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ABSTRACT 

In the present work, the class of metrics connected with subsets of the linear space on the field, GF(2), is considered and 
a number of facts are established, which allow us to express the correcting capacity of codes for the additive channel in 
terms of this metrics. It is also considered a partition of the metric space, Bn, by means of D-representable codes. The 
equivalence of D-representable and the perfect codes in the additive channel is proved. 
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1. Introduction 

We consider the additive channel of communication [1-4] 
as a transformer of information, which is a generalization 
of the classical binary channel with limited number of 
distortions, .  Many notions and facts in the 
present work take their origins in the classic coding theory 
and are the direct analogues of the well-known results 
[1-5]. 

0 1,1 0 

The “noise” generated by the additive channel leads to 
the fact that there appears a word at the outlet of the 
channel which is different from that at its inlet. In con- 
nection with this there rises a necessity of transforming 
(coding) information for conducting it through the given 
channel, as well as a necessity of retransforming (decod- 
ing) it at the channel outlet. This circumstance makes one 
introduce such standard notions in the coding theory as: 
error correcting code; transfer/decoding speed, etc. 

On the other hand, as there are many additive channels, 
the problem of ordering and classification of such chan- 
nels rises, taking into account the main difficulty, namely, 
the possibility of correcting the generated errors. 

We consider the class of metrics connected with the 
subsets of the space on the field, GF(2), and establish a 
number of facts which allow us to express the correcting 
capacity of codes for the additive channel in terms of this 
metrics. Also, we consider the partition of the metric 
space, , through -representable codes. The equival- 
ence of -representable and perfect codes in the additive 
channel is proved. 

nB
D

D

2. Codes in the Additive Channel 

Let  0,1B 
 0,1

n
 be a Galua field of two elements and 

 be an n-dimensional vector space on that 
field. 

nB

If  0 1, , , mA y y y   is a subset of , then the no- 
tion of the additive channel is connected with A, as fol- 
lows. 

nB

Any of the vectors, nx B , in the channel, A , is 
transformed into one of the following vectors: 

, 0,sy x y s m   ,  

where   is the operation of addition (with respect to 
mod 2) in the space, . nB

Definition [1]. For any vector, nx B , we call the 
neighbourhood of order t with respect to C, the following 
set:  

    1: ,t tС x u y u С x y С     .  

For convenience we take,    оС x x . 
Examples: 
1) Let  0 ,1n nA  . Then    ,tA x x x , where x  

is the logic negation of x . 
2) If   : 0 mod 2A y y   is the parity counter, 

then: 

 
 
 

, if 0 mod 2 ,

, if 1 mod 2 ,
t

A x
A x

A х

  


 

where A  is complement of the set, A , in . nB
3) If  :A y y t  , then in the additive channel, 
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A , can occur no more than t ‘errors’ of the form, 
.  Consequently, 0 1,1 0   tA x



 is a sphere of the 
radius, t, having its centre at the point, x. 

Thus, we get the classical case of the binary channel 
with limited number of errors. 

Definition [2]. The code, 0 1, , , Nv v


V v , corrects 
the errors of the additive channel, 0 1, , , mA y y  y , if: 

   1 1 , for .i jA v A v i   j

,j rv y

.sy y



 
An equivalent form of this condition is: 

i sv y   

or the one symmetrical to it: 

i j rv v   

It is obvious that the preceding definitions are sym-
metric with respect to the pair, ,A V , and therefore, 
both “generation” and “correction” of errors have the 
same nature. 

Statement 1 [3]. If the code, , corrects the errors of 
the additive channel, 

V
A , then the code, A , corrects the 

errors of the additive channel, . V
To describe the “relations” of the additive channel, A , 

and the code, , correcting the errors of that channel it 
is convenient to introduce the following double-case pre- 
dicate, 

V

 ,X A V : 

 ,

1,  if the code,

corrects th the channel, ,

0, otherwise

,

e errors of 

.

