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Abstract 
 
Using the London equation, we derive a formula by which the pinning force from magnetic dots can be cal-
culated. We numerically calculate the interaction between ferromagnetic dots and vortices in type II super-
conductors under various conditions. It is found that the pinning force of the magnetic dot with 50 nm thick-
ness reaches 3.5 × 10-11 N that is one order magnitude stronger than the intrinsic pinning force in cuprate at 
77 K. We investigate various parameter dependences of the pinning force. It is found that the most effective 
way to increase the pinning force is to increase the thickness of the dot. The pinning force is weakly de-
pendent on both the size and magnetic permeability of the dots. When temperature increases, the pinning 
force linearly decreases. And when the magnetic field increases, the attraction force increases linearly in the 
low field region. 
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1. Introduction 
 
Because of the scientific interest and technological im-
portance, vortex pinning in superconductors has been the 
subject of a large amount of theoretical and experimental 
work. The introduction of external pinning centers has 
attracted many interests. In general such approaches at-
tempt to create some artificial pinning centers to attract 
vortices. Notably, irradiation by swift heavy ions such as 
neutrons has been used to create columnar defects in 
high-Tc superconductors [1-4]. Artificially introduced 
regular arrays of holes (anti-dots) [5-8] and ferromag-
netic dots have been used for low-Tc and high-Tc super-
conductors [9-12]. Recently, triangular array of external 
pinning centers without long-range order had been stud-
ied for Nb thin films [13]. In the last decade, the interac-
tions between the external pinning centers and flux lat-
tice in superconductors have been studied theoretically or 
numerically by several groups [14-26]. A variety of pin-
ning behaviors have been found, and very rich dynamics 
of vortex lattice and vortex motion have been discovered. 

Milosevic et al. calculated the interaction between a 
superconducting vortex with ferromagnets on top [14-18]. 
Multivortex states and vortex dynamics have been inves-
tigated by Reichardt et al. in the presence of the periodic 
pinning arrays [19-22]. Pokrovsky et al. studied the in-

fluence of various magnetic structures on the underneath 
superconducting films [23,24]. Vortex lattice structures 
have been studied in presence of an artificial pinning 
array by Pogosov et al. [25,26]. Magnetic pinning energy 
has been estimated in superconductor-ferromagnet mul-
tilayer system [27].  

In the present paper, we consider the interaction be-
tween superconducting vortices in a superconducting 
thin film and a regular array of soft ferromagnetic dots 
deposited on top of the superconducting film. Absolute 
values of the pinning force on vortices from soft ferro-
magnetic dots were found for type II superconductors. 
Numerical calculations show that the pinning force from 
the magnetic dots can be orders of magnitude stronger 
than the intrinsic pinning force in cuprate. We also stud-
ied the dependence of pinning force upon various pa-
rameters. In the calculation, we used the London equa-
tion to describe the vortex structure. Although most of 
the parameters we used were similar to those of cuprate, 
we believe that the majority of the conclusions obtained 
from this paper could also be applied to other high-Tc 
and low-Tc superconductors as long as the magnetic vor-
tex structure could be described by the London equation. 
To make the problem simpler, we assume there is no 
proximity effect between the superconducting materials 
and the magnetic dots. This can be achieved experimen-
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tally by inserting a thin insulating film between the su-
perconducting film and magnetic dots. This paper is or-
ganized as follows. In Section 2, the mathematical for-
mulas which were used to calculate the external pinning 
due the magnetic dots are given. The general behaviors 
of the pinning force are described in Section 3. In Sec-
tion 4, the dependences of the pinning force upon various 
parameters are reported. And in Section 5, conclusions 
are given.  
 
