
Modern Instrumentation, 2013, 2, 49-59 
http://dx.doi.org/10.4236/mi.2013.23008 Published Online July 2013 (http://www.scirp.org/journal/mi) 

Nuclear Track Detectors for Relativistic Nuclear  
Fragmentation Studies: Comparison with Other  

Competitive Techniques 

Mukhtar Ahmed Rana1,2,3*, Gul Sher4, Shahid Manzoor5, Fariha Malik6, Kanwal Naz7 
1The Pakistan Strategist Company, An SPD Project, PINSTECH-Admin Blk., Pakistan Institute of Nuclear Science and Technology 

(PINSTECH), Islamabad, Pakistan 
2Physics Department, University of Balauchistan, Quetta, Pakistan 

3National Tokamak Plasma and Fusion Project, NILOP, PAEC, Islamabad, Pakistan 
4Materials Division, Directorate of Technology, PINSTECH, Islamabad, Pakistan 

5Physics Department, COMSATS Institute of Information Technology (CIIT),  
Islamabad Campus, Islamabad, Pakistan 

6Isotope Applications Division, PINSTECH, Islamabad, Pakistan 
7Informatics Complex, H-8, Islamabad, Pakistan 

Email: *marana@alumni.nus.edu.sg, marana@pinstech.org.pk 
 

Received December 4, 2012; revised January 7, 2013; accepted January 20, 2013 
 

Copyright © 2013 Mukhtar Ahmed Rana et al. This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

The potential of the high resolution nuclear track detector (NTD) CR-39 is examined carefully for the measurement of 
relativistic nuclear projectile fragmentation cross sections and studies of related processes using the experience of many 
years of such measurements. The charge resolution and the charge resolving power of CR-39 detectors for the meas- 
urements of 158 A GeV 207Pb projectiles and their fragments are presented. Exposures of target-detector stacks, the 
chemical etching procedure and the nuclear track measurements are described in detail discussing precautions and pos- 
sible errors. The procedures discussed are also valid for other NTDs. A comparison with electronic active detectors is 
also made considering important detection and measurement aspects. An experimental design proposing the co-use of 
NTDs with in-use active detectors is described. 
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1. Introduction 

Fragmentation properties of shielding materials can af- 
fect protection of astronauts seriously. Radiations have 
also an adverse effect on microelectronic devices em- 
ployed in the control systems of high altitude commercial 
aviation aircrafts and spacecrafts, leading to the failure of 
such devices [1]. Nuclear fragmentation cross sections 
are crucial to issues of radiation transport through 
shielding materials and resulting shielding effect [2]. 
Nuclear fragmentation cross sections also give informa- 
tion about collision dynamics of high energy heavy nu- 
clei like lead and uranium. Various techniques [3-8] have 
been employed for studies of nuclear fragmentation and 
other reactions, including solid state nuclear track detec- 
tor (NTD) [9-18]. Here, we discuss experimental meth- 

ods and related problems for the measurement of frag- 
mentation cross sections using NTDs. The present paper 
is based on the results from several investigations on the 
methodology of nuclear tracks [19-21] and the use of 
NTDs in nuclear fragmentation studies [22-25]. Present 
paper addresses two issues: 1) Concise description of 
experiments to detect fragments of exotic nuclear reac- 
tion with CR-39 and other nuclear track detectors and 2) 
evaluation of experimental methods for the measurement 
of relativistic charged particles by passive and active 
detectors. The study of such processes is important for 
fundamental physics reasons and technical applications 
in fusion plasma, dosimetry in space and heavy ion ther- 
apy. Due to these reasons, the present study is interest- 
ing for several scientists in nuclear physics and their ap- 
plication. *Corresponding author. 
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2. High Sensitivity High Resolution Detector  
CR-39 

