Open Journal of Discrete Mathematics, 2013, 3, 167-173

o2% Scientific
http://dx.doi.org/10.4236/0jdm.2013.33030 Published Online July 2013 (http://www.scirp.org/journal/ojdm)

#3% Research

On Some Numbers Related to the Erdos-Szekeres
Theorem

Mark J. Nielsen', William Webb®
'Department of Mathematics, University of Idaho, Moscow City, Moscow
Department of Mathematics, Washington State University, Pullman, USA
Email: markn@uidaho.edu

Received January 15, 2013; revised February 16, 2013; accepted April 15, 2013

Copyright © 2013 Mark J. Nielsen, William Webb. This is an open access article distributed under the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

ABSTRACT

A crossing family of segments is a collection of segments each pair of which crosses. Given positive integers j and
k,a (j, k) grid is the union of two pairwise-disjoint collections of segments (with j and k members, respectively)
such that each segment in the first collection crosses all members of the other. Let C(k) be the least integer such that
any planar set of C(k) points in general position generates a crossing family of Kk segments. Also let #( j,k) be the

least integer such that any planar set of #( j,k) points in general position generates a (j,k) -grid. We establish here

the facts 9<c(3)<16 and #(1,2)=8.
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1. Introduction

For each positive integer n>3 let g(n) be the least
integer such that every planar set of g(n) points in
general position contains the vertices of some convex
n-gon. This number was introduced by Erdés and Sze-
keres in 1935 (see [1] and [2]) who established the

2n-4
bounds 2"?+1<g(n) S{ s )+1 and conjectured

that the lower bound is in fact an equality. The values
g(3)=3 and g(4)=5 are easy, and several proofs of
the fact g(5)=9 have been given. However, no other
values have been computed exactly and the upper bound
given by Erdés and Szekeres stood until recently as the
best known. A seqence of 1998 papers by Chung and
Graham [3], Kleitman and Pachter [4], and finally To6th
and Valtr [5] improved the above-mentioned bound to

o2 2n-5
2" +1<g(n)< Ns +2. (0.1)

Morris and Soltan [6] provide an excellent survey of
related results.

Given the apparent difficulty of determining values of
g(n) we might well seek weakened notions of these
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numbers. For example, let P(n) be a combinatorial
property satisfied by the vertex set of a convex n-gon. It
might be interesting to ask how large a set X must be
to guarantee the existence of a subset of X having
property P(n). We will consider such generalizations
where the property P(n) is a specified intersection
behavior of some subset of the diagonals to a convex
n-gon.

We will say that a set X — R*> generatesa collection
S of segments if each segment in S has its endpoints
in X. Also, we will say that a collection S of seg-
ments is a crossing family if each pair of segments in S
crosses (intersects at a point that is not endpoint to either
segment). Now if n>2k then the vertex set of a convex
n-gon clearly generates a crossing family of size K.
Define c(k) to be the least integer such that any planar
set of C(k) points in general position generates a cross-
ing family of k segments. Then as we have noted,
c(k)<g(2k), but we might expect c(k) to be much
less. Indeed, the main result in the paper by Aronov €t al.
[7] implies the much stronger bound

c(k)<12k’ (0.2)

for these numbers. The authors of that paper ask whether
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this bound might be improved to a linear bound—a ques-
tion that remains open at present.

Now let j and k be positive integers. Define a
(J,k) -grid to be a collection of segments

{S,,Sz,---,sj ,tl,tz,---,tk} such that each segment S crosses

each segment t; but such that segments § and s
are disjoint if i# j, as are t and t;. If n>2j+2k
then the vertex set of a convex n-gon clearly generates
a (j,k)-grid. Define #(j,k) be the least integer such
that any planar set of #( i k) points in general position
generates a (j,k) -grid. We again have the easy in-
equality #(j,k)<g(2j+2k), but a result of Nielsen
and Sabo [8] implies the linear upper bound

#(j,k) <20k (when j <k) (0.3)

for these numbers.

