

The Triangle Inequality and Its Applications in the Relative Metric Space^{*}

Zhanjun Su¹, Sipeng Li¹, Jian Shen²

¹College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, China ²Department of Mathematics, Texas State University-San Marcos Texas State, San Marcos, USA Email: suzj888@163.com, sipengli@126.com, js48@txstate.edu

Received January 10, 2013; revised April 20, 2013; accepted May 16, 2013

Copyright © 2013 Zhanjun Su *et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Let *C* be a plane convex body. For arbitrary points $a, b \in E^n$, denote by |ab| the Euclidean length of the line-segment ab. Let a_1b_1 be a longest chord of *C* parallel to the line-segment ab. The relative distance $d_C(a,b)$ between the points a and b is the ratio of the Euclidean distance between a and b to the half of the Euclidean distance between a_1 and b_1 . In this note we prove the triangle inequality in E^2 with the relative metric $d_C(\cdot, \cdot)$, and apply this inequality to show that $6 \le l(P) \le 8$, where l(P) is the perimeter of the convex polygon P measured in the metric $d_P(\cdot, \cdot)$. In addition, we prove that every convex hexagon has two pairs of consecutive vertices with relative distances at least 1.

Keywords: Relative Distance; Triangle Inequality; Hexagon

We use some definitions from [1]. For arbitrary points $a, b \in E^n$, denote by ab the line-segment connecting the points a and b, by |ab| the Euclidean length of the line-segment ab, and by \overline{ab} the straight line passing through the points a and b. Let a_1b_1 be a longest chord of C parallel to ab. The C-distance $d_C(a,b)$ between the points a,b is defined by the ratio of |ab| to $\frac{1}{2}|a_1b_1|$. If there is no confusion about C, we may use the terms relative distance between a and b. Observe that for arbitrary points $a, b \in E^n$ the C-distance between a and b is equal to their $\left[\frac{1}{2}(C+(-C))\right]$ -distance. Thus $d_C(\cdot, \cdot)$ is the metric of E^n whose unit ball is $\frac{1}{2}(C+(-C))$. We denote by λ_n the relative distance between two consecutive vertices of the regular n-gon. It is clear that $\lambda_3 = \lambda_4 = 2, \lambda_5 = \sqrt{5} - 1$, and

 $\lambda_6 = 1$. Doliwka and Lassak [1] proved that every convex pentagon has a pair of consecutive vertices with relative distance at least λ_5 .

In this paper we first prove the triangle inequality with respect to the relative metric of a plane convex body. Then we apply this inequality to show that $6 \le l(P) \le 8$, where l(P) is the perimeter of the convex polygon P measured in the metric $d_P(\cdot, \cdot)$. In the last, we prove that every convex hexagon has two pairs of consecutive vertices with relative distances at least 1.

For simplicity, if two lines \overline{pq} and \overline{rs} are parallel, we write $\overline{pq} \| \overline{rs}$. Denote by $x_1 x_2 \cdots x_n$ the polygon formed by the points x_1, x_2, \cdots, x_n , and by A(P) the area of the polygon P. A chord pq of C is called an *affine diameter* if there is no longer chord parallel to pqin C.

Lemma 1 Let C be a plane convex body, and x, y, z be arbitrary three points in E^2 . Then the triangle inequality $d_C(y,z) \le d_C(x,z) + d_C(x,y)$ holds.

Proof. By the properties of affine transformation, we may assume that the triangle xyz formed by the points x, y, z is a regular triangle. Let x_1y_1, x_2z_2 , and z_1y_2 be the affine diameters of C parallel to xy, xz, yz re-

^{*}Su's research was partially supported by National Natural Science Foundation of China (11071055) and NSF of Hebei Province (A2013-205089).

Shen's research was partially supported by NSF (CNS 0835834, DMS 1005206) and Texas Higher Education Coordinating Board (ARP 003615-0039-2007).

spectively, and let $|x_1y_1| = \mu_1, |x_2z_2| = \mu_2, |z_1y_2| = \mu_3$.

Since xyz is a regular triangle, by the definition of relative distance, we need to prove the following inequality.

$$\frac{1}{\mu_3} \le \frac{1}{\mu_1} + \frac{1}{\mu_2} \tag{1}$$

Take the lines $\overline{x_1u}$ and $\overline{x_2v}$ through the points x_1 and x_2 , respectively, such that they are parallel to $\overline{z_1y_2}$, where u (resp. v) is the intersection point of the lines $\overline{x_1u}$ (resp. $\overline{x_2v}$) and $\overline{y_1z_2}$. Denote by μ the relative distance between the points x_1 and u. (See **Figure 1**) Since z_1y_2 is an affine diameter of C, we obtain $\mu \le \mu_3$ and

$$\frac{1}{2}\mu_2\mu_3\sin\frac{\pi}{3} \ge \frac{1}{2}\mu_2\mu\sin\frac{\pi}{3} = A(x_1z_2ux_2) \quad (2)$$