2. Theoretical Formulas of the Pinning Force 
 
In this paper we assume that the superconducting films 
have large values of penetration length λ and very small 
values of Ginzburg-Landau coherence length ξ, so that 
the simple London equation can be used to describe the 
magnetic field distribution of the vortex lattice. The 
well-defined magnetic vortex structure coupled with the 
regular (disc type) shape of the ferromagnetic dots al-
lows us to calculate the interaction between the dot and 
the vortex within the electromagnetic context. The cal-
culation was carried out under the following conditions. 
A magnetic field is applied perpendicularly to the surface 
of the sample. A uniform array of soft ferromagnetic dots 
with triangular pattern is on the surface of the sample. 
The shape of the dots is a perfect disc. We only calculate 
the pinning force created by the dots in a “matching” 
field condition, which means the applied field has a 
magnitude to create one flux quantum for each dot. Fig-
ure 1 shows the schematic drawing of the situation dis-
cussed above. If the distance between neighboring dots, 
which we shall refer to as the lattice constant thereafter, 
is C, the matching field strength is Φ0/[(3/2)1/2 C2] for a 
triangle lattice, where Φ0 is the magnetic flux quantum. 
For the typical C value of 625 nm that was used in most 
of our calculations in Section 3, the corresponding field 
is 4.32 mT. Since a magnetic field is applied perpen-
dicularly to the sample surface, the main component of 
the magnetic field inside the dot and thin superconduct-
ing film is the z component. For simplicity, we assume 
that the spreading of flux lines within the dot thickness is 
negligible. Thus the magnetic field within the thickness 
of the thin film sample and dots only has one component 
perpendicular to the sample surface. 

Since λ >> ξ, the magnetic field induction distribution 
B around a single vortex can be described by the London 
equation,  
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In cylindrical coordinates for the two-dimensional 
case, this equation becomes: 

 

Figure 1. The schematic drawing the condition used in this 
paper. 
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This equation has an exact solution [28]: 
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where Bz(r) is the z-component of the magnetic field 
induction (the only component inside of the supercon-
ductor) and K0(r/) is the zeroth-order modified Bessel 
function. Equation (3) is used to calculate the field dis-
tribution for a single vortex. Mathematically K0(r/) di-
verges logarithmically as r approaches zero. In reality, 
B(r) has a cutoff at r   as the density of the supercon-
ducting Cooper pair starts to drop to zero at this point. 
The divergence of K0 at zero is removed by replacing the 
values of K0(r/) for r <  by the value obtained at r = . 
The real field is a collective one of all vortices surround-
ing it. In our numerical calculation, at each vortex side, a 
total of 55 vortex sites around that one are included to 
obtain a two-dimensional field distribution of the trian-
gular vortex lattice. Magnetic discs are magnetized in 
this field. Since we consider the spreading of flux lines 
within the disc thickness is negligible, magnetic induc-
tion (B), magnetic field (H), and magnetization (M) 
within the disc and sample only have z component. Be-
cause the dot size is comparable with respect to the scale 
of the field variation, the magnetization of the dot is not 
uniform. To take the non-uniform magnetization into 
consideration we divide each dot into 360 × 100 colum-
nar volume elements. The magnetic moment of each 
element is found under local field strength and force act-
ing on it is then calculated. The total force on the dot is 
obtained by summing up all volume elements. A volume 
element dv of the dot with M in an external Bext experi-
ence a force [29]: 

  ext extdF dv M B dv M B          
     (4) 

For simplicity, we assume a linear magnetization rela-
tion between M and H for the ferromagnetic dots:  

 1M H    H
  

            (5) 
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here H is the true magnetic field acting on dv and  is the 
relative permeability of the dots. The demagnetization 
effect needs to be considered to calculate H from the 
external applied field Hext. In a magnetized object, 
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here Hd is the demagnetization field and N is the demag-
netization factor. For an object of disc shape with the 
ratio of the diameter to the thickness r1 > 1, we have [30] 
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When the thickness of the disc is larger than the di-
ameter, we have [30] 
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Here r2 is the ratio of the thickness to the diameter of 
the disc. The value of N changes from zero (for an infi-
nite long rod) to one (for an infinite thin disc). Solving 
Equation (6), we obtain: 
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In Equation (9) we use Bext/µ0 = Hext to replace Hext. 
Since we assume that the spreading of flux lines within 
the dot is negligible, both M and Bext within the dot have 
z component only. Equation (4) reduces to: 