It appears at least superficially, then, that grids are
easier to find than are crossing families, and that both are
easier to find than are convex polygons. But while the
progression from g(n) to c(k) to #(j,k) repre-
sents a geometric and computational simplification, none
of these can be said to be simple. A look at the six-point
cases illustrates the situation well.

(A) The value of g(6) is not known. It is conjectured
that g(6)=17, but (0.1) gives only 17<g(6)<37.

(B) The value of c(3) is not known, but we will
prove in this paper that 9<c(3)<16.

(C) We will show below that #(1,2)=8. However,
this is the largest case for which the exact value of
#(j,k) is known.

The purpose of this paper is to establish the facts men-
tioned in items (B) (see Section 1) and (C) (see Section
2). Bounds for some of the larger cases of these numbers
will be given in a subsequent paper. The methods we use
are not complicated, but some imagination is required to
find an approach that reduces the number of cases to a
manageable level.

2. An Improved Bound for c(3)

The bound (0.2) gives only C(3)S 108 —of course
c(3)<g(6)<37 (from (0.1)) is better. We are able here
to improve this substantially to 9 <c(3)<16. We would
be quite surprised if the actual value of c(3) is not
closer to the lower bound, but reducing the upper bound
appears to be very difficult.

We begin by developing some notation that will be
useful in the main proof. Let X be a finite planar set in
general position. Now let A and B be vertices of the
convex hull of X admitting parallel supporting lines. We
may assume these supporting lines touch the convex hull
of X only at points A and B so that the points of
X\{AB} lie in the strip between them. One of the
half-strips bounded by these lines and the segment AB
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contains at least half the points of X \{A, B}. Let this

half-strip be called X, and let m be the number of

points of X\ {A B} in X.We define sequences of sets

{X;i}.{F}.{V}, and {W}(0<i<m) as follows (see

Figure 1).

o Let X,=X.

e For each i such that X, is defined let F, be the
set consisting of those points in X lying on the
boundary of the convex hull of X, together with the
points A and B . Furthermore, set V, =X\ F
and W =X\ X.

e Finally, for i<m let C be a point of F\{AB}
and define X, tobe X \{C}.

Note then that V;|+|F|+W|=|X| and that
W ={C,,C.C,,~--,C_,}, so |W|=i. We think of F
as being a “convex fence” separating V, and W .

More generally, we will say that a sequence of points
C.C,,---,C; from X isa (v,w)-fencefor X if
¢ X\{C.C,.,.C;}=VUW where |V|=v and

=W,

J I\C/I\ll,| ---,C; are consecutive vertices on the convex
hull of VU{C,,--,C, |, and

e cvery segment joining a point of V to a point of W
crosses one of the f — 1 segments
CcC,,CcC,,---.C,_C;.

In this case we say that V is the set of points of X
inside the fence CC,---C; and W is the of points of
X outside that fence.

Given positive integers V, f ,and w we will say that
X has property (v/f/w) if X has a (V,W) -
fence consisting of f points for some V'>v and
w >w. The sets described above yield a sequence of
properties
(Vo / £ 70) (i / £ /1) (v, / £,/ 2), (v, / £, /), for
X (where, of course, V, 2V, 2V, >---2Vv_ and fn=2).

Lemma 1.1. Let X={R,R,,P,,Q.Q,,Q,, A B} where
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Figure 1. A convex fence.
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for each i and j the segment PQ, crosses AB. Then X
generates a crossing family of three segments including
AB.

Clearly it is enough to show that RP.Q,Q,, is a con-
vex quadrilateral for some 1, j,k,m, and to do this it is
enough to show that line PP misses segment Q,Q,,
and line QkQ misses segment PP.

Note that the halfplane determmed by AB and con-
taining {Q,Q,,Q,} is d1V1ded into four (or fewer) re-
gions by the lines RP,, ,and PP, . Suppose first
that one of these reglons contalns both Q, and Q,.
Now QkQ cannot intersect all three sides of the
triangle BP,P, so it misses some segment BP . From
our observation above the points generate a crossing
family of six segments.

