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ABSTRACT 

Rotating flows represent a very interesting area for researchers and industry for their extensive use in industrial and 
domestic machinery and especially for their great energy potential, annular flows are an example that draws the atten- 
tion of researchers in recent years. The best design and optimization of these devices require knowledge of thermal, 
mechanical and hydrodynamic characteristics of flows circulating in these devices. An example of hydrodynamic pa- 
rameters is the speed of rotation of the moving walls. This work is to study numerically the influence of the rotating 
speed ratio Γ of the two moving cylinders on the mean and especially on the turbulent quantities of the turbulent flow in 
the annular space. The numerical simulation is based on one-point statistical modeling using a low Reynolds number 
second-order full stress transport closure (RSM model), simulation code is not a black box but a completely transparent 
code where we can intervene at any step of the calculation. We have varied Γ from −1.0 to 1.0 while maintaining al- 
ways the external cylinder with same speed Ω. The results show that the turbulence structure, profiles of mean veloci- 
ties and the nature of the boundary layers of the mobile walls depend enormously on the ratio of speeds. The level of 
turbulence measured by the kinetic energy of turbulence and the Reynolds stresses shows well that the ratio Γ is an in- 
teresting parameter to exploit turbulence in this kind of annular flows. 
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1. Introduction 

Former Work 

Rotating flows are met in several industrial applications 
like turbo-machines, thermal motors and especially in 
turbines [1]. The annular rotating flows are met in re- 
volving jets [2] and devices of combustion in order to 
increase the mixture between the reagents and to stabilize 
the flame or to obtain advantages of better mixing [3]. To 
begin this study, it would be interesting to recall previous 
numerical and experimental work treating rotating flows 
specifically, annular flow object of this study. On the 
numerical level, it is about the years 1970 that the first 
models for turbulence in the rotating flows were born, 
Morse [4,5] employed a model of the k-ε type in small 
Reynolds number, but the author noted the existence of 
an abnormally important laminar zone. He then proposes 
a modified version which takes account of the anisotropy 
of turbulence close to the walls. Choukairy et al. [6] have 
studied numerically and analytically the transient laminar 

free convection in a vertical cylindrical annulus filled 
with air Pr = 0.71. For modelling of this kind of flows, 
we can mention the work of Gharbi et al. [7] who deter-
mined the average heat transfer coefficients for forced 
convection air flow over a rectangular flat plate and the 
work of Dhakal and Walters [8] who proposed a 
three-equation variant of the SST k-ω model and also the 
work of Hayat et al. [9] who propose an analytic solu- 
tion for the magnetohydrodynamic rotating flow. For 
annular flow, the combined forced and free convection 
flows in a horizontal annulus are studied numerically by 
Kotake and Hattori [10]. For smooth fixed walls, we can 
cite the work of Neto et al. [11] who presented a nu- 
merical modelling of hydrodynamics and mass transfer in 
developing laminar axial flow and the work of Cadiou et 
al. [12] who studied the stability of natural convective 
flows in narrow horizontal annuli. Farinas et al. [13] 
have also worked on the same flows but the walls had 
wings. Some other authors have worked with moving 
walls like Lin [14] and Poncet et al. [15] who consid-  
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ered turbulent flows in a differentially heated Taylor- 
Couette system with an axial Poiseuille flow, numerical 
approaches were based on the Reynolds Stress Modeling 
(RSM). This RSM model applied to rotating flows has 
also been used by Raddaoui [16] for the same geometry 
as the study here but the author has dealt with the mod- 
eling and simulation of the influence of the height wings 
bonded to the cylindrical walls on the characteristics of 
the annular flow. However, the work proposed here has 
the importance of treating a study that was not done be- 
fore; it is the influence of the rotating speed ratio of the 
rotating cylinders on the distribution of the turbulence in 
the annular space and especially the relation between this 
parameter and the level of turbulence in this kind of 
flows. The same study has done by Poncet et al. [17] but 
this study has done for rotating discs and not for ro- 
tating cylinders as we propose in our present study. The 
study of Iacovides and Toumpanakis [18], in which four 
models of turbulence are examined, proves that the 
model of transport of the tensions of Reynolds is the 
suitable level of closing to study such complex flows. All 
these works have shown that this level of closure is the 
most appropriate to describe rotating flows with or with- 
out through flow (centripetal or centrifugal), while the 
classical k-ε model, which is blind to any rotation effect 
presents serious differences. On the experimental level, 
we can quote the work of Ivanic et al. [19] as well as 
work of Loiseleux et al. [20] which studied the configu- 
ration of the central jet turning. The dynamics of the 
flows made up of an annular jet turning was studied by 
Adjovi and Foucault [21], they carried out an inventory 
of the swirling structures by laser tomography. Then, 
they concerned the profiles speeds by LDV and PIV 
more close possible of the tail pipe of the jets. Rotating 
flows are exploited experimentally also in pump-turbine 
by Hasmatuchi et al. [22]. For annular flow, we cite the 
work of Seban and Hunsbedt [23] who used fixed walls 
and Ball et al. [24] and Pfitzer et al. [25] who have ex-
perimented with moving walls. The annular flow has 
been treated also by researchers who compared the cal- 
culations with experimental results like the work of Hei- 
kal et al. [26]. Ould-Rouis et al. [27] have determined the 
hydrodynamic characteristics and the mass transfer in the 
entrance region of an annulus with simultaneous de- 
velopment of velocity and concentration fields when the 
walls were fixed. Other authors were interested at similar 
flow but the walls are moving like Bouafia et al. [28]. All 
these previous works, numerical or experimental, dealing 
with rotating flows have occupied several important as- 
pects, but we have not seen studies on the influence of the 
moving walls speed ratio on the nature of the annular flow. 
For this reason, this work can be considered to be an 
innovation and also a confirmation of the RSM model 
to study this kind of complex flows. In particular, we 