V
X A V A


 



 

Definition. We call any pair,  ,A V

 , 1.V

, additive if it is a 
solution of the following equation:  

X A   

Taking this definition into account, the property of 
perfectness of codes can be written as follows: 

   1ir, , is add .nA V А v BThe pa

A С X

A С

itive if
v V


 ,A V

 

Note that there are as many additive channels, as there 
are Boolean functions, and a few of them do not essen- 
tially differ from each other. It is not clear how to clas- 
sify such channels yet, but the following statements cor- 
respond the commonly accepted viewpoint. 

Definition [3]. The channels, A and C, are called equi- 
valent if any code correcting the errors of the additive 
channel, A, corrects the errors of the channel, C, and vice 
versa. 

Introducing the following relation of partial order, one 
can formally write: 

 ; , 1 1, for all nС V X V   .B  

If , then , which is natural. A С
This property makes possible to look additive channels 

with the ‘best’ and ‘worst’ correcting capacities for each 

2 .nm   
Statement 2 [3]. The additive channels,  A u  and 

 A v , are equivalent for any . , nu v B
Statement 3 [3]. If  ,X A V 1 , then 1A V  . 
It follows from the preceding statements that one can 

consider—without loss of generality: 
a) If  A  is a class of additive channels equivalent to 

A , then it is sufficient to solve the coding problem for 
any representative of that class.  

b) The additive channel, A , includes the null vector, 
which can be interpreted as the possibility of errorless 
transfer of the signal through that channel. 

As it follows from  ,X A V 1  that  , 1X V A  , 
then an analogical statement is correct for the vector, , 
too, i.e. it is sufficient to discuss the codes including the 
null vector. 

V

Thus, it follows from  that the sets,  ,X A V 1 A  
and , can overlap only at zero, and the search of the 
code, , is to be organized in the set, 

V
V \ 0n n.

.V

B A   
Below: 

0 00 , 0n ny A v     

As the power of the neighbourhood of order t does not 
depend on the vector, , we make the following denota-
tion, 

v
  .t tС С v  

Note that for the additive pair,  ,A V , the following 
limits take place [2]: 

2 1

2 2
.

n n

V
A A

   

It is clear that the upper limit is reached for the perfect 
pair,  ,A V  

3. Metrics and Codes 

The standard and most used metrics in coding theory is 
Hamming’s metrics, i.e. the following function: 

 1 2
1

.
n

n iE E
i

x x x x x


   

One can consider that this metrics is connected with 
the “natural” basis,  1 2, , , nE e e e  , in the following 
way:  

1 1

.
n n

i i iE
i i

x e x 
 

     

It is obvious that if another basis, , 
is chosen then another metrics is generated: 

 1 2, , , nС y y y 

1 1

.
n n

i i iС
i i

x y x 
 

     

The more general procedure of metrics generation in 
the above-mentioned way is as follows. For the given 
subset,  1 2, , , n

sС y y y B   , and the given vector, 
nx B , we consider all expansions of x with respect to 
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С , i.e. the expansions having the following form: 

1

,
s

i i
i

x y


                (1) 

and then we put the following number into correspon-
dence with the above expansion: 

1

.
s

i
i



  

Then, choosing the least of these numbers, we define 
the following norm (the MLM norm) connected with : С

   min , for expansion 1 ,

, if there is no such an expansion.

i
Сx

 


  

Lemma 1 [4]. The function, Сx , is a metrics (below, 
MLM metrics) for any subset, . nС B

Example: 
4) If , the MLM 

norm has the following form: 
     10 0 , 11 0 , , 11 1С      

  
1

1 1
1

, where .
n

i i n nC
i

2x x x x x x x x





      

In particular, for , the MLM norms of vectors in 
 take the following values: 

3n 
3B

000 0, 001 2, 010 2, 100 1,

011 2, 101 3, 110 1, 111 1.
C С С С

C С С С

  

   


 

In terms of graph theory, the above situation is as fol- 
lows. We give the following binary relation on the set of 
vortices, : nB

