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ABSTRACT 

This paper is based on the Darboux transformation of the Kundu-Nonlinear Schrödinger equation. The rogue wave so-
lutions are obtained from periodic seed solutions. After that, the higher order rogue wave solutions of the 
Kundu-Nonlinear Schrödinger equation are given. Finally, we show that free parameters in eigenfunctions can adjust 
the patterns of the higher order rogue waves. 
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1. Introduction 

It is remarked that the Darboux transformation is an effi-
cient method to generate the soliton solutions for inte-
grable equations [1]. The determinant representation of 
n-fold Darboux transformation of AKNS system was 
given in [2]. Recently, the rogue waves observed firstly 
in the ocean [3], have been also studied extensively in 
several fields, such as optical system [4], water tanks[5], 
Bose-Einstein condensate [6-7],space plasma [8], and 
even in a financial system [9]. It can be well-described 
by the analytical expressions for the spectra of breather 
solutions at the zero point. Furthermore there are several 
interesting patterns of the higher order rogue waves [10]. 
In this paper, we shall study the rogue waves of the 
Kundu-Nonlinear Schrödinger(Kundu-NLS) equation, 

 2 * 22iQ Q Q Q i Q i Q
t xx t x xx x x

          2 0, (1) 

where  is a arbitrary gauge function, denotes the 
complex conjugate of Q. 
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In Section 2, the Lax representation and two-fold 
Darboux transformation of the Kundu-NLS equation will 
be given. In Section 3, From a periodic seed solution, 
breather solutions, the first-order rogue wave and higher 
order rogue wave solutions of the Kundu-NLS equation 
are given. The higher order rogue waves can be separated 
into some different types by adjusting free parameters in 
eigenfunctions. The final Section is a short summary. 

2. Lax Representation and 2-fold Darboux 
Transformation of the Kundu-NLS  
Equation 

Now, we concentrate on the Kundu-NLS equation. 

The linear eigenvalue problem of Kundu-NLS equation 
can be expressed in the form of Lax pair M and N as 
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Here  , an arbitrary complex number, is called the 
eigenvalue(or spectral parameter), denotes the com-
plex conjugate of , 

*Q
Q  is a arbitrary gauge function, 

  is a real parameter and  is called the eigenfunc-
tion associated with 


  of the Kundu-NLS equation. 

Firstly, let us consider a matrix T of gauge transforma-
tion for the spectral problem (2) and (3) with the follow-
ing form [1] .  T

[1]

[1]

 New function  is supposed to 
satisfy

[1]

,


[1] [1] [1] [1],  x

[1]N T

 
xT T
Nt then matrix T should 

satisfy following identities  
, we obtain 

M
[1M ] ,T M

 NtT T
[1] [1] [1] [1] 1[ , ] ( [ , ]) .    t x t xM N M N T M N M N T  

This implies that, under the transformation [1]  T
[1]

, 
it is crucial to construct a matrix T so that M  and 

 have the same forms as that M and N. At the same 
time, the old potentials(or seed solutions) in spectral ma-
trixes 

[1]N

M  and  are mapped into new potentials(or 
new solutions) in terms of transformed spectral matrixes 

N
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[1]M  and . With the help of symbolic computation, 
MAPLE, after some analysis and some calculations, the 
two-fold Darboux transformation of Kundu-NLS equa-
tion can be represented as follows: 
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Note that the above determinant representation is 
given by solving following algebraic equations, 
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where . Furthermore the new solution after 
the two-fold Darboux transformation of Kundu-NLS 
equations will be 

1, 2,3, 4j
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and must hold for . Then we start 

with one of the above as a seeding solution and use it 
with Darboux transformations to obtain more compli-
cated ones. 

  2
1

12
t   *2

1
21

  t 1t

3. Rouge Waves of Kundu-NLS Equation 

It is well known that solitons and positon solutions have 
been generated through Darboux transformation by as-
suming constant trivial solutions, while the plane-wave 
solution results in the hierarchy of solutions related to 
modulation instability. Rational solutions have never 
been constructed in this way. In order to get rouge waves, 
we must obtain Akhmediev breathers or Ma solitons. 
Now, we can take a periodic seed solutions as  iQ ce  , 
 ax bt ,  are arbitrary real constants. Then 

we can choose 
, ,a b c

 x . Substitute the periodic seed solu-
tions into equation.(1.1), we can obtain a constraint rela-
tionship, 2 22 1 2 0    c ab a  . Define 
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then the following wave function  

is obtained in the form 

1,1 2,1
1 2

1,2 2,2

,
  

   
  

 
 

 

1 1 1
( ) ( ( ) ( ))

2 2 2 2
1,1 1 ,

     
 

i x K x t
k e

  
        (6) 

1 1 1
( ) ( ( ) ( ))

1 2 2 2 2
1,2

( 2 )
,

2

        
 

i x K x ti i ai K k
e

c

 



 (7) 

1 1 1
( ) ( ( ) ( ))

2 2 2 2
2,1 1 ,

     
 

i x K x t
k e

  
       (8) 

1 1 1
( ) ( ( ) ( ))

1 2 2 2 2
2,2

( 2 )

2

        
 

i x K x ti i ai K k
e

c

  


 (9) 