highlighted the study of the relation between turbulent 
quantities and the rotating speed ratio of the rotating cyl-
inders. 

This paper is divided as follows: Section 2 is the de-
scription of the geometry of our out-flow, whereas Sec-
tion 3 is devoted to the differential Reynolds Stress Mo- 
del RSM. In Section 4, Numerical method is presented, 
in Section 5, we have presented and interpreted the nu- 
merical simulation of the effect of rotating speed ratio on 
the flow structure, the mean and turbulent quantities be-
fore concluding in Section 6. 

2. Geometry of the Flow 

The system of the Figure 1 is the same as that used by 
Raddaoui [16], it represents a device with an annular 
space between two cylinders in uniform rotation move- 
ment; the fluid considered in annular space is income- 
pressible. The value of interior ray is R1 = 100 mm and 
the external ray is R2 = 200 mm, the two cylinders are of 
the same length h = 200 mm and can turn in the same 
direction or in the opposite direction. The axis of z cor- 
responds to the axis of rotation. We note Γ the rotating 
speed ratio of the interior cylinder by the external one 
and we vary Γ from −1.0 to 1.0 by taking the following 
values: −1.0, −0.8, −0.6, −0.4, −0.2, 0.0, 0.2, 0.4, 0.6, 0.8 
and 1.0, we maintained always the cylinder external with 
same speed Ω corresponding to a Reynolds number of 
the rotation 2

2R   based on the external ray of the 
cavity constant equal to , ν is the kinematic vis- 
cosity of water. The level of Reynolds number corre- 
sponds to a steady flow, the work of Poncet et al. (2008) 
[17] has showed that the phenomena of unsteady prob- 
lems and instability start have to appear only for one very 
high rotation corresponding to a Reynolds number of 
rotation higher than 106. 

52 10

3. Statistical Modelling 

To simulate numerically the rotating turbulent flow in the 
annular space, we have used the RSM model (Reynolds 
Stress Model), this model is an improved version of sev- 
eral other former versions like that of Elena and Schiestel 
[29] who used a model of transport of the tensions of 
Reynolds derived from the model from Launder and 
Tselepidakis [30]. This model is more satisfactory than 
that of Hanjalic and Launder [31] and the ASM model 
 

Fixed walls
R2

Fluid 
Mobile walls 

R1 

 h

Figure 1. Schematic representation of the geometry out-flow 
and notations. 
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developed by Schiestel et al. [32]. But the authors note a 
too large laminarisation of the flow compared with the 
experimental results of Itoh et al. [33]. Many improve- 
ments appeared like those of Elena and Schiestel [34] 
who proposed an alternative to the model of transport 
equations of the tensions of Reynolds (RSM), which 
takes into account the implicit effects of rotation on the 
turbulent field and which they compare with more tradi- 
tional models. Iacovides and Theofanopoulos [35] used 
an approach based on an algebraic model of the tensions 
of Reynolds in the zone of fully developed turbulence 
and an assumption length of mixture close to walls. A 
complete review of the various studies concerning the 
models of turbulence for the flows in rotation was made 
by Schiestel [36] and Elena [37]. Taking into account the 
complexity of the rotating flows, Elena [37] successively 
used three models of the second order of the type RSM 
(Reynolds Stress Model). The last version is a model of 
the second order to small Reynolds number, which ac-
counts better for the effects of the rotation and the phys-
ics of these flows. This model will thus be selected for all 
our numerical study. It is based on the resolution of the 
following transport equation of Reynolds stresses: 