2 z extdF dvM B 


              (10) 

here the direction of dF is perpendicular to the z direc-
tion, which is in the x-y plane. Combining Equation (9) 
and Equation (10), the following equation is obtained: 
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Equation (11) allows us to calculate the force acting 
on dv. The total force on the dot is obtained by the sum-
mation of all elements. Equation (11) shows that the at-
traction force is dependent upon dv, µ, N, Bext, and 

ext . Since Bext, and ext  are two important parame-
ters for the force, in Figure 2 we depict B and dB/dr ob-
tained from our calculation from Equation (3) under the 
condition of ξ = 2 nm, λ = 150 nm, and C = 625 nm. The 
horizontal axis in Figure 2 was along two nearest 
neighbor vortex sites in a triangular lattice. In principle, 
Equation (11) could be used to calculate the pinning 
force from the magnetic dot for any type-II supercon-
ductors. However, the magnetic field distribution of a 
vortex shown in Equation (3) is obtained from the Lon- 

B B

 

Figure 2. Field and field gradient distribution of the trian-
gular vortex lattice for ξ = 2 nm, λ = 150 nm and C = 625 
nm, and horizontal axis is along two nearest neighbor vor-
tex sites. 
 
don equation that is only applicable in the condition of  
>> . Restrictively speaking, the results of this paper 
could only be valid to superconductors in this condition. 
For arbitrary type-II superconductors ( > /21/2), the 
more complicated Ginzburg-Landau equations have to be 
used to calculate the magnetic field distribution of vor-
tices. On the other hand, although the magnetic field dis-
tributions of vortices obtained from these two models 
defer in some fine details, the general shapes are similar. 
We believe that the general trends obtained from this 
paper could be applied to most type-II superconductors.  

For ferromagnetic materials M is saturated in high 
fields. For example, for nickel, M is saturated at about 
200 Oe of H for bulk material. For a Ni dot of a disc 
shape, due to the demagnetization effect M is saturated 
in a higher field when it is magnetized in a vertical direc-
tion. When the demagnetization factor is included the 
actual field (H) acting on the dots is always smaller than 
the saturation field under the conditions discussed in this 
paper. So the saturation will not play a role in our model. 
 
3. The General Behaviors of Pinning from  

Magnetic Dots 
 
In the calculation, the parameters that can be changed 
include λ, ξ, µ, C, dot orientation angle, dot thickness (d), 
and dot radius (R). The dot orientation angle defines the 
orientation of the triangular dot lattice relative to the 
moving direction of vortices that is perpendicular to the 
direction of the current flow in the superconductor. In 
this paper, we only present the results from two different 
orientation angles (30 degree and 15 degree). Their con-
figurations are shown in Figure 3. The arrows in Figure 
3 represent our calculation paths. Figure 4 shows the 
force acting on the vortex from the magnetic dots along 
the arrow direction shown in Figure 3(a) under the fol-
lowing conditions: C = 625 nm, d = 50 nm, R = 94 nm 
that is equal to 0.15 C, and µ = 75 (typical value for Co).  
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(a)                               (b) 

Figure 3. The orientations of the periodic dot array relative 
to the sample strip and calculation paths of two cases. (a) 30 
degree; (b) 15 degree. 
 

 

Figure 4. Pinning forces calculated along the path shown in 
Figure 3(a) with C = 625 nm, d = 50 nm, R = 94 nm and µ = 
75. The values of  and  were shown inside the figures. 
 
The values of ξ and λ are displayed inside the figure. The 
values of ξ = 2 nm and λ = 150 nm used in Figure 4(a) 
are very close the accepted values of cuprate at zero de-
gree temperature [28]. The values of ξ and λ used in 
Figure 4(b) are close the values of cuprate at 77 K. 
Please note that the maximum force in Figure 4(a) is 

about one order of magnitude larger than that in Figure 
4(b), although the shapes of curves in these two figures 
are similar. Figure 4(c) depicts the result of ξ = 30 nm 
and λ = 150 nm. These values of ξ and λ resemble the 
condition of low-Tc superconductors such as Pb/In alloy 
[28]. In comparison with Figure 4(a), Figure 4(c) shows 
that as ξ increases not only the maximum pinning 
strength decrease, but also the curve becomes smooth 
near the places where the pinning force is maximum. 
These are due to the fact that as ξ increases, the magnetic 
field intensity and gradient at and near the vortex core 
region reduce, which result in a smoother and smaller 
force. 

