F x  
such that 

    0oF V x y D    , 

which implies that, there exists  0 ,x x V y F x
y

 
.y D

, 
such that 0      

Since G is quasi D-multifunction, therefore feasible set 
V is convex,  

 0 0x t x x  


for 0 1.V t   

Thus, 0 ,x S x V  which implies that  

   D0 0,oy
FY x x x     

 0, ,

        (3.3)  

Since F is D-multifunction therefore,  

  0 0
oy

FF x y Y  x x x D 

 0 0, .x x x D 



 
 

which gives that  

0
oy

Fy y Y    

Thus, there exists  

0 0,oy
F x x x

0y y k D  

0 .k y y D  

0y y D

k Y   

such that  

,  

that is  

  

Also,  

  

.k D

  

which implies that 

  

Hence, 

   0 0, ,oy
FY x x x D  

   Also,  

   
 

 

which is contradiction to given condition (3.3).  

4. Partial-ε-Minimum (Weak) Point 

In this section we introduce the notion of partial-ε-mini- 
mum point, and partial-ε-weak minimum point. 

Definition 4.1: Let ,x V D .   
1) x  is called a partial-ε-minimum point (p.-ε-m. p.) 

of problem (VP), if there exists,  y F x  , such that 

     ;oF V x y D          (4.1) 

2) x  is called a partial-ε-weak minimum point (p.-ε- 

w. m. p.) of problem (VP), if there exists,  y F x , 

such that  

     ;oF V x y D   
 

    (4.2) 

The set of x V  which satisfies (4.1) or (4.2) is de-
noted by  ˆ ,P F D   ˆ ,WP F D  and  respectively. 

When  V x  is replaced by    N xV x  in 
(4.1) and (4.2),  N x  being neighbourhood of x , then 
we have local p.-ε-.m. p. and local p.-ε-w. m. p. of prob- 
lem (VP). If  x , gry F  satisfies (4.1) then it is called 
partial-ε-minimizer of (VP) and if satisfies (4.2) then it is 
called partial-ε-weak minimizer of (VP). 

Now we show that partial-ε-minimum point is differ- 
ent from ε-feeble multifunction minimum point. 

The following example illustrates that  

   ˆ ˆ, , .S F D P F D   

U X R

 

 2Y R 2, , Example 4.1: Let Z R ,  

1 1
,

2 2
    

 
2D R 2E R

:G U Z

 

, ,  

and  be defined by  

   
 
0, 0, if 0

,0 if 0

x x x
G x

x x

   


:

 

and U Y

 
   

 be defined by F

 
   

0,0 , ,0 if 0

0, 0, if 0

x x
F x

x x x

    
 

 : 0 .V x R x     then, 
Let  

   0 , 0,0x V y F x   
 . 

Then,  

     .F V x y D      
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Thus, ˆ ,x S F D 
.
.
. 

But  

      0,0 F V x  .oy D  
  

Thus,  

 ˆ , .x P F D

 ˆ, , .S F D 

R 2Y R

 
  

The following example illustrates that 

 P̂ F D  
  

Example 4.2: Let , ,  U X

2Z R , 
5

,3
2

    
 

 ,  0x y y  

 0, 0y y x 

,  

 , : ,D x y x y  ,  

 , :E x

:G U Z

,  

and  be defined by 

 
   
 
0,

,0
G x

 


:

0, if 0

if 0

x x x

x x

 


  

and F U Y  be defined by 

 
    
   

0,0 , 2.5, 3.1 , (

1, 1,
F x

x x

   


 : 0 .V x R x  

, 0) if 0

if 0

x x

x



 
  

then,   
Let  

0x V  ,    0,0 .y F x 
 
 

Then, 

    oDF V x y     .  
Thus,  

 ˆ , .x P F D   
But  

      2.5, 3.1 F V x    y D  . 

Thus,  

 ˆ , .x S F D 

:

  
The following lemma can be proved as in [9]. 
Lemma 4.1: Let F U Y

: Z
 be a strictly quasi 

D-multifunction and G U  be a quasi D-multi-
function. Then, 

   P̂ F D   ˆ, ,WP F D . 