, 1 , 2 , ,
,
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,
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where ij ij ij ij, , T

,P

 and ij  denote respectively, the 
production, pressure-strain correlation, dissipation, diffu- 
sion and extra terms. For the terms ij,ij ij   and ij , 
the reader can refer to previous papers by Elena and 
Schiestel [34] or Poncet et al. [38] or by Elena [37] in his 
PhD thesis. For the term Tij, many researchers like Cam- 
bon and Jacquin [39] and Cambon et al. [40-42] and 
Bertoglio et al. [43] and Reynolds [44] contributed to 
the modeling of the implicit effects of rotation on turbu- 
lence. 

D

 R R
ij ij ijB J 

 

In the present approach, the extra term ijT , which 
takes account of the implicit effects of the rotation on the 
turbulence field, contains four parts: 

 
ij ijT D              (2) 

R
ij  is a term resulting from the correlation pressure- 

deformation, its modelling is deduced from a model of 
spectral tensor of Schiestel and Elena [45]. 

The second term  R
ij  is an inhomogeneous term of 

diffusion, which, in the presence of walls, slows down 
the tendency to bidimensionalisation. 

D

The Bij term acts only in the event of strong rotation 
and its role is to produce spectral jamming (angular dis- 
persion). It was taken into account in particular by Cam- 
bon et al. [40] for the modeling of the homogeneous 
turbulence subjected to a fast rotation. 

Jij is a corrective term added to εij [35]. 
The equation of dissipation rate is proposed by Laun- 

der and Tselepidakis [30]: 

 (3) 

  is the isotropic part of the dissipation rate  
1 2 1 22 k k    31, 1.92, 0.15, 2,C C C C, ,i i . 1 2     

0.92C
 

4  are four empirical constants. 
fε is given by Elena and Schiestel [34] as: 

 f 21 1 0.63 AA                (4) 

where A is anisotropy parameter defined by: 

 2 3

9
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A2 and A3 are the second and the third stress-anisot- 
ropy invariants. 

The equation of the kinetic energy of turbulence can- 
not be solved in the RSM model but it can control the 
convergence while comparing it to jjR : 

, , , ,
,
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  (5) 

To numerically treat the equations of transportation of 
the RSM model, we must work with dimensionless va- 
riables. So we used the height of the cavity (h) and the 
angular speed (Ω) as parameters for dimensionless vari-
ables. 

4. Numerical Method 

4.1. Stabilizing Techniques 

In order to overcome stability problems, several stabiliz- 
ing techniques, such as those proposed by Huang and 
Leschziner [46], were introduced in the numerical pro- 
cedure. For all flows studied here, the configuration is 
always axi-symmetrical, the problem is then bi-dimen- 
sional and as we work in cylindrical coordinates, the 
transport equations of a variable Φ are then made to the 
form: 

r zrV r rV r S
r r z z  

                      
  (6) 

ΓΦ is the Φ total diffusion coefficient. It regroups for 
example the molecular viscosity ν and the turbulent vis- 
cosities resulting from the Reynolds stresses written in 
the following type: 

 ; , , ,i
ij ij ij

V
R i j r z

j
 
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

       (7) 

where ij  is the anisotropic pseudo-viscosity. 
To still stabilize calculation, in addition to the tech- 

nique of the anisotropic pseudo-viscosity Γij which gives 
a diffusive formulate to the RSM model, we have solved 
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the equations of the Reynolds stresses per block. This 
technique is based on writing the six transport equations 
of Reynolds stresses in the form of a linear system, thus 
allowing a resolution per block of a tri-diagonal matrix. 
The discretization is done on a non-shifted grid and all 
the components of the tensor of Reynolds are evaluated 
at the points of pressure. This resolution is carried out by 
a direct method of the Gauss type (per block tri-diagonal 
algorithm). It stabilizes the algorithm in the presence of 
rotation because it maintains the couplings between the 
equations. 

