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ABSTRACT 

A crossing family of segments is a collection of segments each pair of which crosses. Given positive integers  and 

, a  grid is the union of two pairwise-disjoint collections of segments (with  and  members, respectively) 

such that each segment in the first collection crosses all members of the other. Let 

j

k  ,j k  j k

 c k  be the least integer such that 

any planar set of  points in general position generates a crossing family of  segments. Also let # ,  be the 

least integer such that any planar set of  points in general position generates a 

 c k k  j k 
# ,j k   j k, -grid. We establish here 

the facts  and   19 3c 6  # 1, 2 8 . 

 
Keywords: Erdos-Szekeres Theorem; Combinatorial Geometry 

1. Introduction 

For each positive integer  let 3n   g n

 be the least 

integer such that every planar set of g n  points in 
general position contains the vertices of some convex 
n-gon. This number was introduced by Erdös and Sze-  
keres in 1935 (see [1] and [2]) who established the  

bounds  and conjectured   2 2 4
2 1

2
n n

g n
n

  
     

1

5

2.

that the lower bound is in fact an equality. The values 
 and  are easy, and several proofs of 

the fact  have been given. However, no other 
values have been computed exactly and the upper bound 
given by Erdös and Szekeres stood until recently as the 
best known. A seqence of 1998 papers by Chung and 
Graham [3], Kleitman and Pachter [4], and finally Tóth 
and Valtr [5] improved the above-mentioned bound to  

 3 3g   4g 
9 5g

 2 2 5
2 1

2
n n

g n
n

  
     

     (0.1) 

Morris and Soltan [6] provide an excellent survey of 
related results. 

Given the apparent difficulty of determining values of 
 g n  we might well seek weakened notions of these 

numbers. For example, let  be a combinatorial 
property satisfied by the vertex set of a convex -gon. It 
might be interesting to ask how large a set 

 n
n

X  must be 
to guarantee the existence of a subset of X  having 
property  n . We will consider such generalizations 
where the property  n  is a specified intersection 
behavior of some subset of the diagonals to a convex 

-gon. n
We will say that a set 2X    generates a collection 
 of segments if each segment in  has its endpoints 

in 
 

X . Also, we will say that a collection   of seg- 
ments is a crossing family if each pair of segments in  
crosses (intersects at a point that is not endpoint to either 
segment). Now if  then the vertex set of a convex 

-gon clearly generates a crossing family of size . 
Define 



k
2n k

n
 c k  to be the least integer such that any planar 

set of  c k  points in general position generates a cross- 
ing family of  segments. Then as we have noted, k
   2g kc k  , but we might expect  to be much 

less. Indeed, the main result in the paper by Aronov et al. 
[7] implies the much stronger bound 

 c k

 c k 212k               (0.2) 

for these numbers. The authors of that paper ask whether 
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this bound might be improved to a linear bound—a ques- 
tion that remains open at present. 

Now let  and  be positive integers. Define a 
-grid to be a collection of segments  

j

,

k

,
 ,j k

, ,


 1 2 1 2, , ,j ks s s t t  t  such that each segment si crosses  

each segment jt  but such that segments is  and js  
are disjoint if , as are i  and i  j t jt . If  
then the vertex set of a convex -gon clearly generates 
a -grid. Define 

2 2n j  k


n

 ,j k  # ,j k
# ,j k

2 2j k

 be the least integer such 
that any planar set of  points in general position 
generates a  -grid. We again have the easy in- 
equality , but a result of Nielsen 
and Sabo [8] implies the linear upper bound 





g

,j k
 # ,j k

  # , 20 whenj k k j k          (0.3) 

for these numbers. 
It appears at least superficially, then, that grids are 

easier to find than are crossing families, and that both are 
easier to find than are convex polygons. But while the 
progression from  g n  to  to  repre- 
sents a geometric and computational simplification, none 
of these can be said to be simple. A look at the six-point 
cases illustrates the situation well. 

 c k # ,j k 

(A) The value of  is not known. It is conjectured 
that , but (0.1) gives only . 