The general behaviors of the pinning force under the 
30˚ orientation angle configuration are as follows. The 
vortex experiences no pinning force from the dot when 
the centers of the two coincide. As the two shift apart 
under the influence of the Lorentz force, there is an at-
tracting force pulling the vortex back. The force reaches 
a maximum when the center the vortex being at the edge 
of the dot. The maximum forces are in the range of 10-11 
to 10-10 Newton depending upon the parameters. As the 
vortex moves beyond the dot edge, the attracting force 
decreases. When the vortex reaches the middle point 
between two dots, the pinning is zero. The force direc-
tion is reversed when the vortex crosses the middle point, 
as it is attracted by the other dot. The zero-force position 
at the dot center is stable, whereas the one between two 
dots is unstable. 

We also calculated the pinning behaviors at other con-
figurations. Figure 5 shows the result from 15 degree of 
the dot orientation angle. Other parameters are shown in 
the figure caption. In this calculation, we assume that 
initially the system is in a match condition, so that one 
dot traps one vortex. We then pass a large current 
through the superconductor so that vortices depin from 
the dot pinning centers by a large Lorentz force that is 
much stronger than the pinning force. In this case, the 
vortices are moving along the path shown in Figure 3(b). 
Also in the calculation, we only calculate the pinning 
force along the path direction.  The initial behavior of 
the pinning force for the vortex is the same as the case 
shown in Figure 4. When the vortex moves to the edge 
of the trapping dot, it experiences a maximum pinning 
force. After the vortex leaves that dot, the force de-
creases. Under this configuration shown in Figure 3(b), 
the vortex glances through another dot after it leaves the 
first dot. When the vortex at the position of C, it should 
experience a strongest attraction force from the second 
dot. However, at this point, the attraction force is per-
pendicular to the vortex path, the component of the force 
along the path direction is very close to zero as shown in 
Figure 5. Before and after the distance of C, the compo-
nent of the attraction force along the path from this dot  
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Figure 5. Pinning force calculated along the path shown in 
Figure 3(b) with ξ = 2 nm, λ = 150 nm, C = 625 nm, d = 50 
nm, R = 94 nm and µ = 75. 
 
should not be zero, which is consistent with the calcula-
tion result shown in Figure 5. After the vortex moves 
into an open space, we expect that it only experiences 
very little force from surrounding dots, which is also 
consistent with the calculation as shown in the figure. If 
the current is just above the critical current of the sample, 
the Lorentz force is comparable with the pinning force. 
The vortex may not move in a straight path as shown in 
Figure 3(b). Instead, it may move in a zigzag path under 
the influence of the Lorentz, pinning, and repulsing 
forces between vortices [22]. This case is beyond the 
scope of this paper. 

The maximum strength of internal pinning force of a 
superconductor can be estimated from its critical current 
density: 

 
int dτ F J B              (12) 

A typical Jc of a high quality YBa2Cu3O7-δ (YBCO) 
thin film at 77 K is about 106 A/cm2. For a sample thick-
ness t = 200 nm, Fint = Jc Φ0 t = 4 × 10-12 N. Notice that 
the maximum strength of external pinning force we ob-
tained from the magnetic dot in the situation of cuprate at 
77 K is 3.4 × 10-11 N for a dot thickness of 50 nm, which 
is about one order of magnitude higher than the intrinsic 
pinning force. This means that the magnetic dots depos-
ited on the surface will have a stronger ability to hold the 
vortices in place than the internal pinning centers.  
 
4. The Dependence of the Attraction Force  

upon Various Parameters 
 
Since in this paper we mainly concentrate on the magni-
tude of the attraction force from the magnetic dot, all the 
results reported below are the maximum value obtained 
under the configuration shown in Figure 3(a).  

The dependence of force upon the thickness of the dot 
is shown in Figure 6. In this calculation, other parame-
ters were ξ = 2 nm, λ = 150 nm, µ = 75, C = 625 nm, and 

R = 0.15 C. As the thickness of the dot increases, the 
pinning should also increase because the volume of the 
ferromagnetic materials increases. The volume depend-
ent increase should be linear. The non-linear dependence 
of force upon the thickness shown in Figure 6 originates 
from the volume dependence plus the demagnetization 
effect. As the thickness increases, the demagnetization 
factor N reduces, which also enhances the pinning force. 
Here we quote a few specific values of the forces. When 
the thicknesses of the dot are 50 nm, 100 nm and 200 nm, 
the attraction forces are 2.3 × 10-10 N, 6.1 × 10-10 N and 
1.9 × 10-9 N, respectively. It shows that when the thick-
ness of the dot doubles the force increases about three-
fold.  