An NTD is a solid material (normally plastic, glass or a 
crystal), when exposed to a single charged radiation, a 
damaged trail of diameter 2 - 10 nm is produced which, 
through chemical etching, can be amplified to micro- 
scopically observable conical shapes. The main advan- 
tages over other radiation detectors are the detailed in- 
formation available on individual particles, the persis- 
tence of the tracks allowing measurements to be made 
over long periods of time, and the simple, cheap and ro- 
bust construction of the detector. A material commonly 
known and used as an NTD is CR-39. Its chemical name 
is polyallyl diglycol carbonate (PADC). It is a transpar- 
ent and rigid plastic material with the chemical formula 
C12H18O7. Etching is usually performed in solutions of 
caustic alkalis such as sodium or potassium hydroxide at 
temperatures of 60˚C ± 30˚C from few minutes to several 
hours. CR-39 is the most sensitive and the highest reso- 
lution NTD. It is sensitive to a wide range of charges 
down to Z = 1-6e (depending on the Z/β of the incident 
particle. Its charge resolution of 0.05e for precisely de- 
signed exposure and etching experiments. CR-39 was 
used to search for exotic particles, like Magnetic Mono- 
poles and Strange Quark Matter (SQM) to study cosmic 
ray composition and for environmental studies [26]. 

3. Experimental Methodology 

3.1. Target-Detector Assemblies and Exposures 

Nuclear track detectors can be employed for the meas- 
urement of fragmentation cross sections of relativistic 
projectiles using appropriate target-stack designs. We 
have employed CR-39 detectors (prepared by Intercast 
Europe Company of Parma, Italy) for fragmentation 
studies of relativistic projectiles on various targets. The 
method of these experiments is the measurement of the 
beam incident on the target and after the target where are 
present the survived beam and the fragments or second- 
dary particles produced in the interaction of the incident 
beam with the target.  

The design of target-detector assemblies and exposure 
geometry are shown in Figure 1. Several such stacks of 
CR-39 detectors and targets were exposed to 158 A GeV 
207Pb beams at the CERN SPS facility. The target thick- 
nesses were chosen in such a way that multiple interac- 
tions were negligible, but still appropriate to produce 
sufficient fragments. The CR-39 detector plates were 
11.5 × 11.5 cm2 in size and 600 μm in thickness. CR-39 
detectors upstream of the targets were used for the de- 
termination of the total number of incident Pb ions. The 
density of lead beam ions was around 1500 ions/cm2. 
The beam then passed through a target of thickness typi- 
cally half of the mean free path of the Pb ions in the  
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Figure 1. Schematic showing (a) Stack of NTDs and (b) 
exposure geometry. 
 
given target. CR-39 foils downstream of the target re- 
corded both the survived Pb ions and their fragments 
produced in targets. NTD based experiments are very 
simple compared to those which employ multi wire pro- 
portional chambers (MWPCs), ionization chambers (ICs) 
and Cherenkov detectors (CDs) [27,28]. The later ex- 
periments necessitate an online data acquisition whereas 
NTDs provide the possibility of offline data acquisition 
and are attractive for research groups which do not have 
direct access to high energy accelerator facilities.  

3.2. Chemical Etching 

Chemical etching is an essential step for NTD experi- 
ments. Etching amplifies the nanometer diameter particle 
trails in NTDs to microscopic dimensions appropriate for 
observations with optical microscopes. Nuclear track 
etching involves a number of factors without precisely 
quantized control. Most important factors are concentra- 
tions of active etching species or molecules in etchant, 
temperature control and stability. The variation in etch- 
ing behavior of the detector material causes uncertainty 
in experimental etching results. The variation in the 
etching temperatures was not more than 1˚C. A stan- 
dardized process was used during etching of exposed 
CR-39 detectors. An efficient and stable level of stirring 
was maintained. Concentration of etchant was kept effec- 
tively constant under specific etching conditions by 
minimizing the water evaporation from the etching solu- 
tion. Exposed CR-39 detectors were etched in 4N KOH 
water solution at a temperature of 45˚C for 72 h. An av- 
erage thickness of about 8 μm was removed from both 
sides of the detector with an average bulk etch rate of 
0.112 ± 0.021 μm/h. The refractive index of the CR-39 
was experimentally determined as 1.561 which was later 
used for the determination of the total height of the 
etched cones.  
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4. Fragmentation Results 3.3. Track Measurements 