If none of these regions contains two of the points of
{Q.,Q,,Q,} then it must be the case that there is a
segment QQ,, meeting exactly two of the lines PF‘2 s
PP PP . But then QkQ cannot meet any of the
sides of the triangle PP,P, (since it cannot meet only
one side of the triangle and there are two triangle sides
that it clearly cannot meet, having crossed the lines
determined by these sides at points outside of the
triangle). But now Q,Q,, misses one of the lines PP
so we once again have the situation described above.

Lemma 1.2. If a set X has property (v/f/w) (with
v,w>2 and f >3) and generates no crossing family
of three segmentsthen X also has property
(v=2/f-1/w=-2).

Proof. Let C,C,,---,C; be a (v,w)-fence for X
with related components V and W. Order the points of
\ U{CI,W,Cf } radially from C, as
{R =C.R.R.,R.; =C,} (seeFigure2).

Now X generates no crossing family of three segments
by assumption, so by Lemma 1.1 there cannot be three
points of W on the same side X of line CTP; as
point C,. (Again see Figure 2—the segment CC, is
crossed by every segment joining such a point of W to
anyoneof B, P,or B .)Butthen C,,C,,---,C; isa
fence with related components V\{R,R,} and W\X.

Lemma 1.3. Any set having property
(2f-1/f/2f-1) for some f>2 generates a cross-
ing family of three segments.

Proof. Assume to reach a contradiction that a set X

(&

1

Figure 2. Illustrating the proof of Lemma 1.2.
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has property <2f -1/ f/2f —1> for some f >2 but
generates no crossing family of three segments. Then by
Lemma 1.2 X also has property (3/ 2/ 3> . But by
Lemma 1.1 any set with property (3/2/3) will gene-
rate a crossing family of three segments—a contra-
diction.

These lemmas establish that a set generates a crossing
family of three segments if it contains a subset with a
(3,3) -fence of two points or a (5,5)-fence of three
points. This fact will be used repeatedly in our next
proof.

Theorem 1.4. 9<c(3)<16.

Proof. The lower bound is established by considering
the set of eight points depicted in Figure 3. (A few lines
are shown to indicate relative positioning of the points.)
We leave it to the reader to verify that this set fails to
generate any crossing family of three segments.

Now let X be any set of 16 points in general position.
We will show that X generates a crossing family of three
segments. The construction given at the outset of this
section established a sequence (16— f,/ f,/0),
(15— 1,/ 1 /1), (14=1,/1,/2), -,

(16—m—f_/f_ /m) of properties for X . Consider
the property (11— f,/ f,/5).

We may clearly assume f, <5 else X contains the
vertices of a convex hexagon and thus clearly generates
the desired crossing family. If f, <3 then we have
either (8/2/5)(3/2/3) or (7/3/5)(5/3/5), cither
of which guarantees the crossing family by our preli-
minary lemmas. It remains, then, to examine the cases
fi=4 and f,=5.

Casel: f. =4

In this case, X has property (7/4/5). As in
Figure 4, let the fence be ABCD and consider the four
regions R, R, R.,and R, asshown.Let r, denote
the number of points of X in region R, so that
n+rn+rn+r=7.

Ifr, >0 and r; > 0 (or similarly if r, > 0 and ry > 0) it
is easy to see that X then generates a crossing family of
three segments (two of which are AC and BD). So, if r; >
0 then we may assume either r,=r,=0 or r,=r,=0.
This means either ACD or ABD is a (7,5) fence so our

Figure 3. Example showing c(3) > 9.
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Figure 4. The general situation for Case 1.

preliminary lemmas would guarantee the desired cross-
ing family for X. Thus, we may assume I, =r, =0 and
r+r=7.

If 2<r,<5 then (using the points in R, and R,
along with points B and D) AC is a (3,3) -fence. On the
other hand, if r, 26 then ACD is a (5,5) -fence. So
(again using our lemmas) we may assume I, <1.

