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ABSTRACT 

In this article we propose a new model for scheduling periodic tasks. The model is based on a variation of the circular 
chromatic number, called the multiple circular colouring of the conflict graph. We show that for a large class of graphs, 
this new model will provide better solutions than the original circular chromatic number. At the same time, it allows us 
to avoid the difficulty of implementation when the fractional chromatic number is used. 
 
Keywords: Graph Coloring; Circular Chromatic Number; Fractional Chromatic Number; Multi-Circular Coloring; 
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1. Introduction 

We consider the scheduling problems involving tasks 

1 2 . If two tasks both use a common resource, 
they cannot be scheduled at the same time. A valid 
scheduling is a mapping f from  1 2  to the 
subsets of a time period [0,T] such that  

, , , nT T T

, , , nT T T

   i jf T f T    if i  and j  use a common re- 
source. Let the value of a scheduling f be  

T T

 min :1i f f T T i n   , which is the minimum  

length of time a task has been assigned normalized by the 
length of the time period. The goal is to find a scheduling 
f   that maximizes f . One example of this type of 

scheduling problem is the heavily loaded resource shar- 
ing system in computer science [1-3]. The tasks are proc- 
esses and some of them may share a common data file. 
Two processes that do share a common data file cannot 
operate at the same time. A scheduling of the processes 
that has the maximum value would allow the processes to 
operate most efficiently. 

The constraints of the scheduling problem can be rep- 
resented by a graph, called the conflict graph. The con- 
flict graph G has vertex set  1 2, , , nv v v  representing 
the tasks where two vertices vi and vj are adjacent if and 
only if they use at least one common resource. Vertex 
colouring and chromatic numbers of the conflict graph 
have been used as models for scheduling problems (see 
for example [4]). If G can be coloured with kcolours such 
that no two adjacent vertices have the same colour, we 
can then divide [0,T] into k equal length periods. All ver- 
tices that are coloured with the same colour do not have  

edges between them and therefore can be assigned to one 
period. For this scheduling f, we have  1f G . 
Thus in general  1f G  . 

When the tasks are periodic in nature, circular colour- 
ing of the conflict graph is a more appropriate method. 
Circular colouring and the circular chromatic number 
(also called the star chromatic number) were introduced 
by A. Vince in 1988 [5]. A (k,d)-circular-colouring of a 
graph G is a mapping  such     : 0,1, ,c V G k 

   
1

that for each edge xy in G, d c x c y k d    .  

The circular chromatic number of G, , is the in- 
fimum of the ratio k/d for which G has a (k,d)-circular- 
colouring. 

 c G

Equivalently, we can consider a (k,d)-circular-colouring 
of G as a mapping c from V(G) to the open arcs of length 
d in a circle of length k such that if xy is an edge in G, 
   c x c y   . If we assign the tasks using a (k,d)- 

circular-colouring of the conflict graph G, we would 
have  1 cf d k G  . 

A (k,d)-set-colouring of a graph G is a mapping c such 
that for every vertex v in G, c(v) is a d-subset of  
 0,1, , 1k   and if xy is an edge in 
G,    c x c y   . The fractional chromatic number of 
a graph G,  f G , is the infimum of the ratio (k/d) for 
which G has a (k,d)-set-colouring. If we can consider a 
(k,d)-set-colouring as a mapping c from V(G) to the sets 
of arcs in the circle of length k such that the length of the 
union of arcs in f(v) is at least d for every vertex v and if 
xy is an edge inG,    c x c y   . An assignment using 
a (k,d)-set-colouring of the conflict graph G would yield  
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 1 ff d k G  . 
Circular chromatic number and fractional chromatic 

number and their variations have been extensively stud- 
ied in the last two decades [6-11]. More results on the 
circular chromatic number and fractional chromatic 
number can be found in the book [12] and the survey 
papers [13,14]. It is easy to see that by their definition, 
we have the relations 

     .f cG G G     

Vince proved in [5] that 

   1 .cG G    

Therefore, we have 
   .cG G   

While the difference between  and  G  Gc  is 
always less than 1, it is known that the difference be- 
tween  and  G  f  can be arbitrarily large for 
some graphs. An example is the family of graphs called 
Kneser graphs. A Kneser graph ([15,16]) ,p q  has all 
q-subsets of 

G

K
 0,1, , 1p   (p > 2q) as its vertices and 

two vertices are adjacent if the two subsets are disjoint. It 
is proved in [16] that 

  , ,f

p
K p q

q
   

  , 2K p q p q    2.  