4.1. Detector Observations Measurement of track parameters is an extremely slow 
process if it is done manually. All the track measure- 
ments at the PINSTECH laboratory were done manually. 
Manual measurements are very slow compared with 
automatic scanning systems, but provide visual insights 
of track forming particles. Discrimination between real 
events and background or erroneous events is more 
trustworthy in manual measurements compared to the 
discrimination made by an automatic nuclear track scan- 
ning. The measurement of cone heights of tracks in three 
CR-39 foils for the case of each target used, one set of 
foils for each target used, one set of foils before every 
target and two after, were measured with an optical mi- 
croscope manually (more than 6000 etched cones were 
measured in each foil). It was observed that the cone 
length increased with increasing ion charges. Measure- 
ments of nuclear fragmentation were made with observa- 
tions of change in cone heights. Zeiss optical microscope 
with a magnification of 40× was used for these meas- 
urements. Cone heights of Pb projectiles and fragments 
were measured by the top view using the depth measur- 
ing system coupled with the microscope. Difference of 
readings on depth measuring instrument, one when track 
diameter at the detector surface is focused and other 
when endpoint of etchable range is focused in the micro- 
scope, gives the cone height of a track. Track length 
measurement resolution or least count of the optical mi- 
croscope used was ±0.5 μm.  

Figure 2 shows the etched cone distribution for tracks of 
lead projectiles (a), and fragments produced in the inter- 
action of Pb ions on stationary CR-39 (b), Al (c) and Cu 
(d) targets, observed with CR-39 detector. In each plot, 
each peak can be designated with a charge Z as most of 
the projectile energy is deposited in a solid (CR-39 here) 
through Coulomb interaction. In all the three cases of Pb 
projectile fragmentation in different targets (b, c and d), 
fragments down to Z value of 63 are observable in CR-39. 
Counts in each peak are a measure of production cross 
section of the corresponding fragment. So, each peak 
represents production yield of fragments with a specific 
Z. Well-defined and separated peaks mean precise meas-
urements. It is worth mentioning that detector, beam and 
etching conditions were same for all plots, but range of 
etched cone height is different for the case of Al (C) from 
other three cases. Major differences are difference in 
brands of KOH used and different chemical etching 
equipment. Major differences in etching equipment in-
clude difference in size and different magnitudes of stir-
ring during etching. 

4.2. Calibrations 

Calibration here refers to the standardization of the parti- 
cle detection response. Calibration is normally a curve or 
a relationship between two parameters, one of which is  

 

 
(a)                                      (b) 

 
(c)                                      (d) 

Figure 2. Etched cone distribution for tracks of lead projectiles (a), and their fragments produced in CR-39 (b), Al (c) and Cu 
(d) targets, observed with CR-39 detector. 
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4.3. Charge Resolution 

p=A+B(REL)+C(REL)2

A=-40.72±0.45other related to a physical property of the incident parti- 
cle. Such a measurement curve or relationship represents 
the detection response of a detector and can be employed 
to characterize unknown particles. In the present case, 
the etched cone distribution in Figure 2 was used to 
calibrate the CR-39 plastic track detector. It is an impor- 
tant step which standardizes response of the detector un- 
der a specific set of conditions for the experiment. Etch- 
ing conditions and precision and repeatability of etching 
procedures have a strong influence on validity of the 
calibration.  

Figure 3 sh
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Figure 4. Reduced etch rate “p” vs “REL”. 
 

easured etched cone height and correlated fragment 
charge. A linear relationship is observed between cone 
height and corresponding fragment charge Z. Equation of 
the fitted line is shown in the plot along with regression 
coefficient and standard deviation, demonstrating excel- 
lent fit. Figure 4 shows the reduced etch rate “p” vs 
“REL” value. The error bars include statistical and sys- 
tematic uncertainties. The points are the experimental 
data and the solid line is the best fit to the data points. 
The fitted equation is valid only in the REL range 3700 
to 7100 MeV·cm2/gm. This plot can be used to identify 
unknown particles registered in CR-39 using same etch- 
ing conditions by determining REL value of the un- 
known particle corresponding to the measured reduced 
etch rate “p”.  
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Figure 5. Charge resolution of CR-39 in the charge region 
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Figure 3. Quantitative relationship between measured 
etched cone height and fragment charge. 