Now, we show that every local partial-ε-minimum 
(weak) point is a partial-(weak) point if F is srictly quasi 
D-multifunction and G is quasi D-multifunction and 
prove local ε-feeble multifunction minimum  point is 

not ε-feeble multifunction minimum point of problem 
(VP) in above conditions. 

Theorem 4.1: Let F be strictly quasi-D-multifunction 
and G be a quasi D-multifunction. Then, any local par-
tial-ε-minimum point of problem (VP) is a partial-ε-mi- 
nimum point of problem (VP). 

Proof: Let x  be local partial-ε-minimum point of 
problem (VP), then there exists a neighbourhood  N x  
of x  and  y F x  such that  

         .oF V N x x y D       (4.3) 

Let if possible, x  be not partial-ε-minimum point of 
problem (VP). Then, there exist  y F x  such that  

     .oF V x y D      

Thus, there exists     ,x V x  y and F x  such 
that oy y D , which gives that    

.oy y D y D       

That is,  

       .y F x D F x D      

Since F is a strict quasi D-multifunction, therefore for 
each  0,1t . We have 

         1 ,oF x D F x D F tx t x D        

which implies that 

  – .oy F x t x x D      

Let  – .t x t x x   x 0,1 ,t    Then, for each 

 t oy F x D  

 t t

  

y F x  such that, and consequently there exists 

t oy y D  


. 
On the other hand for 0,t  0

 
with    small 

enough,    – .x t x x N x   Since G is quasi D-multi-
function, therefore, feasible set is convex and we have  

        – , for 0, .tx x t x x V N x x t        

Thus, we deduce that  

        – ,t oy F V N x x y D  

U X R

 
 

which contradicts (4.3). 
The following example illustrates that above result is 

not true for ε-feeble multifunction minimum point of 
(VP). 

 2Y R 2, , Example 4.3: Let Z R , 
 2D R , 3.5,3.5  2E R :G U Z

 

,   and  de-
fined by  

   
 
0, 0, if 0

,0 if 0

x x x
G x

x x

   

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and :F U Y  defined by  

 

   

    
    

2 2

2 2

1 1
1,1 , , , ,

2 2

1,1 , ,

,0 , ,

x x

F x x x

x x x

  
   

  
 





if 1

if 1 0

if 0

x

x

x

 

  



  

Here G is quasi D-multifunction and F is strict quasi 
D-multifunction. 

Then, Let 0x V  ,    1,1y F x  . 
Then 

       .y DF V x N x        

Thus, x  is local ε-feeble multifunction minimum 
point.  

 5 2, 5 2y D D     ,  

       .D3, 3 F V x y          

Thus, x  is not ε-feeble multifunction minimum point 
of problem (VP). 

5. ε-Lagrangian Multiplier Theorem 

In this section, let L(Z, Y) be the set of continuous lin- 
ear operators from Z to Y, and let  

      :, ,L Z Y T L Z Y   T E D   

Denote by (F, G) the multivalued map from X to Y  Z 
defined by  

       ,F G x F x G x  ,  

for all x  X. 
If , h Y   ,T L Z :hF X RY , we define  and 

:F TG X Y  as      hF

 
x h F x

 
 and  

    F TG x F x T G   x

:

,  

respectively. 
Lemma 5.1: [14]. Let F X Y  be D-multifunc-

tion on X. Then, one and only one of the following 
statements is true: 

1) there exists x X  such that     .oDF x    
2) there exists  0D   

such that  0y   for 
all  .y F X  

Theorem 5.1: Let oD  ,    oEG V  , 
 y F x  and let  – ,F y G  be D-multifunction 

on V. If x  is partial-ε-weak minimum point of problem 
(VP), then there exists  ,ZT L  such that Y x  is 
partial-ε-weak minimum point of following problem: 

       T
VP min

x V
F x T G x

   
and  

       0oT G x E D   
  

Proof: Since x  is partial-ε-weak minimum point of 
problem (VP), therefore there exists,   ,y F x  such 
that  

    oF V x y D           (5.1) 

Hence,  

       , ,o oF V x y G V D E       

Since  – ,F y G  is D-multifunction on V, there-
fore by Lemma 5.1, there exists  

      , , 0,0h p D E    

such that  

   
     

for all– 0,

, , .

h y y p s

x V x y F x s G x

  

  

0.h

      (5.2) 

We claim that   In fact, if h = 0, then 0p   
and   0,p s   for all s G x  (5.3). Since  

    ,oG V E    

there exists x1V and  

   1 1
os G x E  . 