Here, 
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2
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 n denotes the number of the 

steps of the multi-fold Darboux transformation, 1

( ) ,

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n
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kw C  
are some free parameters and  is a infinitesimal parame-
ter. We would like to construct more complicated wave 
functions to derive more meaningful solutions in the fol-
lowing part, so we mix these four series of wave func-
tions together to derive new functions  and 1,1 1,2  
as follows, 
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It can be proved that 1,1  and 1,2  are also the so-
lution of Lax equations with spectral parameter  . Us-
ing these two wave functions 1,1  and 1,2 , the one- 
fold Darboux transformation will lead to the construction 
of breather solutions. Next, substituting 

 

1 1  i 
( 1


) / 2

 
into K, and letting K = 0, thus we can obtain 1 , a  

1  c  . If we do the Taylor expansion to breather solu-
tions of the Kundu-NLS equation around 1  c  , 

Copyright © 2013 SciRes.                                                                               OJAppS 



C. C. ZHANG  ET  AL. 96 

1 ( 1) / 2  a ,  the first order rogue wave solutions of 
the Kundu-NLS equation will be obtained, 
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When we take 1.25, 1, 0.75   a c , the graph for 
this first order rogue wave solutions of the Kundu-NLS 
equation and corresponding density graph are shown in 
Figure 1. 

However, it is highly non-trivial to construct higher 
rogue waves from the higher order breathers because of 
the multi-degeneration of the eigenvalues. Similar to the 
case of the NLS equation, the determinant representation 
of the Darboux transformation provides a useful tool to 
calculate this tedious expansion. Value ( 1) / 2  a  
i c  is a zero point of the eigenfunction 1,1 , 1,2  , 
and all  j    with   denoting a small parameter 
when we consider the degeneration of the eigenfunction. 
Therefore, let the first and second rows in  expand 
into the second power to 

[2]Q
  and the third and forth rows 

expand into the third power to  . By the two-fold Dar-
boux transformation, we can obtain the second order 
rogue wave solutions of the Kundu-NLS equation. Here, 
we can only draw the graph the second order rogue wave 
solutions of the Kundu-NLS equation in Figure 2. Simi-
larly, we can obtain the third order rogue wave solutions 
of the Kundu-NLS equation.Choose  1.25, 0.4, a c  

1 , the graph of the third order rogue wave solutions 
of Kundu-NLS equation is drawn in Figure 3. 

Until now, from the first order rogue wave to the third 
order rogue wave, basic modes have been given when 

1 . But 1k  has different values in dif-
ferent 1,1  and 1,2 . Next we discuss the impact about 

1  to the higher order rogue waves. To the second 
order rogue wave solutions, 

0( 1)  kw k


kw

w


( )   have two free para- me-
ters for the Kundu-NLS equation. We choose 0 0,w  

1  the second order rogue wave is well separated 
into three single rogue waves. These single rogue waves 
exhibit a triangular shape. The graph is shown in Figure 
4. Similar behavior is obtained  using the third order 
rogue wave solution, 

200,w

( )  have three free parameters. 
Chooing a c1.  25, 0.43 , 1,  0 1 2 , 
the third order rogue wave is well separated into six sin-
gle rogue waves, which perform in a triangular shape. 
Then we choose 0 1

0, 1 w w

, 1, w

0, 0w

0, 0,w1, 0a c .5    

2 , the third order rogue wave is composed of 
six single rogue waves, which form a pentagon with one 
peak in the center and the rest are located on the vertices 
of the pentagon. Figure 5 and Figure 6 illustrate the 
corresponding combination of different types of the third 
order rogue wave. 

1000w

 

Figure 1. The first order rogue wave solution Q. 
 

 

Figure 2. The second order rogue wave solution Q when a = 
–1.25, α = 1, c = 0.43. 
 

 

Figure 3. The third order rogue wave solutions when a = 

–1.25, c = 0.4, α = 1, when a = –1.25, α = 1, c = 0.75. 

Q
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Figure 4. The second rogue wave solution when a = –1, c 

= 0.375, α = 1, w0 = 0, w1 = 200. 

Q

 

 

Figure 5. The third order rogue wave solutions when a = 

–1.25, c = 0.43, α = 1, w0 = 0, w1 = 10, w2 = 0. 

Q

 

 

Figure 6. The third rogue wave solution  when a = –1, c = 

0.5, α = 1, w0 = 0, w1 = 0, w2 = 1000. 

Q

Viewing in Figure 4, Figure 5 and Figure 6, we can 
say that some free parameters in ( )   play a role in 
eigenfunctions for the Kundu-NLS equation. Adjusting 
the value of 1 , the higher order rogue waves can be 
separated into some single rogue waves, and these first- 
order rogue waves exhibit a triangular shape. What is 
more, letting 1  value be bigger, the triangular shape 
will be separated more obviously. Particularly, there ex-
ists other shapes of the third order rogue waves, but they 
must satisfy 0 1

w

w

0, 0 ww , meanwhile a pentagon can 
be obtained by adjusting the value of . 2w

4. Summary 

In this paper, based on the Darboux transformation of the 
Kundu-NLS equation, the rogue wave solutions of the 
Kundu-NLS equation are constructed explicitly from 
periodic seed solutions. Some free parameters in eigen- 
functions can adjust shapes of the higher order rogue 
waves such that it can be separated into some single 
rogue waves. These may have very important meaning in 
physics and it deserves further studying. 
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