 Z < 82. 

 it is the standard deviation. The value of 
 
error bar on

Z  decreases slowly with decreasing charge Z. The 
parameter Z  depends on a number of factors. Energy 
deposition rate d dE x  or REL, damage responsiveness 
of the detector to d dE x  [15], chemical etching condi- 
tions and procedur nd track measurement least count 
are important systematic factors determining 

e, a
Z . Sta- 

tistical factors degrade the charge resolution and have a 
number of sources. Some of them are global like event 
number statistics and other local like local statistical 
variations in etching parameters. 

Figure 6 shows the charge resolving power (η) of CR- 
39 detector. Charge resolving power is a measure of the 
ability of a detector to observe a charge resolved. It is 
reciprocal of the charge resolution Z  for a specific 
charge Z and is defined as, 

1

Z Z
,                   (1)  

Z

Z
 


.                   (2) 
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Figure 6. Decreasing resolving power of CR-39 with charge 
Z. 
 

her charge means higher energy deposition rate 
Charge resolving power CR-39 decreases with charge. 

igH
d d  or REL which reflects into enhanced resolving 
power η. For the present reaction and etching conditions 
cannot detect or resolve charge below 63. 

4.4. Fragmentation Cross Sections 

E x

Figure 7 shows our experimentally measured partial 
 GeV Pb on Cu 

5.1. Merits 

 single particle detectors. Every individual 
ed as a separate event in a NTD for a 

charge-changing cross sections of 158 A
target, as an example. For comparison, cross section 
measurements of the same projectiles with the same en- 
ergy on the same target measured by Schiedenberger et 
al. [3] using an active detector, multi sampling ion 
chamber (MUSIC). The inset plot shows the comparison 
of measurement errors. Detection range of the MUSIC 
detector (Z = 60 - 82) is wide than that of CR-39 in the 
present case (Z = 63 - 82). But, in general our measure- 
ment error is comparable to that of MUSIC and are 
slightly better for Z = 76 - 82. Our measurements do not 
allow us to say anything directly about mass changing 
resolution of fragments as detectors used were only sen- 
sitive to charge of fragments and not to their mass. 

5. Comparative Merits and Demerits  

5.1.1. General 
The NTDs are
particle is record
certain dose or fluence of particles for which events do 
not overlap. Using the traditional NTD methodology 
with chemical etching and optical microscopy, a dose of 
particles up to 105 cm−2 can be measured. The present use 
of AFM can extend the observable dose limit up to 108  

600

64 67 70 73 76 79 82
0

100

200

300

400

500

64 67 70 73 76 79 82
0

2

4

6

8

10

12

14

b)  Sceidenberger et al., 2004

 Sceidenberger et al., 2004
 Present

er
ro

r 
in

 c
ro

ss
 s

ec
tio

n 
(m

fragment charge, Z (e)

 Present

cr
os

s 
se

ct
io

n 
(m

b)

fragment charge, Z (e)  

Figure 7. Present CR-39 158 A GeV Pb projectile fragmen- 
tation cross section measurements in comparison with cor- 
responding online measurements by Schiedenberger et al. 

 response, 
bust nature, no use of sophisticated electronics and low 

niques 
with the consideration specific to nuclear fragmentation 

xperiment is shorter 

re required to achieve high charge and 
n. Most requirements in this regard are 

sion and controls in detector properties, 

[3]. Inset plot compares the measurement errors. 
 
cm2. Important useful features of NTD include small and 
simple experimental setups, integrated exposure
ro
capital and operational costs. A method, called fission 
track dating (FTD), is based on nuclear tracks and is em- 
ployed to unfold the thermal history of rocks [31]. 

