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Abstract 
 
This paper presents a numerical investigation of the axisymmetric, pressure driven motion of single file 
erythrocyte (i.e., red blood cell) suspensions flowing in capillaries of diameter 8-11 µm. Our study success-
fully recreates several important in vivo hemodynamic and hemorheological properties of microscopic blood 
flow, such as parachute shape of the cells, blunt velocity profile, and the Fahraeus effect, and they have been 
shown to have strong dependence on cell deformability, hematocrit and vessel size. 
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1. Introduction 
 
Investigation of blood flow dynamics and erythrocyte 
(i.e., red blood cell) rheology in capillaries is of great 
importance not only because they are the major site of 
oxygen and nutrient exchange, but also because the 
proper microcirculatory function is primarily determined 
by the rheological behavior of red blood cells (RBCs) in 
these vessels. In capillaries, blood can be viewed as a 
suspension of RBCs in plasma due to the high volume 
fraction (about 99%) of RBCs in the blood cells. It has 
been shown that capillary flow dynamics is significantly 
affected by arrangement, orientation and deformability of 
RBCs in plasma suspension [1]. 

Measuring 5-11 µm in diameter, capillaries are the 
smallest blood vessels in the human body. The average 
size of normal red cells is approximately 7.7 µm in di-
ameter and varies in thickness from ~2.8 µm at the rim to 
~1.4 µm at the center. They assume a biconcave-disc- 
shape in the absence of flow. At the level of capillaries, 
RBCs tend to travel in single file, separated by gaps of 
plasma [2]. An important property of the RBC is that the 
cell membrane is highly deformable. In capillaries, they 
deform and assume an axisymmetric parachute-like 
shape (coaxial with the flow axis) in order to reduce the 
flow resistance, leaving a cell-free plasma layer between 
the RBC and the vessel wall [3,4]. It is also observed that 
under pathological conditions, such as malaria, infected 

RBCs become more rigid than healthy ones. The de-
formability of RBC is a critical determinant of blood 
flow in capillaries, and is the combined result of several 
mechanical and physiological properties. 

Another major determinant of blood property is the 
hematocrit (Hct), which is defined as the volume fraction 
of the RBCs to the total blood volume and varies from 
29-41% for a one-year-old child to 38-46% for adults. 
When the term hematocrit is applied to microvessels, it 
can include two different estimates of red cell distribu-
tion, the tube hematocrit (HT), defined as the instantane-
ous volume fraction of RBCs in a specified volume of 
capillary and the discharge hematocrit (HD), defined as 
the proportion of RBCs flowing out the capillary. The 
Fahraeus effect [5] is characterized as the reduction of 
HT below HD which occurs in microvessels. The effect is 
due to the fact that the mean velocity of the RBCs (Uc) is 
higher than the mean bulk flow velocity (Um) [6]. The 
ratio of these velocities decreases with increasing hema-
tocrit. 

Indeed, the blood flow dynamics in capillaries has not 
been extensively explored. Within this context, the ap-
plication of mathematical and numerical models has been 
shown to provide useful information on dynamic charac-
teristics of blood flow under complex flow conditions 
that is difficult to obtain through in vivo or in vitro ex-
periments. The nature of blood flow in capillaries re-
quires a different model, if not more complex, from those 
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for blood flow in big and medium sized vessels in which 
the fluid is well approximated by a continuum medium. 
At the same time, in order to obtain a better understand-
ing of blood flow in capillaries, two other aspects must 
be considered in the numerical simulation as well. One 
aspect is that multiple cells must be considered to ac-
count for cell-cell hydrodynamic interaction because 
under high Hct conditions, the interaction between RBCs 
becomes significant. The other is that deformation of the 
cell must also be considered in the model, as it is a major 
determinant of many physiologically significant phe-
nomena, such as formation of the cell-free layer, and the 
Fahraeus effect. Tsubota et al. [7] carried out a numerical 
study on effects of Hct on blood flow properties in a 
two-dimensional channel using particle method and sug-
gested that shape of the red cells and the flow in capil-
laries is significantly affected by the hematocrit level. 
However, the study did not include the effect of the cell 
deformability and vessel size. Pozrikidis [8] investigated 
the axisymmetric motion of RBCs in cylindrical capil-
laries using a boundary-integral method. The effect of 
capillary radius and cell spacing on the discharge hema-
tocrit and apparent viscosity was studied. Zhang et al. [9] 
developed an immersed boundary lattice Boltzmann ap-
proach to investigate the blood flow in microvessels. 
However, the deformability of the red cell was only con-
sidered to a limited extent in [8] and [9]. In addition, 
there was a lack of quantitative analysis of the RBC and 
the flow behaviors in the study of [9]. 