Subcase 1A: r, =6, 1, =1

Order the points of X in regions R, and R, as
R,B,---,P, radially from B as in Figure 5. We may
assume that the region § in that figure (bounded by
AB, PTB, and the supporting line through A to the
convex hull of X)) contains at most two points of X,
else AB is a (3,3)-fence (with the latter set of three
points being {P,P,,D}). But then BCA is a (5,5)-
fence where the points inside consist of the points in
region R less B (if B eR) and the points outside
consist of the (at least three) points outside ABCD not
lying in § together with D and the point of X in region
R,. By our preliminary lemmas, X then generates a
crossing family of three segments.

Subcase1B: r,=7, r,=0
_ Consider now the region S, in Figure 6 (bounded by
AB, BB, and the supporting line). If this region
contains two points of X then BD is a (3,3)-fence where
one set of three points is {R,P,P} and the other
consists of the two points in S, together with point A.
Thus, we may assume S, contains no more than one
point of X.

This shows that by discarding up to two points (P
and P,) inside and one point (in S,) outside the fence
ABCD we can eliminate all segments (joining an inside
point to an outside point) that cross AB. A mirror image
of this same argument can be done for eliminating
segments that cross CD. In this way we conclude that we
can discard four points inside ABCD and two points
outside ABCD and eliminate all segments except those
that cross BC. So, BCis a (3,3)-fence for the remaining
subset of X. As before, this is sufficient to guarantee that
X generates the desired crossing family.

Case2: f,=5

In this case, X has property (6/5/5). Consider the
convex hull of the five points making up the fence
ABCDE. The diagonals of this pentagon determine
eleven interior regions. If a point of X lies in any of the
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Figure 6. The arrangement for Subcase 1B.

five regions bounded by segments of the pentagon or in

the central region bounded by all the diagonals, then X

generates a crossing family of three segments as shown

in Figure 7.

Thus, we may assume that the six points of X inside
the fence ABCDE lie in the five regions labeled R
through R in Figure 8. As before, let 1, denote the
number of points of X inregion R.

o If points of X lie in each of two adjacent regions from
among R, through R; then it is easy to construct a
crossing family of three segments (two are diagonals
of ABCDE and the other joins the points in question).

e If r,=r,=0 then ACE is a (6,5) -fence—more
than enough to guarantee the desired crossing family.

Putting together these two observations, we may now
assume that r, >0, r,=r,=0,either 1, =0 or r, =0,
and (of course) I, +r,+r,=6.

e If 2<r,<5 then ACisa (3,3)-fence where on one
side we include two of the points from region R,
along with B and on the other side we include a point
from R, UR; along with D and E.

e If r, =1 then either R, or Rs contains 5 points of X.
If Ry contains these points then CE is a (3,5)-fence
where the three points on one side consist of the point
in R, together with A and B. If the points lie in Rs then
similarly AD is a (3,5)-fence.

Both of the above cases, then, lead to a crossing family
of three segments generated by X. The only remaining
case to consider is r, =6 (and r,=r,=r,=r,=0).
Here, ABDE is a (6,6) -fence for X (where we include C
with the points outside the fence). Note that Lemma 1.2
would allow us to conclude that either X generates a
crossing family of three segments or else its property
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D,
Y Y

Figure 7. Crossing families in easy instances of Case 2.

Figure 8. The arrangement for the remaining parts of Case
2.

<6/4/6> must imply property <4/3/4> (and

(2/ 2/ 2> ). Unfortunately, that is not sufficient under
our lemmas to give the desired conclusion. Instead, we
will need to be more careful in reducing the fence.

For our first step in the reduction, order the points of X
in region R, as B through P, radially from B as in
Figure 9. We may assume the region § in that figure
contains no more than one point of X, since otherwise BE
is a (3,3)-fence (with two points from § and A on
one side and {R,P,,R} on the other). Then discarding
any point in § along with B and P,, we may eli-
minate all segments (joining a point inside ABDE to a
point outside) that cross AB; all this while leaving at
least four inside points and at least five outside points.