Another example of a family of graphs where the dif- 
ference between their chromatic number and fractional 
chromatic number is large is the graphs obtained by us-
ing Mycielski’s construction. 

For a graph G with vertex set    1, , ,V G u u u 
 

2 n  
and edge set , the Mycielskian  E G M G  of G is 
the graph with vertex set  
     1 2 1 2, , , , , ,n nu u u v v v w   

  
 and edge set  

, : , : 1, 2, ,i j i j iE u v u u E v w i n   .  5M C  in  

Figure 1 is also called the Grotzsch graph. 
It is well known that 

     1.M G G    

For the fractional chromatic number of Mycielskians, 
the authors of [17] found the recurrence relation 

      1 .f f fM G G    G  

For the Grotzsch graph, since  5 5 2 ,f C   we have 

  5 5 2 2 5 29 10.f M C     

We use the notation  tM G  such that 

 
 times

( ( ( ))).t

t

M G M M M G   

We have 

1u

2u5u

4u 3u

1v

2v

3v4v

5v

w

 

Figure 1. Grotzsch graph. 
 

  5 5 2 2.t
f M C t    

In comparison, we have 

  5 3 .tM C t    

For this class of graphs, the difference between   
and f  is unbounded. 

For the circular chromatic number, we have 

     5 5 1 2 .t t
c M C M C    t  

This shows that the difference between the circular 
chromatic number and the fractional chromatic number is 
also arbitrarily large for the Mycielskians. To achieve the 
optimal result for a scheduling problem in general, it 
appears that the fractional chromatic number of the con- 
flict graph provides the best results. 

However, there are difficulties if we use (k,d)-set col- 
ouring and the fractional chromatic number in the sched- 
uling problem. To achieve  f G  the optimal (k,d)-set 
colouring may have a very large value of d. As pointed 
out in [12],  5

tM C  is an example of a graph G for 
which  f  for no small d. In fact, if we let G k d 

5C2G   and  1nG n G M , then 

  13 2 1n
nV G     

and  f n  is a fraction whose denominator, when 
written in smallest terms, is greater than . This ex- 
ample shows that there is no bound on the denominator 
of 

G
222

n

 f  that is a polynomial function of the number 
of vertices of G. If this optimal set colouring is to be used 
for scheduling, each task would be divided into too many 
fragments making it impossible in practice. To combine 
optimality and practicality, in the next section we pro- 
pose a new colouring of the conflict graph that will pro- 
vide a better solution than the circular colouring and eas- 
ier to implement than the set colouring. 

G

2. Multiple Circular Colouring of a Graph 

Definition 1 An m-(k,d)-circular colouring of a graph G 
is a mapping c from V(G) to the sets of open arcs in the 
circle of length k such that c(v) is the union of m arcs 
with a total length at least d and if xy is an edge in G, 
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    .c x c y  
 m

c G
 The m-circular chromatic number, 

 is the infimum of the ration k d  for which 
Ghas a m-(k,d)-circular-colouring. 

It is easy to see that for every positive integer m, 

     .m
f c cG G G     

To demonstrate this colouring indeed improves the 
solution of the scheduling problem in some cases, we 
show that even for , 2m   2

c G  can be strictly less 
than  for large classes of graphs.  c G

Recall that for a graph G, M(G) is the Mycielskian of 
G. There are many graphs G such that  

 Some sufficient conditions 
for this equality to hold are given in, for example, [18] 
and [19]. However, 

     .c M G M G 

2
c



 M G


 will always be strictly 
less than  M G . 

Theorem 2 For every graph G, 

     2 1
.

2c M G M G    

Proof: Let  and       1 2, , , ,nV G u u u G k 
       1 2 1 2, , , , , ,n nV M G u u u v v v w      as des-  

cribed in the previous section. Let  0, k  be a circle of 
length k. Since  G k  , there is a mapping of the 
form    , 1j j 

k 
ic u 

0,1, , 1j 
 for each i where  

 such that  when- 
ever  and  are adjacent. 