The following equality is obvious.

$$A(x_1 x_2 y_1 z_2) = \frac{1}{2} \mu_1 \mu_2 \sin \frac{\pi}{3}$$
(3)

By symmetry, we may assume without loss of generality that $|x_1u| \ge |x_2v|$. Then

$$A(x_2 y_1 u) \le A(x_1 y_1 u) = \frac{1}{2} \mu_1 \mu \sin \frac{\pi}{3} \le \frac{1}{2} \mu_1 \mu_3 \sin \frac{\pi}{3}$$
(4)

By (2), (3), and (4),

$$\frac{1}{2}\mu_{2}\mu_{3}\sin\frac{\pi}{3} + \frac{1}{2}\mu_{1}\mu_{3}\sin\frac{\pi}{3}$$

$$\geq A(x_{1}z_{2}ux_{2}) + A(uy_{1}x_{2})$$

$$= A(x_{1}x_{2}y_{1}z_{2}) = \frac{1}{2}\mu_{1}\mu_{2}\sin\frac{\pi}{3}$$

from which (1) holds and the proof is complete.

Let *P* be a convex polygon. We denote by bd(P) the boundary of *P*, and by l(P) the perimeter of *P* measured in the metric $d_P(\cdot, \cdot)$.

Proposition 2 For arbitrary convex polygon P, we have $6 \le l(P) \le 8$.

From Theorem 2 in [2] we know that for every convex polygon *P* the perimeters of *P* and $\frac{1}{2}(P+(-P))$ are equal in every distance space. Thus we may assume

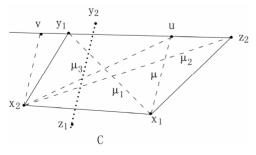


Figure 1. The figure of Lemma 1.

Copyright © 2013 SciRes.

without loss of generality that *P* is a centrally symmetric convex polygon. We take a point $p_1 \in bd(P)$, then there exists a point $p_4 \in bd(P)$ such that p_1p_4 passes through the center of *P*. And take the points

$$p_2, p_3 \in bd(P)$$
 such that $d_P(p_2, p_3) = \frac{1}{2} d_P(p_1, p_4)$

and $p_2 p_3 || p_1 p_4$. Then $H = p_1 p_2 p_3 p_4 p_5 p_6$ is an affine regular hexagon, where p_5, p_6 are the antipodal points of p_2, p_3 , respectively. It is clear that l(H) = 6. Since the boundary of *P* is dissected into six parts by the vertices of *H*, we consider the part between p_1 and p_6 (the other five parts can be treated similarly). Let v_1, v_2, \dots, v_k be the vertices of *P* between p_1 and p_6 . (See **Figure 2**) Draw the line-segments

 $p_1v_1, p_1v_2, \cdots, p_1v_k$. By Lemma 1, we get

$$d_{P}(p_{1},v_{k})+d_{P}(v_{k},p_{6}) \geq d_{P}(p_{1},p_{6}),$$

$$d_{P}(p_{1},v_{k-1})+d_{P}(v_{k-1},v_{k}) \geq d_{P}(p_{1},v_{k}),\cdots,$$

$$d_{P}(p_{1},v_{2})+d_{P}(v_{2},v_{3}) \geq d_{P}(p_{1},v_{3}),$$

$$d_{P}(p_{1},v_{1})+d_{P}(v_{1},v_{2}) \geq d_{P}(p_{1},v_{2}).$$

Adding all these triangle inequalities, we obtain that

$$d_{P}(p_{1},v_{1})+d_{P}(v_{1},v_{2})+d_{P}(v_{2},v_{3})$$

+...+d_{P}(v_{k},v_{6}) \ge d_{P}(p_{1},p_{6})

So we get $6 = l(H) \le l(P)$.

It is clear that we may circumscribe a parallelogram Q := efgh about P with the minimal area such that $p_1, p_2, p_3, p_4 \in bd(P)$ are the midpoints of the sides ef, fg, gh, he, respectively. By the properties of affine transformation we suppose without loss of generality that Q is a square. Let v_1, v_2, \dots, v_n be the vertices of P between p_1 and p_2 . Let $v_i^x, 1 \le i \le n$, be the perpendicular projection of v_i onto the line segment gf, and let $v_i^y, 1 \le i \le n$, be the perpendicular projection of v_i onto the line segment ef. (See Figure 3) According to Lemma 1, we obtain that

$$d_{P}(p_{1},v_{1}^{y})+d_{P}(f,v_{1}^{x}) \geq d_{P}(p_{1},v_{1}),$$

$$d_{P}(v_{1}^{y},v_{2}^{y})+d_{P}(v_{1}^{x},v_{2}^{x}) \geq d_{P}(v_{1},v_{2}),\cdots,$$

$$d_{P}(v_{n}^{y},f)+d_{P}(v_{n}^{x},p_{2}) \geq d_{P}(v_{n},p_{2})$$

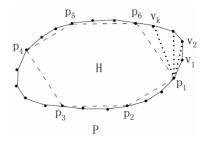


Figure 2. The figure of $6 = l(H) \le l(P)$.