 6g

3c
 6 17g   17 6 37g 

(B) The value of  is not known, but we will 
prove in this paper that 


 9 3 1 

# 1
6



7
6



c . 
(C) We will show below that . However, 

this is the largest case for which the exact value of 
 is known. 

 , 2 8

# ,j k
The purpose of this paper is to establish the facts men- 

tioned in items (B) (see Section 1) and (C) (see Section 
2). Bounds for some of the larger cases of these numbers 
will be given in a subsequent paper. The methods we use 
are not complicated, but some imagination is required to 
find an approach that reduces the number of cases to a 
manageable level.  

2. An Improved Bound for c(3) 

The bound (0.2) gives only —of course 
 (from (0.1)) is better. We are able here 

to improve this substantially to . We would 
be quite surprised if the actual value of  is not 
closer to the lower bound, but reducing the upper bound 
appears to be very difficult. 

 3 108c 

 9 3c 
   3 6 3c g 

1
c  3

We begin by developing some notation that will be 
useful in the main proof. Let X be a finite planar set in 
general position. Now let A and B be vertices of the 
convex hull of X admitting parallel supporting lines. We 
may assume these supporting lines touch the convex hull 
of X only at points A and B so that the points of 

 ,X A B  lie in the strip between them. One of the 
half-strips bounded by these lines and the segment AB  

contains at least half the points of  , X A B . Let this 
half-strip be called  , and let  be the number of 
points of 

m
 ,X A B  in  . We define sequences of sets 

     , ,i i iX F V , and   iW ollows (see 
Figure 1). 

0 i m  as f 

 Let 0X X . 
 For each i  such that iX  is defined let iF  be the 

set consisting of those points in   lying on the 
boundary of the convex hull of iX , together with the 
points A  and B . Furthermore, set i iV X Fi   
and iXiW X  . 

 Finally, for i m  let iC  be a point of  ,iF A B  
and define 1iX   to be  i iX C . 

Note then that i i iV F W X   and that  

 0 1 2 1, , , ,iW C C C C   i , so iW  i . We think of iF  
as being a “convex fence” separating  and W . i i

More generally, we will say that a sequence of points 
V

1 2, , , fC C C  from X  is a  ,v w -fence for X  if 
  1 2, , , fX C C C V W   where V v  and 

W w , 
 1, , fC C  are consecutive vertices on the convex 

hull of  1, , fV C C  , and  
 every segment joining a point of V to a point of W 

crosses one of the f − 1 segments  

1 2 2 3 1, , , f fC C C C C C . 
In this case we say that  is the set of points of V X  

inside the fence 1 2 fC C C  and W  is the of points of 
X  outside that fence. 

Given positive integers , and  we will say that ,v f w
X  has property v f w/ /  if X  has a  ,v w  - 

fence consisting of f  points for some v v   and 
w w  . The sets described above yield a sequence of 
properties  

0 0 1 1 r 
X (where, of course, 0v   fm = 2). 

L

2 2

1 2 mv v v  
0 , 1 , 2 , ,v f v f v/ / / / , fo

 a
mma 1.1. Let 

m mf m/ /
nd

v f/ /

e  , ,1 2 3 1 2 3, , , , ,X P P P Q Q Q A B  where 
 

 

Figure 1. A convex fence. 
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for each i and es AB. Then X j the segment i jPQ  cross
generates a crossing family of three segments including 
AB . 

Clearly it is enough to show that is a con- 
ve

i j k mPP Q Q  
to do 

d y 

x quadrilateral for some , , ,i j k m , and this it is 
enough to show that line sses segment k mQ Q  
and line 


 misses segm  i jPP . 

Note th  halfplane determi b

i jPP


 mi
ent

ne
k mQ Q

at the AB


 and 
ta

ns contains two of the points of 

con- 
ining  1 2 3, ,Q Q Q  is divided into four ( fewer) re- 

gions by


, 


, and 


. Suppose first 
that one of these n tains bo Q  and mQ . 
Now 


 cannot intersect all three es of  

triangl P , so it misses some segment i jPP . From 
our obse bove the points generate a crossing 
family of six segments. 