The last technique of calculation’s stabilization is to 
introduce coefficients of under-relieving. The sharp vari- 
ations of the variables at the beginning of calculation are 
very destabilizing and they thus should be attenuated. We 
then introduce regular under-relaxation for any variable 
Φ. By noting Φk the value of Φ to the iteration k and Φ* 
the computed value during the iteration k + 1, to attenu-
ate the variations of Φ, we introduce a factor of relieving 
α, such as 0 < α < 1 and: 

 k   

, , : 0V

1k k              (8) 

The value of α depends on the variable considered and 
the degree of convergence reached. A low value of α has 
a stabilizing effect but slows down convergence. Here 
the values of α, which were used in the majority of our 
calculations: 
 For .3r zV V    
 For P: 0.6   
 For .2ij, , : 0k R    

4.2. Boundary Conditions and Grid 
Arrangement 

All the variables are set to zero at walls except for the 
tangential velocity Vθ, which is set to –rΩ on cylinder 1, 
+rΩ on cylinder 2 and zero on the stationary discs. The 
usual value  , , 2k jk j k

1.0  

   is imposed at the wall 
for the dissipation rate ε of the turbulence kinetic energy. 
As we use confined geometry, we do not have to make 
inlet or outlet conditions. As the flow is axisymmetry, the 
field of study is 2D (r, z) corresponding to the higher half 
of the cavity of Figure 1. The computational procedure 
is based on a finite volume method using staggered grids 
for mean velocity components with axisymmetry hy- 
pothesis in the mean. The computer code is steady ellip- 
tic and the numerical solution proceeds iteratively. We 
have verified that a 120 × 120 mesh in the (r, z) frame is 
sufficient for all cases to get grid-independent solutions, 
this identical number of elements for the two directions, 
was checked in first for a ratio , then the con- 
verged file of this calculation was used as a beginning of 
calculation for the other ratios, but we have always 
checked that the grid is sufficiently fine close to the walls 

to describe correctly the viscous sublayers. Some tests 
were made to confirm that for all Γ ratios, we show on 
Table 1 some results. 

The abrupt variations of the variables close to the 
walls require tightening the grid close to them. The field 
is cut out into 3 areas according to each direction r and z, 
with a coarser grid in the centre and an increasingly 
dense area when approaching the walls. 

In the zones close to the walls, the grid is generated 
using geometrical series allowing a very weak step (the 
first mesh is: 4 1.614 10r R     and  

41.532 10z h   

andzv z

). 
To check that the grid is sufficiently fine close to the 

walls so that the viscous sub layers are described cor- 
rectly, we define, on the level of the two rotating cylin- 
ders,    given by: 

22 2

1,r z z
z

VV V z v
v z

z z z





 
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  (9) 

z1 is the size of the first mesh according to the axial 
direction  41.532 10z h  

andrv r
1

On the level of fixed walls, we define 
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   (10) 

r1 is the size of the first mesh according to the radial 
direction  41.614 10r R  

z

r

1

Figure 2 presents radial profile of  (Figure 2(a)) 
and axial profile of 

. 

  (Figure 2(b)) for Γ = −1.0, −0.4, 
0.4, 1.0 and   and for a grid 120 × 120. For 
any wall, mobile or fixed, we notice that z+ and r+ does 
not exceed 0.7 and is thus well below the value limits y+ 
= 1. A grid 120 × 120 is thus sufficient to obtain a solu- 
tion independent of the grid but it allows, moreover, a 
good description of the viscous under-layers. 

52 10R  

To control the convergence of all calculations, we 
 
Table 1. % of variation compared to solution 120 × 120, RΩ 
= 2 × 105. 

 100 × 80 100 × 140 140 × 140

Mean tangential velocity (Γ = −1.0) 2.6 1.8 1.7 

Turbulence kinetic energy (Γ = −1.0) 1.9 0.8 0.7 

Mean tangential velocity (Γ = −0.4) 2.4 1.7 1.2 

Turbulence kinetic energy (Γ = −0.4) 1.6 0.9 0.4 

Mean tangential velocity (Γ = 0.4) 2.2 1.4 1.1 

Turbulence kinetic energy (Γ = 0.4) 1.3 0.6 0.4 

Mean tangential velocity (Γ = 1.0) 2.5 1.3 1.3 

Turbulence kinetic energy (Γ = 1.0) 1.4 0.7 0.3 
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Figure 2. Radial profiles of z+ (a) and axial profiles of r+ (b) 
for Γ = −1.0, −0.4, 0.4, 1.0, RΩ = 2.0 × 105. 
 
have studied the evolution of the residues according to 
the number of the iterations for   and Γ = 
−1.0. We have noted that the convergence of various cal- 
culations required an iteration count from approximately 
40,000, all the calculations were made with a personal 
machine; the time necessary for convergence for this 
kind of calculation is of approximately five days. 