  1 2i ic u  c u
1i

u
2i

u

Let 
1

0,
2

k
  be a circle of length 1 2k  . Let    

  1
0, 1,

2 2
c w

     
  

 3 



. Notice that     1

2ic w c u    

for all i. Figure 2 demonstrates this mapping when 
. 5

For each i, if 
G C

   ic u c w   , let    i ic v c u ;  

otherwise, let         , 1 2i ic v c u c w k k  .  We  

show that the arcs representing these vertices in the case 
of  in Figure 3. 5G C

It is easy to check that this is a valid 2-
2 1

2

k  
 
 

-cir- 

cular colouring of M(G) in general. This proves that 

     2 1 1
.

2 2c M G k M G      

□ 
Corollary 3 If 

 
then      ,c M G M G  

     2 1
.

2c cM G M G    

□ 
Next we show that unlike the set-chromatic number, 

the denominator of the m-circular chromatic number is 
bounded by the product of m and the number of vertices 
in the graph. 

u3

u1

u5

u2

w

w

u4

 

Figure 2. A 2-circhular coloring of vertices of C5 and w in M 
(C5). 
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Figure 3. A 2-circular coloring of M (C5). 
 

Theorem 4 Let G be a graph of n vertices, and  

  .m
c

k
G

d
   Then k and d can be integers such that d < 

mn. 
Proof: Suppose that   .m

c G r   By scaling if neces- 
sary, there is a m-circular colouring c that maps the ver- 
tices of G to sets of m arcs in a circle of length r such that  

each arc has length at least 
1

m
 and if xy is an edge then  

    .c x c y    We assume that c is a colouring such 
that the set 

  1
:  is an arc in for some vertex  andl l c v v l

m
  
 

 

is the smallest. We fix a direction of the circle, say coun- 
ter clockwise. 

There is at least one arc l such that 
1

l
m

 ; otherwise  

r could be made smaller. Let that arc be l1. There must be 
an arc l  such that i) 2  1

1l  c is adjacent to  1c  2l  in
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G, ii) the left end of l1 is the right end of  and iii)  2l

2

1
l

m
 , otherwise 1l  could be made larger. 

Continuing this process, some arc will have to be used 
more than once. Say the first time this happens is at 

a b . Then the arc 1l l s 1, , ,a a bl l l   must cover the 
circle an integer number of times. Suppose that they 
cover the circle s times. Since there are  arcs and  



b  a

they all have length 
1

m
, we have 

 b a
sr

m


  

and 
 b a

r
sm


  

Since s n , the denominator is less than mn.     □ 
Intuitively, when the value of m increases, the m-cir- 

cular chromatic number will be closer to the fractional 
chromatic number and thus the difference between the 
chromatic number and m-circular chromatic number 
would increase. Nevertheless, our next theorem shows 
that the m-circular chromatic number cannot be less than 
one m-th of the .chromatic number. 

Theorem 5 For every graph G,    1

m
  .  m

c G G

Proof: Suppose that   .m
c G r   There is an m-circu-  

lar colouringc such that   1
 for every vertex v.  c v

r


Since c(v) is a union of m arcs, at least one of the arcs has  

length at least 
1

mr
. We insert mr points   1 2P P, , , mrP

spaced at equal distance in the unit length circle. For 
every vertex v, c(v) contains at least one of these points. 
Let i  Each iV  is an independ- 
ent set and 

  : .iV v G c v P  



 iV G V  . G can be coloured with mrcol- 

ours. So we have 

    ,m
cG mr m G    

i.e.,    1
.m

c G G
m

   

□ 
The Kneser graphs provide examples showing this 

lower bound is asymptotically the best possible. 
Let  G


 be the independence number of G. 

 is also bounded by a function of m
c G  G . The 

proof above yields a lower bound for  G . 
Theorem 6 For every graph G with n vertices, 

   
.m

c

n
G

m G



  

Proof: The set  in the proof of Theorem 5 is an in- 

dependent set. We have 

iV

 m
cm G  such independent  

sets. The average size of one set is 
 

.
m
c

n

m G
 There- 

fore 

 
 

.
m
c

n
G

m G



  

and 

   
.m

c

n
G

m G



  

□ 

3. Conclusion 

We proved that for a large class of graphs, this multiple 
circular colouring and m-circular chromatic number of 
the conflict graph will provide better solutions for the 
scheduling problem than the original circular chromatic 
number. It is also easier to implement than the model 
using the fractional chromatic number. We plan to inves- 
tigate more classes of graph G where    m

c cG G   
for small values of m. It would also be interesting to find 
out the probability for random graphs to have m-circular 
chromatic number strictly less than their circular chro- 
matic number. 
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