If none of these regio

or 

 k

sid

 the lines 


re

k mQ Q
 1 2 3P P

rvation a

1 2P P
gio

2 3P P
s con

1 3P P
th

the
e

Q
segment kQ

1 2 3, ,Q Q  then it must be the case that there is a 

mQ  meeting exactly two of the lines 1 2P P


, 
, 


ut then 


 cannot meet any o  
 o  triangle 1 2P P since it cannot meet only 

one side of the triangl  there are two triangle sides 
that it clearly cannot meet, having crossed the lines 
determined by these sides at points outside of the 
triangle). But now k mQ Q  misses one of the lines 

2 3P P 1 3P P


.
sides f the

 B k mQ Q

3P  (
 and

f the

i jPP

e


, 

so we once again ha  situation described above
Lemma 1.2. If a set X has property 

ve the . 
v f w  (with 

,v
of three 

2w   and 3f  ) and generates no c family 
segmen n 

rossing 
ts the X  also has property  

2 1 2v f w  / / . 
Proof. Let , ,1 2 , fC C C  be a -fence for X 

w
 ,v w
Order ith related co nd W. the points of 

 1, ,
mponents V a

fV C C   radially from 2C  as 
 2 3, , v fP P C 0 1 1, ,P C P  (see Figure 2). 

 segments 
by

Now X generates no crossing family of three
 assumption, so by Lemma 1.1 there cannot be three 

points of W  on the same side   of line 2 3C P


 as 
point 1C . (Again see Figure 2—the segment  is 
crosse y every segment joining such a point of  to 
any one of 1P , 2P , or 3P .) But then 2 3, , ,

1 2C C
 Wd b

fC C C is a 
fence with related comp nts V P

 
Wone 1 2P  and ,  . 

Lemma 1.3. Any set having property  
2 1 2 1f f f / /  for some 2f   gener

egments. 
Proof. Assume to reach a 

ates a cross- 
ing family of three s

contradiction that a set X  
 

 

Figure 2. Illustrating the proof of Lemm . 

has pr

a 1.2

operty 2 1 2 1f f f / /  for some 2f   but 
rossing family of thgenerates no c ree segments n by 

Lemma 1.2 X also has property 
. The

3 2 3/ / . But by 
Lemma 1.1 any set with property 3 2 3/ /  will gene- 
rate a crossing family of three —a contra- 
diction. 

These 

segments

lemmas establish that a set generates a crossing 
family of three segments if it contains a subset with a 
 3,3 -fence of two points or a  5,5 -fence of three 

. This fact will be used repeatedly in our next 
proof. 

Theo

points

 9 3 1crem 1.4. 6  . 
er bound is Proof. The low established by considering 

th

position. 
W

e set of eight points depicted in Figure 3. (A few lines 
are shown to indicate relative positioning of the points.) 
We leave it to the reader to verify that this set fails to 
generate any crossing family of three segments. 

Now let X be any set of 16 points in general 
e will show that X generates a crossing family of three 

segments. The construction given at the outset of this 
section established a sequence 0 016 0f f / / ,  

1 115 1f f / / , 2 214 f f / / 2 , ,  
16 m mm f f m  / /  of propert  ies for X . Consider 

the property 5 511 5f / . 
We may cl 5

f /
early assume  else 5f  X  contains the 

vertices of a convex hexago  thus clearly generates 
the desired crossing family. If 5 3f   then we have 
either 

n and

8 2 5 3 2 3/ / / /  or 7 5 3 5/ / / / , either 
of which  cross r preli- 
minary lemmas. It remains, then, to examine the cases 

5 4f

3 5
guarantees the ing fami  ouly by

  and 5 5f  . 
 1: fCase 5 4   

In this case, X  has property 7 4 5/ / . As in 
Figure 4, let the fence be ABCD  an  the four 
regions 1R , 2R , 3R , and 4  shown. Let ir  denote 
the num of 

d consider

er o s 
R  as

b f point X  region iR , so th t 

1 2 3 4 7r r r r
in a

    . 
 > 0If r 0 and 1 3 2 4

 easy to see that X then generates a crossing family of 
three segments (two of which are AC and BD). So, if r1 > 
0 then we may assume either 3 2 0r r   or 3 4 0r r

 > r  (or  if r  >  > 0) it 
is

similarly 0 and r

  . 
This means either ACD or ABD -fe r 
 

 is a 7,5  nce, so ou

 

Figure 3. Example showing c(3) ≥ 9. 
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Figure 4. The general situation for Case
 

reliminary lemmas would guarantee the desired cross- 

then (using the points i

 1. 

p
ing family for X. Thus, we may assume 1 2 0r r   and 

3 4 7r r  . 