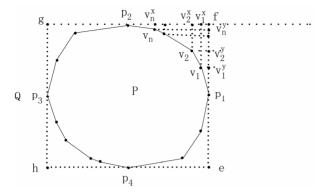


Figure 3. The figure of $l(P) \le l(Q) = 8$.

Adding all these inequalities, we have

 $d_{P}(p_{1},f)+d_{P}(f,p_{2})$ $\geq d_{P}(p_{1},v_{1})+d_{P}(v_{1},v_{2})+\dots+d_{P}(v_{n},p_{2})$

Similarly, we can consider the other parts of the polygon P between p_2 and p_3 , p_3 and p_4 , p_4 and p_1 . Hence we have $l(P) \le l(Q) = 8$.

From Proposition 2 we obtain

Corollary 3 Every convex hexagon has a pair of consecutive vertices with relative distance at least 1 (that is, λ_6).

By the following Lemma [3], we give a stronger result than Corollary 3.

Lemma 4 Let C be a plane convex body. We can circumscribe a parallelogram P about C such that the midpoints of a pair of opposite sides of P belong to C.

Theorem 5 *Every convex hexagon has two pairs of consecutive vertices with relative distances at least* 1.

Proof. Denote by H the given convex hexagon. By Lemma 4, we can circumscribe a parallelogram P about H such that the midpoints of the opposite level sides of P belong to H. If H is a degenerate hexagon, then the result is obvious. Hence we consider the following three cases.

Case 1. The parallelogram P has two sides, each of which contains exactly two vertices of H.

This case contains two different configurations, as shown in **Figure 4**. We first consider (1) in **Figure 4**. Since the segment ac is an affine diameter of H, we get $d_H(a,c) = 2$. By Lemma 1, we obtain

 $d_H(a,b) + d_H(b,c) \ge d_H(a,c) = 2$. Then either

 $d_H(a,b) \ge 1$ or $d_H(b,c) \ge 1$. Similarly, df is an affine diameter of H, so either $d_H(d,e) \ge 1$ or

 $d_H(e, f) \ge 1$. Then consider (2) in Figure 4. Since d is the midpoint of the side y_Z of P, the segments dc and de are not less than half of their affine diameters, respectively. Then we obtain that $d_H(c, d) \ge 1$ and $d_H(d, e) \ge 1$.

Case 2. P has exactly one side which contains two vertices of H.

If these two vertices of H belong to xy or wz,

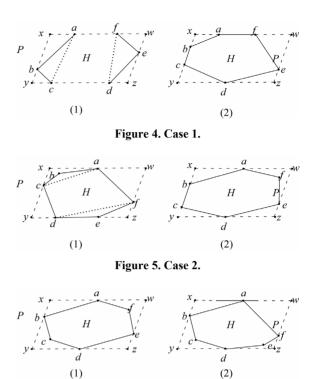


Figure 6. Case 3.

then the result is clear, see (2) in **Figure 5**. Otherwise, since *P* and *H* have five points in common, the remaining vertex of *H* must be located inside one of the four triangular regions bounded by *P* and *H*. See (1) in **Figure 5**. Since *a* is the midpoint of the side *xw* of *P*, we get $d_H(a, f) \ge 1$. Moreover, one of the segments *ac* and *df* must be an affine diameter of *H*, say *df*, then we obtain that either $d_H(e, d) \ge 1$ or $d_H(e, f) \ge 1$. *Case* 3. Every side of *P* contains exactly one vertex

Case 3. Every side of *P* contains exactly one vertex of *H*.

There are two different configurations in this case, as shown in **Figure 6**. In (1) of **Figure 6**, since *a* and *d* are midpoints of the sides *xw* and *yz* of *P*, respectively, we conclude that $d_H(a,b) \ge 1$ and $d_H(d,e) \ge 1$. In (2) of **Figure 6**, since *a* is the midpoint of the side *xw* of *P*, we obtain that $d_H(a,b) \ge 1$ and $d_H(a,f) \ge 1$. The proof is complete.

REFERENCES

- K. Doliwka and M. Lassak, "On Relatively Short and Long Sides of Convex Pentagons," *Geometriae Dedicata*, Vol. 56, No. 2, 1995, pp. 221-224. doi:10.1007/BF01267645
- [2] I. Fáry and E. Makai Jr., "Isoperimetry in Variable Metric," *Studia Scientiarum Mathematicarum Hungarica*, Vol. 17, 1982, pp. 143-158.
- [3] M. Lassak, "On Five Points in a Plane Body Pairwise in at Least Unit Relative Distances," *Colloquia Mathematica Societatis János Bolyai*, Vol. 63, North-Holland, Amsterdam, 1994, pp. 245-247.