52 10R  

5. Influence of Rotating Speed Ratio on the 
Characteristics of the Flow 

5.1. Model Performances 

In order to show the performance of the RSM model, it is 
interesting to compare the simulation obtained by the 
RSM model to experimental results. As we do not have 
measurements for annular flows treated in this work, we 
compare the RSM model simulation to experimental 
LDA measurements done by Raddaoui [16] for rotating 
flows between two contra-rotating discs (Figure 3) very 
similar to ours shown in Figure 1. This comparative 
study between the numerical simulation and the experi- 
ment is to compare the numeric results from the RSM 
model to the k-ε model and the experimental measures 
for turbulent Von Karman flow in a device exploited by 
Raddaoui [16] at IRPHE (Institute of Research on the 
Phenomena out of Equilibrium) in Marseille in France.  

Z’ Z 

+Ω -Ω 

h

Mobile wall Fixed wall Mobile wall 

R

 

Figure 3. Schematic representation of raddaoui experimen- 
tal set-up. 
 
Figure 4 presents axial profiles of the dimensionless 
radial velocity rV r , dimensionless tangential velocity  
V r  dimensionless turbulence kinetic energy  

2 2k r  for RSM model, k-ε model and experimental  
results. Figure 5 presents axial profiles of the dimen- 
sionless Reynolds stresses. We have chosen six sections: 

0.1, 0.2, 0.4, 0.6, 0.8r R r R r R r R r R      and 
0.9, for the given aspect ratio 2.0G h R 

53.7 10R  
 and the 

Reynolds number  . For mean velocities Vr 
and Vθ, we note that the RSM model results are in a no 
far from the experimental measures and this is valid for 
all the flow sections, unlike the k-ε model which falls 
short of describing correctly this kind of flow especially 
on the level of the median plane where turbulence is 
maximum because of strata torsion. However, we notice 
that this difference between the RSM model and the k-ε 
model is reduced near to the walls where the effect of 
torsion is inexistent. For the turbulence kinetic energy, 
Figure 4 shows that the k-ε model over-estimates turbu- 
lence compared to the RSM model, especially, on the 
level of the torsion zone where for example, the RSM 
model notes a value of the dimensionless turbulence ki- 
netic energy equal to approximately 0.024 for 0.1r R   
and 0.5z h   (Figure 4(c1)) whereas the k-ε model 
multiplies this value by ten. This value given by RSM 
model is more correct because the Reynolds stresses of 
Figure 5 show a very good agreement between the RSM 
model and the experimental data for all the sections of 
the flow, this proves the capacity of the RSM model to 
describe very well this kind of flow. Figure 4 also shows 
that for all sections, the value of the dimensionless radial 
velocity rV r  is very weak  0.02 0.005V r   r , 
confirming the nature of the flow that is essentially gov- 
erned by the phenomenon of rotation. On the level of the 
layer of BÄodewadt, the kinetic energy of the turbulence 
evaluated by the model k-ε is near to that calculated by 
model RSM. For the various tensions of Reynolds, the 
numerical simulation made by model RSM shows a very 
good agreement between calculation and measurements 
by LDA and those for all the cross-sections even on the 
level of the median plane and the layers of Ekman and 
BÄodewadt (Figure 5). If we evaluate the value of the  
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Figure 4. Comparison of dimensionless mean velocity and turbulence kinetic energy profiles between Raddaoui experimental 
results, RSM model and k-ε model for RΩ = 3.7 × 105, G = 2.0 at six radial locations: r/R = 0.10 (a1, b1, c1), r/R = 0.20 (a2, b2, c2), 
r/R = 0.40 (a3, b3, c3), r/R = 0.60 (a4, b4, c4), r/R = 0.80 (a5, b5, c5) and r/R = 0.90 (a6, b6, c6). 
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Figure 5. Comparison of dimensionless Reynolds stress profiles u r2 2 2  (a), v r2 2 2  (b),  u v r 2 2  (c) between Rad- 