We then calculated the dot size dependence, which is 
shown in Figure 7. In this calculation, we used ξ as a 
parameter that is shown in the figure. Other parameters 
were λ = 150 nm, C = 625 nm, d = 50 nm and µ = 75. 
We can draw three conclusions from the figure. First, the 
figure shows that as the coherence length increases, the 
attraction force decreases. Second, all curves in Figure 7 
have a plateau region from about R = 50 nm to R = 230 
 

 

Figure 6. The dependence of the maximum pinning force 
upon the thickness of the dot under the condition of ξ = 2 
nm, λ = 150 nm, C = 625 nm, R = 94 nm and µ = 75. 
 

 

Figure 7. The dependence of the maximum pinning force 
upon the size of the dot for three values of . Other pa-
rameters were λ = 150 nm, C = 625 nm, d = 50 nm and µ = 
75. 
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nm. In this region, the strength of the attraction varies 
little. When R is larger than 230 nm the attraction force 
decreases. This decrease is due to the restriction from the 
lattice constant C. In the calculation, we chose C = 625 
nm. When R is approaching 300 nm, the two adjacent 
dots are very close. In this case, when a vortex moves to 
the edge of the first dot, it experiences a maximum at-
traction from this dot to pull it back. At the same time, 
due to the large value of the penetration length, part of 
the vortex is already in the region occupied by the sec-
ond dot. The second dot also exerts a force on that vortex. 
This is opposite to the first one, so that the total force 
reduces. If we use a larger lattice constant, the plateau 
region will extend farther to the right. Third, as the dot 
size decreases below 100 nm, the forces show different 
behaviors for different coherent lengths. When the dot 
size reduces two different factors are at work. Number 
one is that when the dot size reduces the demagnetization 
factor reduces, which increases the force. Number two is 
the mass of the dot. As the size of dot reduces, the fer-
romagnetic materials reduces, which results in a smaller 
force. It seems that for small coherence length (ξ = 2 nm) 
the demagnetization effect dominates. On the other hand, 
for relatively large coherence length (ξ = 10 nm) the 
mass effect dominates. When the coherence length is 5 
nm, the force is almost constant when the dot size re-
duces. We need to point out that the coherence length of 
cuprate at 77 K is about 4 nm, which is very close to 5 
nm. It means that if we want to use ferromagnetic dot as 
the external pinning for cuprate at 77 K, the dot size is 
not a factor. Almost any size of dot will give the similar 
pinning force.  

We also studied the force dependence upon the mag-
netic permeability µ. The µ dependence is in the 
pre-factor in Equation (11), which is (µ − 1)/[1 + N(µ − 
1)]. In general, as µ decreases, the attraction force is also 
reduced. The relationship between the force and µ is also 
dependent upon the value of N. If N is zero in case of an 
infinite long dot, then the force is proportional to (µ − 1). 
The force is approximately proportional to µ, except 
when µ is close to one. On the other hand, if N is 1 in 
case of an infinite thin dot, the force is proportional to (µ − 
1)/µ. The force is weakly dependent upon µ until µ is 
close to one. Since in reality we do not have these ex-
treme conditions, we selected two cases to carry out the 
calculation of the µ dependence. In case A, the thickness 
of the dot was 50 nm and the value of N is 0.689. In case 
B, the thickness of the dot was 500 nm and N equals to 
0.125. In both cases, other parameters were ξ = 2 nm, λ = 
150 nm, C = 625 nm, and R = 94 nm. The results are 
depicted in Figure 8. For both cases, when the value of µ 
decreases from 100, the attraction force for both cases 
decreases in a slow pace until µ reaches 25. After that  

 

Figure 8. The dependence of the maximum pinning force 
upon the magnetic permeability µ for d = 50 nm and d = 
500 nm, respectively. Other parameters were ξ = 2 nm, λ = 
150 nm, C = 625 nm and R = 94 nm. 
 
point the attraction force decreases dramatically. The 
average initial values of µ for iron, cobalt and nickel are 
150, 70 and 110, respectively [31]. All of them are much 
higher than 25. Our result indicates that when choosing 
ferromagnetic materials working as external pinning, the 
µ value is not an important factor. 