5.1.2. Specific to Fragmentation  
NTDs have several advantages over other tech

or reaction studies. A NTD based e
(~50 cm) than others: a set up with the MUSIC detector 
has a length of 2 m [3]. So, a NTD experimental setup 
can easily be coupled to the beam exit point at a high 
energy accelerator facility. No triggering system for data 
acquisition not needed in NTD experiments while it is 
required in electronic experimental setups. Normally, one 
uses several exposure spills in the case of a NTD tar- 
get-detector assembly. One spill can be studied as a test 
case. The procedure of chemical etching can be opti- 
mized offline. Incident beam particles and fragments or 
other particles produced in the reaction are permanently 
recorded in a NTD without any sophisticated technology.  

5.2. Demerits 

5.2.1. General 
Tedious efforts a
energy resolutio
related to preci
especially uniformity, precautions in exposures and 
chemical etching. Information about the mass of the in- 
cident particles can be deduced with a considerable error. 
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It lacks real time information about incident particles. No 
unified and clear physical and mathematical picture of 
nuclear track formation is available. Nuclear track etch- 
ing is an essential but still a wild procedure due to the 
involvement of a number of parameters without quantita- 
tive microscopic control. Even microscopic picture of 
nuclear track etching is well understood. Etch induction 
time is an example of lacks of understanding. Concentra- 
tion of active etching species, control on etchant tem- 
perature, and variation in etching behaviour of the detec- 
tor material are major causes of uncertainty and wildness 
of chemical etching.  

5.2.2. Specific to Fragmentation  
Apart from NTDs, other detectors in use for high energy 
nuclear fragmentation are ionization chambers (ICs), 

tor detectors (SeDs), 

Quark Gluon Plasma 

of 
ta- 

tion en- 

mplete identification of a par- 
and 

- 

 

wire chambers (WCs), semiconduc
scintillation detectors (ScDs) and Cherenkov counters 
(CCs) [27,28]. They are online detectors and have a cer- 
tain superior characteristics. For example, MUSIC is a 
charge sensitive detector having a smaller number of 
atoms/cm2 compared with solid NTDs [29,30]. So, in 
MUSIC there are less secondary hadronic interactions. 
Much better statistics can be achieved using electronic 
detectors. Track statistics is limited in NTDs by a certain 
dose as they record all the particles. So, a fluence of 102 - 
104/cm2 is a good achievable statistics. It may be noted 
that achievable statistics depend on diameters of particle 
tracks and high statistics increase error is statistics due to 
the overlapping of tracks.  

5.3. Nuclear Fragmentation versus Fullerene  
Fragmentation and 

There are two possibilities for the fragmentation 
highly excited nuclei. First is the case when fragmen

products depend on magnitude of the excitation 
ergy induced by the interacting projectile whereas in the 
second case they depend on magnitude and nature of 
excitation. The second possibility has some relevance 
with the case of fragmentation of fullerenes. Fullerene is 
a cluster of atoms forming a structure with narrow cages 
whereas nucleus is a cluster of nucleons moving inside in 
a complex manner. Despite bonding nature of constitu- 
ents of nucleus and fullerene differs significantly, frag- 
mentation of these two objects may have commonalities. 
It is difficult to apprehend the nature of excitation of a 
highly excited nucleus due to involvement of a large 
number of degrees of freedom some of which still need 
to be further understood. [32,33]. Another interesting 
outlook realized in this study is the formation of shock 
wave in relativistic nuclear collision similar to that in 
fusion plasma in which nuclei collide to hammer each 
other producing a shocked high density nuclear material 
which may undergo some oscillations [34] before its 

fragmentation in somewhat the same way as fullerene 
under ion bombardment. The shock approach is valid for 
both central and peripheral interactions due to their pene- 
tration into each other, which was initially was proposed 
by Siemiarczuk and Zielinski in fragmentation of Xe 
nuclei induced by negative pions [35]. The oscillations in 
the shock are damped due to energy release through 
evaporation of particles and/or fragmentation [36]. For- 
mation of shock is more probable in central collisions 
case where the nuclear material may undergo through a 
stage similar to plasma dust crystal [37,38] leading the 
multi-fragmentation. Due to variance of density of in the 
collided nuclear material, the formation of dispersive 
wave can form density varying rings, like Saturn’s B ring. 
Scientifically-based technical chronological details of 
these rings have been provided by Massod et al. [39] 
taking the support of the Hubble Space telescope obser- 
vations of the “spokes”.  