4If r2 5   
along with poin

n R  and 3

nc

4 

4R  
hets B and D) AC is a  3,3 -fe e. On t  

other hand, if 4 6r   then ACD is ,5 -fence. So 
(again using our lem as) we may assume 1. 

Subcase 1A: 3 6r  , 4 1r   

 a 5
 m r

Order the po f ints o X  in regions  and  as 3R
ure

4R
e m1 2 7P

assume that
, , ,P P  radially from B  as in Fig  5. W ay 

 the region 1S   that figure (bounded by 
 

in
AB 2P B


, 


, and the supporting line through A  to the 
e ll of conv x hu X ) contains at most two poin  of ts X , 

else AB  is a  3 -fence (with the latter set of th  
points being  ,P P D ). But then BCA  is a 

3,

1 2,
ree

 5,5 - 
fence where t inside consis the points in 
region 3R  less 1P  (if 1 3P R ) and the points outside 
consist of the (at least t oints outside ABCD not 
lying in 1S  together with D and the point of X in region 

4R . By our preliminary lemmas, X then generates a 
ssing family of three segments. 

Subcase 1B: 3 7r  , 4 0r   

h ine po ts 

hre

t of 

e) p

cro

Consider now 2  the region S in Figure 6 (bounded by 
AB

contain


, 


, and the supporting line). If this region 
o points of X then BD is a  3,3 -fence where 

one set of three points is 

3P B
s tw

 3  an
her 

1 2, ,P P P d the other 
consists of the two points in with point A. 
Thus, we may assume 2S  contains no more than one 
point of X. 

This show

2  togetS

s that by discarding up to two points (
an

1P  
d 2P ) inside and one point (in 2S ) outside the fence 

ABC  we can eliminate all segme s (joining an inside 
 an outside point) that cross AB. A mirror image 

of this same argument can be done for eliminating 
segments that cross CD. In this way we conclude that we 
can discard four points inside ABCD and two points 
outside ABCD and eliminate all segments except those 
that cross BC. So, BC is a  3,3 -fence for the remaining 
subset of X. As before, this fficient to guarantee that 
X generates the desired crossing family. 

Case 2: 5 5f   

D
t to

nt
poin

 is su

In this case, X has property 6 5 5/ /
making 

 

Figure 5. The arrangement for Subcase 1A. 
 

 

Figure 6. The arrangement for Subcase 1B. 
 

ve regions bounded by segments of the pentagon or in fi
the central region bounded by all the diagonals, then X  
generates a crossing family of three segments as sho  
in Figure 7. 

Thus, we m

wn

ay assume that the six points of X  inside 
the fence ABCDE  lie in the five regions labeled 1R  
through 5R ure 8. As before, let ir  denote t  
number o oints of 

 in Fig
 p

he
f X  in region iR . 

 If points of X lie in each of two jacad ent regions from 
among R1 through R5 then it is easy to construct a 
crossing family of three segments (two are diagonals 
of ABCDE and the other joins the points in question). 

 If 2 4 0r r   then ACE is a  6,5 -fence—more 
tha  guarantee the desired crossing family. 

Putting together these two observations, we may now 
n enough to

assume that 2 0r  , 1 3 0r r  , either 4 0r   or 5 0r  , 
and (of course) 2 4 5 6r r r   . 
 If 22 5r   then AC is a  er3,3 -fence wh e on one 

side we include two of the points from region 2R  
along with B and on the other side we include a point 
from 4 5R R  along with D and E. 

 If 2 1r   then either R4 or R5 contains 5 points of X. 
If R4 contains these points then CE is a  3,5 -fence 
where the three points on one side consist of the point 
in R2 together with A and B. If the points lie in R5 then 
similarly AD is a  3,5 -fence.  