We also investigated the temperature dependence of 
the attraction force. In this study, we assumed the ferro-
magnetic properties of dots did not change. We also as-
sumed that the ferromagnetic dots were deposited on a 
cuprate thin film. The lengths of ξ and λ of the vortex in 
the thin film change when the temperature changes. We 
used the Ginzburg-Landau theory to calculate the values 
of ξ and λ at different temperatures. Since the theory is 
only valid when the temperatures are close the transition 
temperature (Tc), besides zero degree we only calculated 
a few points near Tc of cuprate, which we assume to be 
90 K. At zero degree we used ξ0 = 2 nm and λ0 = 150 nm. 
The formulas we used to calculate ξ and λ at other tem-
peratures were ξ(t) = 0.74ξ0/(1 − t)1/2 and λ(t) = λ0/[2(1 − 
t)]1/2, which are the relations in the clean limit [32]. In 
the calculation, other parameters were C = 625 nm, d = 
50 nm, R = 0.15 C, and µ = 75. The result is shown in 
Figure 9. It shows that the attraction force almost line-
arly decreases as the temperature increases.  

Finally, we studied the magnetic field strength de-
pendence of the attraction force. As the field strength 
increases, the vortex density increases and the field 
strength at any place also enhances. As shown in Equa-
tion (11), the attraction force should be proportional to 
the external field strength. To confirm this, we carried a 
numerical calculation. In the calculation, we used the 
following parameters: λ = 284 nm,  = 4 nm, R = 40 nm, 
d = 50 nm and µ = 75. The values of λ and ξ used in this 
calculation resemble the values for cuprate at 77 K. In 
the calculation, as the field strength changed, the density 
of dots was also changed so that the matching condition 
was always maintained. Figure 10 shows the result. It  
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Figure 9. The temperature dependence of the maximum 
pinning force. The values of  and  at different tempera-
tures were obtained from the Ginzburg-Landau theory 
under the clean limit of cuprate. Other parameters were C 
= 625 nm, d = 50 nm, R = 0.15 C, and µ = 75. 
 

 

Figure 10. The magnetic field dependence of the maximum 
pinning force under the condition of λ = 284 nm,  = 4 nm, 
R = 40 nm, d = 50 nm and µ = 75. At any magnetic field, the 
value of C was determined under the matching condition. 
 
shows that in low fields the attraction force linearly in-
creases as the field strength increases as expected. This is 
consistent with the experimental observation [12]. Ref-
erence [12] showed that when the magnetic field was 
increased the pinning effect from magnetic dots also en-
hanced. As the magnetic field passes 40 mT, the curve 
then starts to deviate from the linear behavior. The in-
crease slows down. When the magnetic field equals 40 
mT, the value of C equals 205 nm.  Because of the large 
value of λ we used (λ = 284 nm), when the vortex moves 
to the edge of the dot where the attraction reaches the 
maximum, part of the vortex already feel the opposite 
attraction from the adjacent magnetic dot, which results 
in a smaller total force. This is the reason why at high 
fields, the increase slows down from a linear relation.  
 
5. Conclusions 
 
We have developed a theoretical model to describe the 

interactions between the magnetic dots and vortices in 
the superconductor by using the London equation. The 
absolute values of the pinning force under various condi-
tions have been calculated. The external attraction force 
from a soft ferromagnetic dot with a thickness of 50 nm 
could reach 3.5 × 10-11 N for a cuprate sample at 77 K, 
which is about one order of magnitude stronger than the 
intrinsic pinning force in cuprate. We also studied the 
dependences of the attraction force on various parame-
ters. We found that the most effective way to increase the 
external pinning force is to increase the thickness of dot. 
When the thickness doubles, the force increases about 
threefold. On the other hand, in a large range of the dot 
size, the force remains approximately constant. We 
found that the pining force is weakly dependent upon the 
value of µ. We also investigated the temperature and 
magnetic field dependences of the force. When tempera-
ture increases, the attraction force linearly decreases. 
And when the magnetic field increases, the force en-
hances linearly in the low field region. 
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