The objective of this study is to predict the blood flow 
properties in capillaries using numerical methods. We 
present two-dimensional computational simulations of 
blood flow in vessels of diameter 8-11 µm at HT of 
10-41%, taking into consideration the particulate nature 
of blood and cell deformation. The simulation is based 
on the numerical solution of the Navier-Stokes equations, 
and the red blood cell membrane is modeled as mem-
brane particles connecting by springs. Also presented in 
this paper are parametric simulation studies on the effect 
of hematocrit, deformability, and size of the vessels on 
the shape change of the cells, plug-flow velocity profile, 
cell-free layer thickness, and the Fahraeus effect. A 
qualitative/quantitative comparison between the simula-
tion results and experimental data is also presented in 
this paper. 
 
2. Numerical Simulations and Discussions 
 
In capillary vessels, blood is considered as a multiphase 
fluid because the size of the RBC is comparable to the 
size of the vessel. It is anticipated that capillary flow 
dynamics should be similar to that of a suspension of 
deformable particles. Based on the fact that blood plasma, 

the liquid component of blood in which the blood cells 
are suspended, is composed of mostly water (90% by 
volume), the plasma flow in capillaries is assumed to be 
governed by the Navier-Stokes equations for the incom-
pressible, Newtonian fluid  

p
t

          

u
u u u f        (1) 

0 u                   (2) 

where u and p are the fluid velocity and pressure any-
where in the flow; ρ is the fluid density; µ is the fluid 
viscosity; f accounts for the external body force. Both ρ 
and µ are assumed to be constant for the entire fluid.  

The deformable shape of the RBCs is modeled by the 
elastic spring model described in Appendix A. The 
model has been validated and applied to a number of 
blood flow studies [10,11]. It has been shown to have the 
ability to capture the deformation of the RBCs under 
various flow conditions [10,11], which is fundamental to 
the successful simulation of the flow behavior. It takes 
into consideration the structure of the RBC membrane 
skeleton. The membrane of the cell has strong resistance 
to changes in area/volume and shear deformation which 
is consistent with other people’s findings [12]. It also 
shows the ability of recovering to the initial biconcave 
shape after the removal of the external flow field [11]. 

The motion of the deformable cells and fluid domain 
are coupled together by the immersed boundary method 
[13] described in Appendix B. This method is an innova-
tive approach to deal with the problem of modeling fluid 
flows interacting with a flexible, elastic boundary. The 
applications of immersed boundary method to the simu-
lation of deformable cells can be found in, e.g., [10,11, 
14-16]. 

For the simulation, the RBCs are suspended in blood 
plasma which is assumed to be incompressible, Newto-
nian and has a density ρ = 1.00 g/cm3 and a dynamic 
viscosity µ = 0.012 g/(cm·s). The viscosity ratio which 
describes the viscosity contrast of the fluid inside and 
outside the RBC membrane is fixed at 1.0. The fluid 
domain is a two dimensional channel of horizontal length 
20-25 µm. The width of the channel is varied from 8 µm 
to 11 µm. A single file of RBCs coaxial with the flow 
axis is placed vertically with uniform center to center 
distance, which can be adjusted to correspond varies of 
hematocrit. 

The parameters in the simulation of the shape change 
of the RBCs are set as follows: the membrane mass m = 
2.0 × 10-4 g and the membrane viscosity γ = 8.8 × 10-7 
Ns/m. The penalty coefficient ks = kb × 104. The spring 
constants are set as kl = kb. The bending constant is 
closely related to the rigidity of the membrane. A higher 
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kb value results a less deformable cell. The biconcave 
shape obtained for s* = 0.42 resembles the normal 
physiological shape of the RBC very well and is used for 
the simulations in the current study.  

For all computations, the grid resolution for the com-
putational domain is 80 grid points per unit length with 
the unit length equal to 10 µm. To obtain a Poiseuille 
flow, a constant pressure gradient is prescribed as a body 
force. Periodic boundary conditions are imposed at the 
left and right boundary of the domain. The evolution of 
the periodic file of cells from a specified initial configu-
ration with uniform cell spacing is computed. Simula-
tions from the unstressed biconcave shape (Figure 1(a)) 
are performed until steadily translating deformed shapes 
(e.g., Figure 1(b)) are obtained in the flow. 
 