~ for somei i .x y x y y y C     

This relation defines adjacency and, geometrically, the 
set of vortices of the N-dimensional unit cube corre- 
sponds to the metrical space,  ,n

CB  ,



 and the distance 
between two points in  is equal to the minimum 
number of sides in the circuit connecting the corre- 
sponding vortices, or it is infinity, if there is no such cir- 
cuit. 

nB

Let  be a basis for the additive 
channel, A. We consider any basis, , in the 
space, , where 

 1 2, , , rM у у у 

nB
 1 2, , , nz z z

, 1,i iz y i r , and f is a linear re- 
versible transformation, : n nf B  B , defined in the fol- 
lowing way: 

   10 10 , 1, .i n i
i if z e i n     

We denote the image of the set, , by nС B  f C : 

    ; .f C f y y C   

It is obvious that if    1 2 n f A    , then 0i   
for all 1,i r n  . 

We denote the linear shell of the set, , by C  L C , 
and we denote by  L C  the subset in  satisfying 

the following condition: 

nB

    ,nL C L C B   

where + means the direct sum the subspaces. It is obvi- 
ous that   0nL C  , if   nL C B . 

The following holds true. 
Lemma 2 [4]. For any vectors,  ,u v L M , the fol- 

lowing relations hold true: 

        
    

1 1, , ;

, .

M E E

M

u v f u f v u v

f u f v

  



 



,
 

Lemma 3 [6]. The code, , corrects the errors of the 
additive channel, А, iff the following holds true:  

V

 , 3 , , ,А i j i jv v i j v v V     .  

Example: 
5) We consider the channel, 
 1 2 20 ,10 ,1 0 , ,1n n n nА   

0 1,1 0 

1 1

, as an illustration. “Physi-
cally”, the channel A means that the “errors” of the form, 

, which take place either in the 1st place, or 
in the 1st and 2nd places simultaneously, and so on. Thus, 
A n   and to build a maximum volume code cor-

recting the errors of the given channel we use Lemma 3. 
It is sufficient to consider all the subsets, , for 
which:  

nV B

 2
, , 3, ,

1

n

A i j i jV v v v v
n

 .V  


 

Let      1 2 1 2 1 2, , , 0n nC С B C С С L C L C    .  
Lemma 4. For any  ,x y L C  holds true the equa-

tion: 

    
1 21 1 2 2, , ,C C C  ,x y x y x y   

 
where    1 1 1 2 2 2, ; , .x y L C x y L C  . 

Proof. It follows from the conditions of lemma that the 
vectors,  ,x y L C , are one to one represented in the 
form [7]: 

1 1 2 1 2, ,x x x y y y      

where    2 1 1 1 2 2, , ,x y L C x y L C . 

Consequently: 

   
  

1 2 1 2

1 1 2 2

, ,

, ,

C C

C C

x y x x y y

x y x

 

 

  

  y
      (2) 

We assume—without loss of generality—that: 

 
 

 

1

1 1

1 1 2

2 1 2

1 1

, , , ,

, , , ,

, ;

m

m m m

m m

i i
i i

C z z z

C z z z

.ix y x y 

 

 





   





z

 

Then: 
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   

   

1

1

1

2
1

1 1 1 1
1

2 2 2 2
1

, ,

, ,

m

C i C
i

m

C i C
i m

x y x y ;

,x y x

  

  



 

 

 



 y
 

where: 

1 1

1

1 1 2 2
1 1

, .
m m

i i i i
i i m

x y z x y 
 

     z

,

 

Consequently, taking (2) into account, we get:  

     
1 1 1 2 2 2, ,C C .x y x y x y     

Q.E.D. 
Lemma 5. For any additive pairs,  1 1,A V  and 

 2 2,A V , where ,  1 1 1 2 2 2, , ,A V L C A V L C  the pair,  

 1 2 1 2, A A V V  , is additive, too. 
Proof. Let for 1 2 1 2, , , ,x x A A y y V V      hold the 

following equation: 

.x x y y                  (3) 

From the definition of the direct sum of sets it follows 
that: 

1 2 1 2 1 2 1 2, , , ,x x x x x x y y y y y y         

where 1 1 1 2 2 2 1 1 1 2 2 2, , , , , , , .x x A x x A y y V y y V     
Consequently, taking (3) into account, we get: 

1 2 1 2 1 2 1 2, ,x x y y x x y y       

That is, the pairs,  1 1,A V  and  2 2,A V  are not ad-
ditive. 