Hence,  1 0p s  , which contradicts (5.3). 
Therefore, 0.h   Fix  with od D   1h d   and 

define  as T(z) = p(z)d, for all  (5.4).  :T Z Y z Z
Clearly,  , .T L Z Y 

Using (5.2) and (5.4), we get  
 

  – 0h y y T s   .         (5.5)  

Since x V , therefore    G x E   . 
Let     ,s G x E   then  s G x

 
and s E . 

This gives that  0 p s  (5.6).  
Therefore we get that, 

      0 .oT s p s d D       

Thus, we have 

       0 .oT G x E D     

Suppose that x  is not partial-ε-weak minimum point 
of problem (VP)T, which gives that 

        oF V x T G V x y D        

Then there exist    0 0 0,  x V x y F x \  and  
 0 0s G x  such that  

  0 0 .oy y T s D      

Since  0 ,h D   we get: 

   0 0 0h y y T s       
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From (5.4), we get 

   0 0– 0,p s  h y y    

which contradicts (5.2). 
Hence x  is partial-ε-weak minimum point of prob-

lem (VP)T. 

6. ε-Duality  

Let us define a multivalued mapping   
by 

 : ,L Z Y Y



T

max

 = {y: there exists x  V, y  F(x) such that x 
is partial-ε-weak minimum point of problem (VP)T}. 

Consider the following maximum problem: (VD) 
 subject to  T  ,Z Y


T L .

.
 

Definition 6.1: A point ,T L Z Y
  .T

  is said to be a 
feasible point of problem (VD) if  

 ,T y


 
We say 

that 0 0  is partial-ε-weak maximizer of (VD) if 
there exists no feasible point 


,Z YT L  such that:  

   0T y  .oD       

We now establish the following ε-duality results. 
Theorem 6.1 (ε-Weak duality): If x V


 and  

,T L Z Y  is a feasible point of problem (VD), then  

    – .oDF x T   

 T

   

Proof: Since ,   for any   ,y T  there 
exists  ,x V y F x 

 
such that x  is partial-ε-weak 

minimum point of (VD) corresponding to T. 
It follows that,  

      – –F T G V x y   .oD          (6.1)
 

Now, we show that 

    .oDF x y       

On contrary, suppose that  

    .oDF x y       

Then there exists   ,y F x such that  

 – ,oy y D    

which implies that  – .oD y y  
Since x  is a feasible point of problem (VP)T, there 

exist    .x E 
 ,T L Z

z G  
It is given that  therefore  ,Y ,Tz D  

which implies that 

– .o ooy Tz y Tz D D      D D    

Thus, 

     \F T G V x y   ,oD         

which contradicts (6.1). 
Therefore, we have  

    – .oDF x T   

 0 – ,

   

Theorem 6.2: (ε-Strong duality): Let F y G  
be D-multifunction on V. If  , ,0 0 0 0x V y F x x   is 
partial-ε-weak minimum point of problem (VP) and 

  oG V E    ,T L Z Y, then there exists 0   such 
that  0 0,T y  is partial-ε-weak maximizer of problem 
(VD). 

Proof: Suppose x0 is partial-ε-weak minimum point of 
problem (VP) and   oG V E  . 

Then, by Theorem 5.1 there exists ,Z Y0T L  
such that x0 is partial-ε-weak minimum point of problem 
 

0T
It follows that, 

, corresponding to T0. VP
 T  0 . 

 0 0y T . Thus, T0 is feasible point of (VD) and 
By ε-weak duality, we obtain 

    0 0 .oy T D     
  

Thus, 0 0,T y  is partial-ε-weak maximizer of prob- 
lem (VD). 
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