2.1. RBC Deformation 
 
The deformation of RBCs in plasma flow with varying 
hematocrit, cell deformability and vessel diameter is 
studied. Simulations are conducted in the channel de-
scribed above. As the flow starts, the RBCs change 
quickly from its static biconcave shape to parachute 
shape. At the mean time, RBCs move down stream with 
an increasing velocity. The change of shape stops when 
the hydrodynamic force is balanced by the elastic force 
of the cell membrane and the cell velocity become con-
stant. The equilibrium shape strongly depends on the 
hematocrit (Figure 2(a) and 2(b)) and the deformability 
of the cell membrane (Figure 2(c)). It is also depends on 
the width of the flow channel (Figure 2(d)). These re-
sults are in qualitative agreement with experimental [17] 
and simulation results [7,8]. The vector fields of the flow 
velocity are also shown in Figure 2. 

We also wish to quantitatively study how the shape of 
the red cells is affected by the factors such as hematocrit, 
vessel diameter and the deformability of the cell. To this 
purpose, equilibrium length L of the cell and the defor-
mation index DI, defined as DI = w/L, where L and w are 
shown in Figure 1(b), are investigated in this paper. 
Firstly, equilibrium length L is plotted versus hematocrit 
for the channel width D = 8, 9, 10, and 11 µm in Figure 
3(a). The length L increases almost linearly with the in-
crease of HT for all the vessels in the range of HT = 
10-41%. Figure 3(b) shows deformation index DI de-
creases almost linearly with the increase of HT over the 
same range for these vessels. In Figure 4, the cell-free 
layer thickness H is shown to decrease with the increase 
of HT for the 11 µm-capillary and the results are in good 
agreement with the experimental results provided by 
Albrecht et al. [18]. We also wish to investigate the ef-
fect of the deformability of the membrane on the size of  

 
(a)                            (b) 

Figure 1. RBC shape obtained using the spring model: (a) 
Equilibrium shape of RBC under no-flow condition; (b) 
Parachute shape of RBC in Poiseuille flow. 
 
red cell in the blood flow. Figure 5(a) and Figure 5(b) 
show the dependence of the cell length L and deforma-
tion index DI on membrane bending constant kb, respec-
tively. The length L (respectively deformation index DI) 
increases (respectively decreases) with the increase of kb 
and the rate of change is less severe for rigid cells. 
 
2.2. Blunt Velocity Profile 
 
Comparing to the parabolic profile of the Poiseuille flow 
for the pure plasma, the velocity profile is flat topped in 
the center region for the blood flow in capillaries con-
taining RBCs under the same pressure gradient. The ef-
fect of hematocrit, deformability of the cell, and vessel 
size on the velocity profile has been investigated in this 
paper. 

The effect of increasing hematocrit on the velocity 
profile is show in Figure 6(a) for a 10 µm-capillary. The 
profile for HT = 10% appears to be parabolic, but with 
significantly reduced centerline velocity. The flow shows 
a more and more blunt profile with increasing tube he-
matocrit HT. The maximum velocity at the centerline 
decreases rapidly when more RBCs are present. When 
the tube hematocrit reaches 41%, the maximum velocity 
at the centerline reduces to about 45% of that of the pure 
plasma. 

As shown in Figure 6(b), we adopted six different 
bending constant kb values and compare the mean veloc-
ity in blood flow of RBC suspension of same tube he-
matocrit (HT = 21%). It is observed that the flow profile 
is less blunt with the increase of the RBC deformability. 
However, the distribution of axial velocity in the capil-
lary seems less sensitive to the change of deformabilty 
than the hematocrit of the blood. Since a decrease in  
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(a)                                                              (b) 

 

 
(c)                                                           (d) 

Figure 2. Effect of hematocrit, deformability, and vessel size on the equilibrium shape of RBCs in Poiseuille flow: (a) HT = 
21%, Kb = 5 × 10-15 Nm, D = 10 μm; (b) HT = 31%, Kb = 5 × 10-15 Nm, D = 10 μm; (c) HT = 21%, Kb = 1.5 × 10-14 Nm, D = 10 
μm; (d) HT = 21%, Kb = 5×10-15 Nm, D = 8 μm. 
 