6. Co-Use of NTD with Other Techniques 

In physics experiments, co
ticle means information about its energy, charge 
mass. In most experiments, limited measurements of par
ticle parameters are made and more information is made 
available by correlating detector observations with the 
theory and already available information about particles 
or reactions involved. Every technique has specific mer- 
its and demerits, so use of more than one technique can 
enhance the information about the nuclear reaction and 
its precision. NTDs remained slightly underdeveloped 
owing to their passive nature. In a recent study, it was 
investigated how precision and reliability can be achi- 
eved in experiments using NTDs [40]. The NTD allow 
tracking of particles with measurement of their energy 
and charge. So, despite their passive nature, NTDs could 
supplement electronic measurements.  

Figure 8 shows a schematic proposing the co-use of 
NTDs with online electronic techniques. Such a design 
 

CR-39 

online beam 
measurement 

 

online fragment 
measurement 

target ladder  

Figure 8. Schematic proposing the co-use of NTD with 
online techniques for the measurement of fragmentation 
cross sections. 
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could be useful regarding precision, reliability and wid- 
ening of scope of the experiment. In the proposed design, 
the use of three fold ladder is suggested. The central arm 
will serve as a target as in other experiments with active 
detectors. The other 2 arms will hold CR-39 samples for 
a defined time, one upstream and other downstream of 
the target, respectively for the measurement of projectiles 
and their fragments. Co-use of active and passive detec- 
tors could add confidence and reliability. NTDs are lim- 
ited to 104 - 106 projectiles/cm2. When the defined dose 
of projectiles is reached, the CR-39 detectors could be 
removed leaving online electronic experiments in place. 
Such experiments could help involving researchers from 
developing countries where lengthy part of track meas- 
urements in NTDS is possible.  

In some large experiments, this combination was made: 
for example the MACRO (monopole astrophysics cosmic 
ray observatory) [41,42] experiment in which NTDs 
were used as a subdetector. The NTD subdetector was 
used in the middle and in two sides of its lower structure 
[43]. NTDs are suitable for cosmic ray studies including 
the searches for exotic particles. They have been em- 
ployed for such measurements with good precision 
[44-47]. One half of 32 searches for magnetic monopoles 
(MMs) were performed with NTDs. Monopole and Ex- 
otics Detector at the LHC (MoEDAL) aims to search for 
MMs at CERN LHC [48]. Co-use of NTDs with other 
techniques [49-53] would enhance their use for cosmic 
rays and other exotic particle searches for which they are 
most suitable due to experimental simplicity, light weight 
and low cost.  

Figure 9 is an artistic portraying of the finding re-
ported in paper and related. It also includes segments on 
the field of radiation detection & measurements and the 
nuclear safety which are related to the subject of this 
article. 

7. Conclusion 

Selected results of experiments, carried out over many 
 aim of precise measurements of rela- 

ration of the staff of the 
hanks are also for the tech- 

    

years with the main
tivistic nuclear projectile fragmentation cross sections 
and related processes using NTDs, were discussed and 
we cover some major aspects of nuclear track detection 
technique. The experimental precautions described here 
for exposure, chemical etching and track measurements 
are applicable to experiments in a laboratory with facili- 
ties considered essential for NTDs. Possible experimental 
refinements in nuclear track etching are discussed. 
Fragmentation results obtained with CR-39 detectors 
have been compared with competing active detectors. 
Issues of charge resolution and charge resolving power 
of CR-39 were discussed. The results discussed may be 
useful for the community involved with applications of 

nuclear instruments and methods, especially in studies of 
nuclear reactions and cosmic rays. 
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broader scope of readers of the scientific literature. Scientific data/results are original or adopted from the scientific litera- 
ture (most cited in this article in references list). Related pictures are from several digital online/passive resources/search 
engines, including IAEA Websites, CNN (US), BBC (Britain), ARY TV, Sama TV, Pakistan News Press, PTV, Din News TV, 
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