daoui experimental results, RSM model and k-ε model for RΩ = 3.7 × 105, G = 2.0 at six radial locations: r/R = 0.10 (a1, b1, c1), 
r/R = 0.20 (a2, b2, c2), r/R = 0.40 (a3, b3, c3), r/R = 0.60 (a4, b4, c4), r/R = 0.80 (a5, b5, c5) and r/R = 0.90 (a6, b6, c6). 
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normal tensions of Reynolds 2 2 2u r   and 2 2 2v r   
given by the model  

k-ε  , we notice that  2 2 2 2 2 2 2 2 2 3u r v r k r      

 0 

1  

0

52 10

5.3. Influence of the Rotating Speed Ratio on the 
Tangential Velocity 

For the mean quantities we chose to represent the radial 
variation tangential velocity on the median plane (Figure 
7(a)) and the axial variation of this velocity in the centre 
of annular space (Figure 7(b)) for all values of the Γ 
speed ratio specified previously because these regions are 
most significant for better observing the various phe- 
nomena especially those related to turbulence. The Rey- 
nolds number is always fixed equal to  and the 
aspect ratio 1

the model k-ε over-estimates these tensions compared to 
model RSM. RSM model provides good results even in 
the boundary layers and models in a precise way the ten- 
sions of Reynolds. The behavior of the cross tensor is 
less well predicted in the layer of BÄodewadt. 

The second order model can now be used confidently 
to carry parametric studies even for different values of 
rotating speed ratio, as is the case in this study. We can 
then use this model to study the influence of rotating 
speed ratio on the structure, the level and the distribution 
of the turbulence of the flow in the annular space. 

G h R  fixed at 2.0. For radial profile of 
tangential velocity (Figure 7(a)), we notice that there is 
not much effect if Γ > 0, on the other hand for Γ < 0 we 
note a little difference close to the interior cylinder. We 
can nevertheless note the following remarks: the boundary 
layer on the interior cylinder is crushed than that on the 
external cylinder and this is for all the ratios Γ, we also 
notice that the profiles tangential velocity for 

5.2. Influence of the Rotating Speed Ratio on the 
Structure of the Flow 

1.0    
and 1.0 don’t present a symmetry plane at the level of 

2

All the cases studied correspond to a Reynolds number 
equal to 2.105 and the aspect ratio G = h/R1 fixed at 2.0. 
Figure 6 shows that the total structure of the flow de- 
pends enormously on the ratio number of revolutions Γ, 
we notice that the swirls are more present if the two cyl- 
inders turn in the opposite direction with a parameter Γ 
close to −1.0 (Figures 6(a) (Γ = −1.0), 6(b) (Γ = −0.8), 
6(c) (Γ = −0.6), 6(d) (Γ = −0.4)), the swirls are definitely 
less present in the contrary case (Figures 6(a’) (Γ = 1.0), 
6(b’) (Γ = 0.8), 6(c) (Γ = 0.6), 6(d’) (Γ = 0.4)) and to be 
completely absent for the very weak Γ ratios (Figures 
6(e) (Γ = −0.2), 6(f) (Γ = 0.0), 6(e’) (Γ = 0.2), 6(f’) (Γ = 
0.0)). For the contra rotating cases , we notice 
the concentration of the maximum of swirls close to the 
interior cylinder, which is explained by the presence of a 
turbulence related to the phenomena of torsion but this 
turbulence is not maximum in the middle of annular 
space (for ), as we can think it, but rather near to 
the interior cylinder. More the number of revolutions of 
this cylinder decreases more these swirls disperse until 
disappearing completely for Γ close to zero. We also 
notice that Γ acts on the distribution of turbulence 
throughout the axis of the cylinders. Indeed, the swirls 
are more numerous on the level of the median plane for Γ 
close to −1 and concentrates on the level of the fixed 
disks for a ratio Γ close to −0.4. For the co rotating cases 

, turbulence is obviously much weaker, we notice 
that the swirls are distributed in a more uniform way on 
all the flow contrary to the contra rotating case. We also 
note that turbulence in this case is generated by gradient 
speed between the two cylinders than by the level of this 
speed. Finally we can also say that for the same ratio Γ in 
absolute value, turbulence is more present at the level of 
the median plane in the co rotating case than in the contra 
rotating one. 