Q.E.D. 

4. Partition of the Metric Space into 
Dirichlet’s Regions 

Let  ,n
CB   be the metric space with an MLM norm, 

C , where  is a subset in . С nB
nBWe define for any  the Dirichlet region, V  xD , 

of the point, x V , in the following way: 

    ; , , ,n
x C CD y B x y z y z V      .  

It is obvious that: 
n

x
x V

D B


                 (4) 

In fact, Dirichlet’s region of the point, x , includes all 
points of the metric space,  ,n

СB  ,  which are not 
farther from x  than from the other points in . V

It is easy to notice that it is sufficient given the coin- 
cidence of the sets,  L С  and , for (4). Neverthe- 
less, this condition is not always necessary, which can be 
seen from the following example. 

nB

Examples： 
6) Let 

        
    

1000 , 0100 , 0010 , 1010 ,

and 0000 , 1111 .

С

V х y



  
 

Then we have: 

         
     
         
     

0000 , 1000 , 0100 , 0010 , 1100 ,

1010 , 0110 , 1110

1111 , 1001 , 0101 , 0011 , 1101 ,

1011 , 0111 , 0001

x

y

D

D




 

that is, 4 .x yВ D D   
7) Let  

      
      

1000 , 0100 , 0010 ;

0000 , 0001 , 1111 ,

С

V x y z



   
 

then: 

         
     
        
        

0000 , 1000 , 0100 , 0010 , 1100 ,

1010 , 0110 , 1110

0001 , 1001 , 0101 , 0011 ,

1101 , 1011 , 0111 , 1111

x

y

z

D

D

D







 

It is obvious that: 4
x yВ D D D   z  

and , ,x y zD D D
 do not overlap in pairs. It follows from this example that 

the condition, 2kV  , or ,x yD D  is not necessary 
for the equality (4). 

The following theorem ‘connects’  and V , giving 
the answer to the question: which are the conditions pro-
viding Equation (4). 

С

Theorem 2. The equation: 
n

x
x V

D B


  

holds true for all  y L С  iff:  

   .V L С y    

Proof. Taking (4) into account, it is sufficient to prove  

that n
x

x V
B



  D , i.e. for every vector,  

   ,z L C y y L C   ,  there is such x  that xz D . 
As for any vectors,  1 1,z L C y   

 2 2 ,z L C y   1 2 1 2, ,y y y y L C  ,  holds the fol-
lowing: 

 1 2, ,C z z    

then xz D  iff  , .x z L C y   
Q.E.D. 
Definition. The code, , is called -representable 

in the metrical space, 
V D

 ,nB С , if all Dirichlet regions 
of the points in  do not overlap in pairs. V

We note that D-representability of a code is connected 
with a certain metrics and, in general, this property does 
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not preserve if the metrics is changed.  
Example: 
8) Let: 

       
     
        

    

1

2

1000 , 0100 , 0010 , 0001 ,

1100 , 1010 , 0110

1000 , 0100 , 0010 , 0001 ,

0000 , 1111 .

C

С

V x y





  

 

We have in the metric space,  1

4 , cВ   that 

x yD D   . But x yD D    in the metric space,  

 2
, .cВ 4  

Theorem 3. The code, , is D-representable in the  V
metrical space,  ,n

СB  , iff the code,   V L С y ,  

is D-representable in the metrical space,   , СL С y  , 
for all  y L C . 