Both of the above cases, then, lead to a cr amily 
of

ossing f
 three segments generated by X. The only remaining 

case to consider is 2 6r   (and 1 3 4 5 0r r r r    ). 
Here, ABDE is a  6,6 e for X ( C 
with the points ou the fence). Note that Lemma 1.2 
would allow us to conclude that either X generates a 
crossing family of three segments or else its property  

-fenc
e 

where we include 
tsid

. Consider the 
convex hull of the five points up the fence 
ABCDE . The diagonals of this pentagon determine 

terior regions. If a point of X lies in any of the  eleven in
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Figure 7. Crossing families in easy instances of Case 2. 
 

 

Figure 8. The arrangement for the remaining rts of Case pa
2. 
 

6 4 6/ /  must imply property 4 3 4/ /  (and  

2 2 2/ / ). Unfortunately, that is not sufficient under 
our lemm

s of X 
in

n int

as to give the desired conclusion. Instead, we 
will need to be more careful in reducing the fence. 

For our first step in the reduction, order the point
 region 2R  as 1P  through 6P  radially from B as in 

Figure 9. We may ssume the gion 1S  in that figure 
contains no more than one point of X, since otherwise BE 
is a  3,3 -fence (with two points from 1S  and A on 
one nd  1 2 3, ,P P P  on the other). en discarding 
any point 1 ng with 1P  and 2P , we may eli- 
minate all segments (join g a po  inside 

 a

 alo

re

side a Th
 in S

i ABDE  to a 
point outside) that cross AB ; all this while leaving at 
least four inside points and at least five outside points. 

The second part of the reduction is accomplished by 
ordering the remaining points of X in R2 as Q1 through Q4 
radially from D as in Figure 10. We may assume the 
region labeled as S2 in that figure contains no more than 
2 points of X, else DE  is a  3,3 -fence (with three 
points from S2 on one  and  2,side 1,A Q

long 
Q  on the other). 

Thus, discarding points in 2S  a 1, BD is now 
a  3,3 -fence for the rema ng set, and our reduction is 
co . 

We have

with Q
ini

mplete
 demonstrated that in every possible case the 

se

3. An Exact Value for #(1,2) 

nown for any of the 

ppose that  
n

t X must generate a crossing family of three segments, 
so the theorem is proved.  

Here we prove the only exact value k
six-point configuration numbers mentioned in the intro- 
duction. The following well-known fact will prove useful 
in the analysis.  

Lemma 2.1: Su
 1 2 1 2, , , , , , , ,n ,X A B P P P Q Q   Q  

and j the segment i jPQ  crosses AB. T

 

Figure 9. The first step in reducing the fence for Case 2. 
 

 

Figure 10. The second step in reducing the fence for Case 2. 
 
each of which crosses AB . 

Proof. Let π be the permutation of  such 
ngths of the segm  is 

m

  1, 2, ,n
ents nP Qthat the sum of the le  n

inimized. Then the segments 

      1 21 2, , , , n nAB PQ P Q P Q    form a  1, n -grid. 

Theorem 2.2:  # 1,2 8 .  
Proof. Figure   p hat 

ge
 11 shows a set of seven oints t

nerates no  21, (Thi-grids. s is easily checked by 
ha

 prov
tion will generate a -grid. Let 

nd.) 
It remains to e that any set of eight points in gene- 

ral posi  1, 2 X  be any 
such set, let Z  be a vertex of the convex hull of X , 
and let  X X Z   . We consider several cases de- 
pending on the hape of the convex hull of  s X  . 

Case 1 ex hull of . If the conv X   is a 6-gon or 7-gon 
then X   clearly generates a  1, 2 -grid. 

Case 2. Suppose the convex l of hul X   is a 5-gon 
ABC  with the remaining points of DE X 

ny
 being P and 

Q.
ABCDE t

 If P and Q lie on opposite sides of a  diagonal to 
hen X   generates a (1,2)-grid  Lemma 2.1. 