The second part of the reduction is accomplished by
ordering the remaining points of X in R, as Q, through Q,
radially from D as in Figure 10. We may assume the
region labeled as S, in that figure contains no more than
2 points of X, else DE is a (3,3)-fence (with three

points from S, on one side and {A Q,Q,} on the other).

Thus, discarding points in S, along with Q,, BD is now
a (3,3) -fence for the remaining set, and our reduction is
complete.

We have demonstrated that in every possible case the
set X must generate a crossing family of three segments,
so the theorem is proved.

3. An Exact Value for #(1,2)

Here we prove the only exact value known for any of the
six-point configuration numbers mentioned in the intro-
duction. The following well-known fact will prove useful
in the analysis.
Lemma 2.1: Suppose that

X={AB,R,P,,P.Q.Q,-,Q,} wherefor each i
and j the ssgment PQ,; crosses AB. Then X generates a
(1,n)-grid consisting of n pairwise disjoint segments
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>

Figure 10. The second step in reducing the fence for Case 2.

each of which crosses AB.

Proof. Let 7 be the permutation of {1,2,---,n} such
that the sum of the lengths of the segments RQ, ., is
minimized. Then the segments

{AB.RQ():PQuo+ s PQu | forma (1,n)-grid.

Theorem 2.2: #(1,2)=8.

Proof. Figure 11 shows a set of seven points that
generates no (1,2)-grids. (This is easily checked by
hand.)

It remains to prove that any set of eight points in gene-
ral position will generate a (1,2) -grid. Let X be any
such set, let Z be a vertex of the convex hull of X,
and let X'=X\{Z}. We consider several cases de-
pending on the shape of the convex hull of X'.

Case 1. If the convex hull of X' is a 6-gon or 7-gon
then X' clearly generates a (1,2) -grid.

Case 2. Suppose the convex hull of X' is a 5-gon
ABCDE with the remaining points of X' being P and
Q. If P and Q lie on opposite sides of any diagonal to
ABCDE then X' generates a (1,2)-grid by Lemma 2.1.
Consequently, we may assume that P and Q lie in the
“inner pentagon” determined by the diagonals. We may
also assume that Q is interior to the triangle PAB. But
then QD crosses both the diagonal CE and either PA or
PB, giving us a (1,2)-grid (see Figure 12).

Case 3. If the convex hull of X' is a quadrilateral
ABCD then the three points
{P,Q.R} = X'\{AB,C,D} must be distributed be-
tween the four regions determined by the diagonals of
ABCD . By Lemma 2.1 we may assume that these points
are not separated by either diagonal—thus all lie in the
same region.

Assume then that P, Q, and R are each interior to both
triangles ABC and BCD. If points {A, P,Q, R} form the
vertices of a convex quadrilateral then its diagonals to-
gether with segment BD form a (1,2) -grid (see the left
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Figure 12. A (1,2)-grid for Case 2.

half of Figure 13). Thus, we may also assume that R is
interior to the triangle APQ as in the right half of Figure
13. We now consider some subcases. Recall that there is
a point Z of set X lying outside of the convex hull of X'.
The segment RZ must meet either BC or one or both of
the diagonals of ABCD.

Subcase 3A. Suppose first that RZ meets BC. Note
that it must also meet one of the sides of triangle APQ,
and that this side is disjoint from BC. Thus X generates a
(1,2)-grid in this case.

Subcase 3B. Next suppose that RZ meets exactly one
of the diagonals of ABCD. Then these diagonals together
with RZ form a (1,2)-grid.

Subcase 3C. Finally, suppose that RZ meets both dia-
gonals of ABCD. In particular, then, RZ meets BD. But
BD meets both AP and AQ, and RZ must miss one of
these. So, this case also yields a generated (1,2)-grid.

Case 4. The only remaining case is to assume that the
convex hull of X' is a triangle, say ABC, with the four
remaining points of X' interior to this triangle. If
ZABC is a convex quadrilateral then by separating B
from the remaining seven points we reduce to one of the
earlier cases (see Figure 14).