 

0.75r R   as we can think it, because for these two 
cases, two cylinders turn with the same number of revo- 
lutions but the product rΩ is not the same because the 
distance separating the cylinders from the axis of rotation 
is not the same one. For the axial evolution of tangential 
velocity (Figure 7(b)), we notice that the total form of 
these profiles depends enormously on the ratio Γ. All 
these profiles are symmetrical compared to the median 
plane but the velocity is more uniform on all the space 
separating the two fixed disks for the ratio   close to 
0.4. For the values of   close to 1.0, the profile of tan- 
gential velocity presents a maximum quit marked at the 
level of median plane. We notice also that the level of 
tangential velocity depends on the Γ ratio, this level in- 
creases with this parameter: more this parameter increases 
more tangential velocity profiles is flattened, we can note 
also a presence of a central core for  which is 
completely absent for other values of Γ. 

0.8  

Concerning the tangential mean velocity we can say 
then that the ratio number of revolutions of the two cyl- 
inders is an important parameter for the study of the an- 
nular flows at the same time for the total structure of 
these flows and especially the nature of the boundary 
layers and the position of the maximum of this velocity 
in annular space. This kind of parameters appears very 
important then in the dimensioning and the optimization 
of certain machines utilizing the revolving flows in an 
annular space. 

5.4. Influence of the Rotating Speed Ratio on the 
Turbulence Kinetic Energy 

The importance of this work appears especially by 
studying the influence of the speed ratio of rotation on the 
turbulent quantities, one as of these quantities is the tur- 
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Figure 6. Streamlines ψ* = ψ/(Ωh2) patterns for RΩ = 2.0 × 105, G = 2.0: Γ = −1.0 (a); Γ = −0.8 (b); Γ = −0.6 (c); Γ = −0.4 (d); Γ = 
−0.2 (e); Γ = 0.0 (f); Γ = 1.0 (a’); Γ = 0.8 (b’); Γ = 0.6 (c’); Γ = 0.4 (d’); Γ = 0.2 (e’); Γ = 0.0 (f’). 
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of the two cylinders. Figure 8(b) shows that the turbu- 
lence kinetic energy is distributed in the entire cavity for a 
ratio Γ close to ±0.6. We note, like the profile of tan- 
gential velocity, the presence of the central core for Γ = 
−0.8. 

 

The study of the influence of the ratio Γ on the turbu- 
lence kinetic energy assures us the importance of this 
parameter in the energy optimization of the revolving 
machines, this study provides us with a true data base 
allowing the researchers and the industrialists to make use 
of it to choose the parameters which are necessary ac- 
cording to the level and of the structure of turbulence 
requested. Vθ/rΩ 

(a) 
5.5. Influence of the Rotating Speed Ratio on the 

Reynolds Stresses 

 

For normal stresses, we note that on the median plane 
 0.5z h  , the radial evolution of the normal stresses 
shows that in the center annular space  0.75r R 

 1.0  
 1.0 

2  
these tensions decrease with Γ (Figure 9), they are most 
important for the contra-rotating case  and 
weakest for the co-rotating case , however near 
to the walls in rotation this phenomenon is not very ob- 
vious especially on the level of the interior cylinder. We 
notice then that the gradient speed between the two walls 
can feel on the level of the fluctuation speeds especially 
that the tangential velocity which is most important 
compared to the others (Figure 9(a3)). In the center of 
annular space 

Vθ/rΩ 
(b) 

 0.75r R 2 , the axial evolution of the 
normal tensions shows that all along the axis these ten- 
sions always decrease with Γ (Figures 9(b1)-(b3)), the 
level of these tensions are very different if the cylinders 
turn in contrary direction 

Figure 7. Dimensionless tangential velocity profiles for RΩ = 
2.0 × 105, G = 2.0 at axial location: z/h = 0.50 (a) and at radial 
location: r/R2 = 0.75 (b). 
 

 0   whereas they are very 
close if the cylinders turn in the same direction, it can be 
explained by the fact that there is more velocity fluctua- 
tions when the cylinders turn in the contrary direction. 
For the crossed stresses, the radial and axial evolutions 
show too low levels except for the tension 

bulence kinetic energy which presents a fundamental role 
in the comprehension and the perfection of certain energy 
installations. For that, the axial and radial evolution of the 
turbulence kinetic energy is discussed; Figure 8 shows 
that the level of this energy depends enormously on the 
ratio number of revolutions. The radial evolution of the 
turbulence kinetic energy for position 

2
u w   which 

increase with Γ, we also note that, as waited, 
2

u w 

52 10R  

 is of 
the same sign than Γ (Figures 9(a4) and (b4)). 