Proof. For   nL C B  we have: 

      , , ,n
C CV L C V L C y B    ;  

then it is logical to consider the case,   .nL C B  
Necessity. Let the code, V , be D-representable in 

 ,n
CB .  Then the following holds true: for every vec- 

tor,  y L C , the vector,  C yz L   belongs only 
to one Dirichlet region, ,xD  where x V . Then, ac- 
cording to Theorem 2, we have that  

  .x V L C y   Consequently, the code,  

 V L C y  , is D-representable in   , CL C y  . 
Sufficiency. Let  be not D-representable in  V

 ,n
CB  . Then there is such vector, , that  nz B

1 2x xz D D 
 

, where  

 1 1 2, 2x V L C y x V L C y     , and  

 1 2,y y L C
y y

. The following cases are possible: 
a)   1 2 1, ;z L C y  

b)   1 2 1, ;y y z L C y  

c)     1 2 1 2, ;y y z L C y L C y     

d)   1 2 1, .y y z L C y  

It is not difficult to prove with these that in the space,  

  , CL C y  , including the vector, , the code,  z

  V L C y , is not D-representable, which is a con- 
tradiction. Q.E.D. 

This theorem can be formulated in another way. 
Corollary. The metric space,  ,n

CB  ,  is parti- 
tioned into Dirichlet’s regions of the points of the code, 

, iff the metric space, V   , CyL C  , is partitioned 
into Dirichlet’s regions of the points,  

  x V L C y   , for all  y L С . 
We describe the algorithm of building the code, V , 

partitioning the metric space,  ,n
CB  ,  into Dirichlet’s 

regions. 
Step 1. We choose an arbitrary code,  V y , from the 

space,  L С y , partitioning the metric space,  

  ,y СL С  , into Dirichlet’s regions for which  

 y L С . 
Step 2. The code obtained through the formula:  

 
 

,
y L С

V V


  y

 ,

 

partitions the metric space,  into Dirichlet’s 
regions. 

 ,n
CB 

Let М  any basis of the channel, A . 
Theorem 4. If the code, V , is -representable in 

the metric space, 
D

 ,n
CB  ,  then the additive pair, 

 , ,yD V L M y  is perfect for  y L M . 
Proof. It follows from Theorem 3 that the code,  

 V L M y , is -representable in  D
  ,L M y M . As M is a basis for  L M , then it 

follows from Theorem 4 [8] (taking Lemma 2 and 
Lemma 3 into account) that the code,   M yV L , 
is perfect in   , ML M y  . Applying Lemma 3 and 
Lemma 4, we get that the additive pair,  

   ,yD V L M y , is perfect for every vector,  

 y L M . 
Q.E.D. 
Nevertheless, we note that the perfectness of the addi-

tive pairs: 

       , , ,A y V L M y y L M   

is not a sufficient condition for -representability of 
the code, , in 

D
V  ,n

MB  , though M  is a basis for all 
 A y . 
Example: 
9)  

        
    
         
     

1000 , 0100 , 0010 , 0001 ,

0000 , 1111 ,

0000 , 1000 , 0100 , 0010 , 0001 ,

1100 , 1010 , 0110

M

V

A






 

The code, , is -representable in V D  4 , AB  , but it  

is not -representable in D  4 , MB  , though the addi- 

tive pair,  ,A V , is perfect in . 4B
Theorem 5. If the additive pair,  ,A V  is perfect, 

then V is -representable in the metric space,  D
 , .n

AB   
Proof. As  1

xA x D  for every vector, ,x V  and  

 1

x V

nA x


B , then  1
xD A x . On the other hand,  

from perfectness of the code, V, it follows that the set, 

xD , for all ,x V  disjoints. That is, V is D-represent- 
able. 
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Corollary. The additive pair, (  ,A V  is perfect if the 
metric space,  ,n

AB  , is partitioned by the Dirichlet’s 
regions,  1D A xx  , of the points, x , from . V

Thus, we reduced the problem of building the perfect 
Pair,  ,A V

V
 to the problem of -representability of 

the code, , in the metric space, 
D
 , .n

AB   
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