Thus we may assume that C is interior to triangle ZAB
(so that the convex hull of X is a triangle). We may
clearly assume that a similar configuration results if any
of the three vertices of this triangle are separated from
the other seven points. In this case the set X must be as
pictured in Figure 15: the convex hull of X is a triangle
Z,Z,Z, and the convex hull of X\{Z} is a triangle
with C, as the third vertex. Two points of X, say P and

Copyright © 2013 SciRes.

Q, must lie in the region common to the interiors of
triangles C,Z,Z,, C,Z,Z,, and C,Z,Z,. We consider
two subcases for the placement of these points.

Subcase 4A. First it is possible that either P or Q is
not interior to triangle C,C,C,. Assume, for instance,
that segment C,C, separates P from Z, as in Figure
16. In this case PZ, meets both C,C, and one of
CZ, or CZ,,yielding a (1,2)-grid.

Subcase 4B. Finally, assume both P and Q lie interior
to triangle C,C,C,. The ray PQ must meet one of the
sides of this triangle, say C,C,. Then Q is interior to
triangle PC,C, so we have the configuration depicted
in Figure 17. The segment QZ, must now meet a side

77
0 4

1 points
e

*B

Figure 14. Reducing an instance of Case 4 to a previous
case.

Figure 16. The arrangement for Subcase 4A.
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Figure 17. The arrangement for Subcase 4B.

of each of the triangles CZ,Z, and PC,C,, again
yielding a (1,2)-grid.

All cases have now been considered and the proof is
complete.

[1]

(2]

REFERENCES

P. Erdos and G. Szekeres, “A Combinatorial Problem in
Geometry,” Compositio Mathematica, Vol. 2, 1935, pp.
463-470. (Reprinted in: J. Spenceer, Ed., Paul Erdds: Se-
lected Writings, MIT Press, Cambridge, 1973, pp. 3-12.
Also Reprinted in: I. Gessel and G.-C. Rota, Eds., Classic
Papers in Combinatorics, Birkhduser, Basel, 1987, pp.
49-56.)

P. Erdos and G. Szekeres, “On Some Extremum Problems

Copyright © 2013 SciRes.

in Elementary Geometry,” Annales Universitatis Scien-
tarium Budapestinensis de Rolando E&6tvés Nominatae
Sectio Mathematica, Vol. 3-4, No. 1, 1961, pp. 53-62.
(Reprinted in: J. Spencer, Ed., Paul Erdds: The Art of
Counting. Selected Writings, MIT Press, Cambridge,
1973, pp. 680-689.)

F. R. L. Chung and R. L. Graham, “Forced Convex n-
Gons in the Plane,” Discrete & Computational Geometry,
Vol. 19, No. 3, 1998, pp. 367-371.
doi:10.1007/PL.00009353

D. Kleitman and L. Pachter, “Finding Convex Sets among
Points in the Plane,” Discrete & Computational Geometry,
Vol. 19, No. 3, 1998, pp. 405-410.
doi:10.1007/PL00009358

G. Té6th and P. Valtr, “Note on the Erdos-Szekeres Theo-
rem,” Discrete & Computational Geometry, Vol. 19, No.
3, 1998, pp. 457-459. doi:10.1007/PL00009363

W. Morris and V. Soltan, “The Erdds-Szekeres Problem
on Points in Convex Position—A Survey,” Bulletin of the
American Mathematical Society, Vol. 37, No. 4, 2000, pp.
437-458.

B. Aronov, P. Erdés, W. Goddard, D. J. Kleitman, M.
Klugerman, J. Pach and L. J. Schulman, “Crossing Fami-
lies,” Combinatorica, Vol. 14, No. 2, 1994, pp. 127-134.
doi:10.1007/BF01215345

M. J. Nielsen and D. E. Sabo, “Transverse Families of
Matchings in the Plane,” ARS Combinatoria, Vol. 55, No.
55, 2000, pp. 193-199.

OJDM


http://dx.doi.org/10.1007/PL00009353
http://dx.doi.org/10.1007/PL00009358
http://dx.doi.org/10.1007/PL00009358