0.5z h 

 1  



 (Figure 
8(a)) shows that this energy is obviously maximum for the 
case where there is the maximum of torsion , in 
more we notice that for this case, turbulence extends on all 
annular space separating the two revolving cylinders. This 
property can be exploited by the industrialists who often 
seek a strong turbulence but also occupying all space 
offered. For the co rotating case , turbulence is, 
of course, weaker, it seems concentrated near to the walls 
in rotation. For the other intermediate cases, the turbu- 
lence kinetic energy is the weakest; it remains about of the 
same order of level while going from the cylinder external 
to that interior. The axial evolution of the turbulence ki- 
netic energy informs us more about the structure of tur- 
bulence in annular space and more precisely in the middle  

 1.0 

6. Conclusions and Prospects 

In this work we numerically simulated the influence of 
the ratio of rotating speed on the mean and turbulent 
quantities of an annular steady flow. The study was made 
by maintaining the cylinder external in rotation uniform 
and varying the number of revolutions of the interior 
cylinder so that Γ varies from −1.0 to 1.0 for a Reynolds 
number given   and an aspect ratio fixed to 
2.0. The numerical model used is a statistical model in a 
point using the closing of the second order of the trans- 
port equations of the tensions of Reynolds (Reynolds 
Stress Model: RSM). 
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Figure 8. Dimensionless turbulence kinetic energy profiles for RΩ = 2.0 × 105, G = 2.0 at axial location: z/h = 0.50 (a) and at 
radial location: r/R2 = 0.75 (b). 
 

 

Figure 9. Dimensionless Reynolds stress profiles for RΩ = 2.0 × 105 and G = 2.0 at axial location: z/h = 0.50 (a) and at radial 
location: r/R2 = 0.75 (b). 
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We have found that the streamlines show clearly the 

influence of the parameter Γ on the structure of the flow. 
For the contra rotating cases  0  , the concentration 
of the maximum of swirls is close to the interior cylinder, 
more the number of revolutions of this cylinder decreases 
more these swirls disperse until disappearing completely 
for Γ close to zero. For the co rotating cases  0   , 
turbulence is obviously much weaker, we note that the 
swirls are distributed in a more uniform way on all the 
flow contrary to the contra rotating case. We have found 
that the boundary layer on the interior cylinder is crushed 
than that on the external cylinder and this is for all the 
ratios Γ. 

For mean quantities, we have noted that the level of 
tangential velocity increases with the parameter Γ, we 
have noted also the presence of a core for  and 
the boundary layer on the interior cylinder is crushed 
than that on the external cylinder and this is for all the 
ratios Γ. For the turbulence kinetic energy, we have 
noted that the level of this energy increases with the ratio 
Γ and reached its maximum for the contra-rotating case, 
on the other hand this level is lowest for the case of the 
fixed interior cylinder and the co-rotating case.  

1.0  

 1.0  
 1.0 

For turbulent quantities, contrary to the crossed Rey- 
nolds stresses, we have found that the level of the normal 
Reynolds stresses decreases with Γ in the center annular 
space, these stresses are most important for the contra- 
rotating case  and weakest for the co-rotat- 
ing case . 

The exploitation of the capacity of the RSM model can 
be very beneficial in other complex situations where the 
experimental conditions are very difficult to achieve and 
where the experimental mechanism is very expensive to 
put in place such as the rotating flows of the compressi- 
ble fluids or the rotating flows with transfers of heat or 
non stationary flows. 
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Nomenclatures u

R: Radius of disk (m) 
h: Height of cylinder (m) 
Γ: Rotating speed ratio 
G: Aspect ratio 
RΩ: Rotational Reynolds number 
Vz: Mean axial velocity 
Vr: Mean radial velocity 
Vθ: Mean tangential velocity 

: Axial velocity fluctuation 
v : Tangential velocity fluctuation 

w : Radial velocity fluctuation 
P: Pressure 
p : Pressure fluctuation 

: Density of fluid (kg·m−3) 
: Kinematic viscosity of fluid (m2·s−1) 
Ω: Rotating velocity of disks (rad·s−1) 
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