 
(a)                            (b) 

Figure 3. Dependence of (a) equilibrium cell length; (b) deformation index; on hematocrit for capillaries of various sizes. 
 
blunt flow radius causes a reduction in resistance to flow, 
we can conclude that RBC flexibility plays a major role 
in reducing the flow resistance of blood in capillaries. 

The velocity profile are also studied for an 8 µm-cap- 
illary for HT = 10, 21, 31, and 41% as well and the re-
sults are shown in Figure 6(c). Similar to the 10 µm- 
capillary, the flow becomes blunter for higher HT. It is 

interesting to note that, comparing to the flow in the 10 
µm-capillary, the flow in the 8 µm-capillary is less devi-
ated from pure plasma Poiseuille flow for Ht = 10% and 
more blunt for higher hematocrit values. The reason is 
that in a narrower capillary with the same hematocrit, the 
intercellular space between two neighboring cells is lar-
ger, which allows the flow to develop more fully than in  



T. WANG  ET  AL. 353 
 

 

Figure 4. Dependence of the thickness of the cell-free layer 
on hematocrit for the 11 μm-capillary with HT = 21%, kb = 
1 × 10-15 Nm. 
 

 
(a) 

 

 
(b) 

Figure 5. Dependence of (a) equilibrium cell length; (b) 
deformation index; on spring bending constant for the 10 
μm-capillary with HT = 21%. 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 6. The blunt velocity profiles of blood flows: (a) in 
the 10 μm-capillary with various hematocrit levels: pure 
plasma (solid line), HT = 10% (- -), HT = 21% (− · −), HT = 
31% (· · ·), HT = 41% (― · · ―); (b) in the 10μm-capillary 
with various spring constants: pure plasma (solid line), Kb = 
1 × 10-15 Nm (- -), Kb = 5 × 10-15 Nm (− · −), Kb = 1.5 × 10-14 
Nm (― ―), Kb = 2.5 × 10-14 Nm (· · ·), Kb= 5 × 10-14 Nm (― · 
· ―); (c) in the 8 μm-capillary with various hematocrit lev-
els: pure plasma (solid line), HT = 10% (- -), HT = 21% (− · 
−), HT = 31% (· · ·), HT = 41% (― · · ―). 
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a wider capillary. However, this effect is only significant 
when the hematocrit is low. As the hematocrit becomes 
higher, the flow is severely blunted by the increasing 
number of cells in the vessel. 
 
2.3. The Fahraeus Effect 
 
In capillary vessels, the red cells speed up relative to the 
plasma as they squeeze through the capillary. Since they 
must travel faster than the plasma, there must be fewer of 
them present to maintain the same proportions of cells 
and plasma as blood exits the capillary. This is the 
so-called Fahraeus effect. The reduction of the tube he-
matocrit HT to the discharge hematocrit HD due to the 
Fahraeus effect is related to the mean flow velocity Um 
and the cell velocity Uc [6] 

mT

D c

UH

H U
                  (3) 

In the laboratory study [18], the feed hematocrit HF 
instead of tube hematocrit HT was used as a control pa-
rameter. It has been shown by Yen and Fung [19] that HT 

< HF for the capillaries used in the study and therefore, 
our numerical results shown in Figure 7 agree well with 
the experimental results in [18] and simulation results of 
[8] which illustrated that the hematocrit ratio increased 
as the tube hematocrit increased.  

The hematocrit ratio is also strongly related to the de-
formability of the red cells. Figure 8(a) shows the ratio 
increases with the increase of kb rapidly when the cell is 
more deformable and the increase become slower as the 
cell become more rigid. On the other hand, the hema-
tocrit ratio is found to decrease linearly with the increase 
of the deformation index (Figure 8(b)). 
 

 

Figure 7. Dependence of hematocrit ratio on vessel size for 
various hematocrit levels. The spring bending constant Kb = 
5 × 10-15 Nm. 

 
(a) 

 

 
(b) 

Figure 8. Dependence of hematocrit ratio on (a) spring 
bending constant; (b) deformation index; for the 10 µm- 
capillary with HT = 21%. 