Consequently, we may assume that P and Q lie in the 
“inner pentago  determined by the diagonals. We may 
also assume that Q is interior to the triangle PAB. But 
then QD crosses both the diagonal CE and either PA or 
PB, giving us a (1,2)-grid (see Figure 12). 

Case 3. If the convex hull of 

 by

n”

X   is a quadrilateral 
ABCD then the three points  
   , , , , ,Q R X A B C D   must e distributed be- 
tween the four regions determ

P  b
ined by the diagonals of 

ABCD . By Lemma 2.1 we may assume that these points 
are not separated by either diagonal—thus all lie in the 

gion. 
Assume then that P, Q, and R are each interior to both 

triangles ABC

same re

 and BCD. If points  , , ,A P Q R  form the 
vertices of a convex quadrilateral then its diagonals to- 
gether with segment BD form a  1, 2 -grid (see the left  

where for each i  
hen X generates a 

 1, n -grid consisting of n pairwise disjoint segments  
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Figure 11. A set of seven points with no (1,2)-grid. 
 

 

Figure 12. A (1,2)-grid for Case 2. 
 
half of Figu e that R is 

terior to the triangle APQ as in the right half of Figure 
re 13). Thus, we may also assum

in
13. We now consider some subcases. Recall that there is 
a point Z of set X lying outside of the convex hull of X  . 
The segment RZ must meet either BC or one or both of 
the diagonals of ABCD. 

Subcase 3A. Suppose first that RZ meets BC. Note 
that it must also meet one of the sides of triangle APQ, 
an

D. Then these diagonals together 
w

ular, then, RZ meets BD. But 
BD

d that this side is disjoint from BC. Thus X generates a 
(1,2)-grid in this case. 

Subcase 3B. Next suppose that RZ meets exactly one 
of the diagonals of ABC

ith RZ form a (1,2)-grid. 
Subcase 3C. Finally, suppose that RZ meets both dia- 

gonals of ABCD. In partic
 meets both AP and AQ, and RZ must miss one of 

these. So, this case also yields a generated (1,2)-grid. 
Case 4. The only remaining case is to assume that the 

convex hull of X   is a triangle, say ABC, with the four 
remaining points of X   interior to this triangle. If 
ZABC is a convex quadrilateral then by separating B 
from the remaining sev points we reduce to one of the 
earlier cases (see Figure 14). 

Thus we may assume that C is interior to triangle ZAB 
(so that the convex hull of 

en 

X is a triangle). We may 
clearly assume that a similar configuration results if any 
of the three vertices of this triangle are separated from 
the other seven points. In this case the set X must be as 
pictured in Figure 15: the convex hull of X is a triangle 

1 2 3Z Z Z  and the convex hull of  iX Z  is a triangle 
with iC  as the third vertex. Two points of X, say P and 

t lie in the region comm e interiors of 
triangles 1 2 3C Z Z , 2 1 3C Z Z , and 3 1 2C Z Z . We consider 

 

Q, mus on to th

e 4A. First it is possible that e
instance, 

th

two subcases for the placement of these points. 
Subcas ither P or Q is 

not interior to triangle 1 2 3C C C . Assume, for 
at segment 2 3C C  separates P from 1Z  as in Figure 

16. In this case 1PZ  m oth 2 3C C  and one of 

1 2C Z  or 1 3C Z lding a (1,2)-grid. 
Subcase 4B. Fina , assume both P  Q lie interior 

2 3C . The ray PQ mus

eets b
, yie

lly  and
to triangle t meet one of the 
si

1

des of this triangle, say 2 3C C . Then Q is interior to 
triangle 2 3PC  we have the configuration depicted 
in Figure 17. The segment 1  must now meet a side  
 

C C

C  so
QZ

 

Figure 13. Possibilites for Case 3. 
 

 

Figure 14. Reducing an instance of Case 4 to a previous 
case. 
 

 

Figure 15. The difficult part of Case 4. 
 

 

Figure 16. The arrangement for Subcase 4A. 
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Figure 17. The arrangement for Subcase 4B. 
 
of each of the triangles  and , again 
yielding a (1,2)-grid. 

All cases have now been considered and the proof is 
complete. 
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