 
3. Conclusion 
 
In summary, we have simulated the dynamics of the 
blood flow and RBCs in capillary using a numerical ap-
proach. The results show that RBCs in narrow capillaries 
change to parachute shape in the flow field. The profile 
of the capillary flow was markedly blunt in comparison 
to the parabolic one which characterizes the pure plasma 
flow. The hematocrit ratio reduces from the value of 
unity (the Fahraeus effect) in these capillaries. Our study 
reveals that the RBC shape, bluntness of the flow profile, 
and the reduction of the hematocrit ratio are strongly 
depend on the tube hematocrit, deformation of the cell, 
and the size of the vessel. These findings are consistent 
qualitatively or quantitatively with other people’s ex-
perimental and numerical results. We also find that the 
distribution of axial velocity in the capillary is more sen-

Copyright © 2010 SciRes.                                                                                 JMP 



T. WANG  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                 JMP 

355

sitive to the change of hematocrit than the deformability 
of the cells. The results indicate that the pressure differ-
ence in the blood flow has to increase in the capillary 
vessels in order to sustain the same flux rate of the red 
blood cells when the hematocrit or the rigidity of the cell 
increases. The study yields useful insights into under-
standing the dynamic characteristics of blood flow in 
capillaries. The potential applications of this study in-
clude the analysis of some pathological conditions, such 
as sickle cell disease (SCD), in which the RBCs become 
hard, pointed and sticky and shaped like crescents or 
sickles. This model could also be used to predict micro-
scopic hemodynamic and hemorheological behaviors in 
more complex microcirculation situations, such as curved 
and stenotic microvessels, branches and post-capillary 
expansions. 
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Appendices 
 
Appendix A. RBC Model 
 
In two-dimensional simulations, the biconcave shape of 
the RBC is approximated by the characteristic cross sec-
tion in the plane that is parallel to the flow direction if 
the cell were in shear flow. This paper adopts the elastic 
spring model that has been proposed by Wada and Ko-
bayashi [20] and used by Tsubota et al. [7] and Wang et al. 
[10] to obtain the shape of RBC in the absence of exter-
nal force. Based on this model, the RBC membrane is 
approximated by a group of membrane particles con-
necting with the neighboring membrane particles by 
springs (Figure A1). The total elastic energy of the RBC 
membrane is defined as E = El + Eb + Γs. In particular, El 
is the energy for stretch/compression which is induced 
by the change of the length l of the spring with respected 
to its reference length l0 

2
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k l l
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and Eb is the energy for bending due to the change in 
angle θ between two neighboring springs 
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The shape change is stimulated by reducing the total 
area of the circle s0 through a penalty function  
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In Equations (A1) and (A2), N is the total number of 
the spring elements; kl and kb are spring constants for 
changes in length and bending angle, respectively. In 
Equation (A3), s and se are the time dependent area and 
the equilibrium area of the RBC, respectively. Based on 
the principle of virtual work, the elastic spring force act-
ing on the membrane particle i is  

i
i

E
 


F

r
                 (A4) 

with ri being the position of the i-th membrane particle. 
Initially, the RBC is assumed to be a circle which is 

discretized into a group of membrane particles so that 
springs are formed by connecting the neighboring parti-
cles. When the area is reduced, each RBC membrane 
particle moves according to the following equation of 
motion 

i im

 

Figure A1. The elastic spring model of the RBC membrane. 
 

Here, (˙) denotes the time derivative; m and γ repre-
sent the mass and the viscosity of the membrane particle. 
The position ri of the i-th membrane particle is solved by 
a discrete analogue of Equation (A5) via a second-order 
finite difference method. The total elastic energy stored 
in the membrane decreases as the time elapse. The final 
shape of the RBC for a given area ratio s* = se/s0 is ob-
tained as the total elastic energy is minimized. 
 
Appendix B. Immersed Boundary Method 
 
The boundary of the deformable structure is discretized 
spatially into a set of boundary nodes. The force located 
at the immersed boundary node X affects the nearby 
fluid mesh nodes x through a 2-D discrete δ-function 
Dh(X-x)  

      for - 2hD h   F x F X X x X x     (B1) 

where h is the uniform finite element mesh size and 
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with the 1-D discrete δ-functions being 
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     (B3) 

The movement of the immersed boundary node X is 
also affected by the surrounding fluid and therefore is 
enforced by summing the velocities at the nearby fluid 
mesh nodes x weighted by the same discrete δ-function 

      for - 2  hh D    h 2U X u x X x X x    (B4) 

After each time step Δt, the position of the immersed 
boundary node is updated by 

 t t t tt   X X U X            (B5) 

Equations (1) and (2) are numerically solved by a fi-
nite element technique combined with the immersed 
boundary method described in this section. 

i r r F                  (A5) 
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