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ABSTRACT 

The propagation of surface plasmon waves in metallic single-walled carbon nanotubes is analyzed within the frame-
work of the classical electrodynamics. The conduction electrons of the system are modelled by an infinitesimally thin 
layer of free-electron gas which is described by means of the semiclassical kinetic theory of the electron dynamics. The 
effects of the energy band structure is taken into account and a more accurate dispersion relation for surface plasmon 
oscillations in the zig-zag and armchair nanotubes of metallic character is obtained. 
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1. Introduction 

With the discovery by Iijima [1] of carbon nanotubes 
(CNTs) structures, a new class of materials with a re-
duced dimensionality has been introduced. Metallic 
CNTs are considered suitable candidates in the field of 
plasmonics as new plasmonics waveguides [2-12]. These 
new plasmonic waveguides can be built by some simple 
and well-known methods such as CVD [12]. 

By using the classical electrodynamics and a semi-
classical kinetic theory, Slepyan et al [2], derived the 
dispersion relation of surface waves in single-walled 
carbon nanotubes (SWCNTs) and for the first time, 
found that CNTs can be used as a nano waveguide for 
controlling electro magnetic wave propagation in speci-
fied frequency ranges (for instance, infrared and optical). 
In particular, by solving Maxwell and hydrodynamic 
equations, the propagation of electromagnetic waves in 
SWCNTs is studied in Reference [4,5] and it has been 
shown that dispersion behaviors of the plasma waves 
with TM and TE modes are quite similar. However, the 
hydrodynamic theory, without any effects of the energy 
band structure to be taken into account, can not be valid 
enough for the investigations of plasmon waves propaga-
tion in CNTs. 

SWCNTs are quasi one-dimensional material, which 
could be regarded as a rolled-up graphene layer (i.e., a 
mono-atomic layer of graphite) in the cylindrical form. It 

has a radius of a few nanometers and lengths up to cen-
timeters. A graphene layer is a semi-metallic material. 
Nevertheless, when a graphene layer is rolled up it may 
become either metallic or semiconducting, depending 
on its geometry. Figure 1 shows a graphene layer. The 
geometric structure of a SWCNT is uniquely deter-
mined by the chiral vector  1 2R ,ma na m n   , 
where m and n are integers, and a1 and a2 are the ele-
mentary vectors of the dimensional graphene lattice 
(see Figure 1). The tube radius of the CNTs is given by  

2 20 ,
2c

a
r m mn


   n  

where 0  is the lattice constant of the graphite 
sheet and 0

0

1.42b
= 3a b

A   is the distance between the near-
est-neighboring carbon atoms. A SWCNTs is metallic if 

3m n q  , where 0,1, 2,q  

q

 Thus, armchair nano-
tubes are always metallic, whereas zig-zag nanotubes are 
metallic only if 3m   with  1, 2,q 

In this Letter, we study the energy band effects on the 
dispersion relation of the surface plasmon waves in 
SWCNTs of metallic character, by using the semiclassi-
cal kinetic theory of the electron dynamics. In compari-
son with previous investigations [4,5] that focus on plas-
mon wave oscillations in a cylindrical electron gas as a 
simple model of metallic tubes, present work stresses on 
more exact analysis of geometrical effects, including the 
radius and the chiral angle of the nanotube. 
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Figure 1. Graphene sheet used in forming CNTs (The dots 
illustrate the carbon atoms positions). The lattice basis vec-
tors are a1 and a2. The chiral vector  

, where m and n are integers. The nanotubes 
with are called zig-zag, those with are called 
armchair and those with  are called chiral. 

1 2R ma na 

m n


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n  0
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2. Formulation of the Problem 

Let us consider both zig-zag  and armchair 
 nanotubes as infinitesimally thin and infinitely 

long cylindrical shells of radius c  with its axis along 
the -direction and regard the CNT to consist of 

( ,0)m

r
( , )m m

z
 -electrons superimposed with equilibrium densities 
(per unit area) 0 . We assume that in equilibrium the n
 -electron fluid has no velocity and  is the perturbed 
density (per unit area) of fluid, produced by the 

n

 -electrons themselves under the action of the electric 
field generated by the fixed positive ions of the lattice. 
Hydrodynamic theory describes electronic motion in 
terms of two dynamical variables, namely the electron- 
density fluctuation,  and  ( , )n x t u x t , =  , zu u The 
basic equations in this linearized hydrody- namic model 
are the equations of motion, the equations of continuity, 

   0

,
=

n x t
n u x t

t


  

  , ,             (1) 
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eff
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n n x t e E x t n u x t
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 


   

   , ,

ˆ

 

(2) 

where   ˆ, = z zE x t E e E e 

effm

 is the tangential com- 
ponent of the electromagnetic field, e  is the element 
charge,  is the effective mass of the  -electrons and 

1= ( / ) ( / )ze z a e        differentiates only tangen- 
tially to the nanotubes surface. In the right-hand side of 
Equation (2), the first term arise from the internal 

interaction force in the fluid with  that is the 
square of the speed of propagation of density 
disturbances in a uniform 2D homogeneous electron 
fluid. The second term is the force on 

2= / 2F 

 -electron fluid 
due to the tangential component of the electric field, 
evaluated at the nanotube surface  and the last 
term represents the effects of the scattering of the 
electrons with the positive-charge background, where 

= cr r

  
being the friction coefficient. We note that this term has 
been neglected in the previous works [4,5]. 

Let us deal with the surface plasmon waves with TM 
modes only in this paper, the similar result for TE mode 
can be obtained. The electric field vector  can be 
expanded in the following Fourier forms  

( ,E x

i m qz  

)t

  
=

( , ) = , .m
m

E x t dqE r q exp t
 




     (3) 

For the TM modes, the field components can be 
expressed in terms of zmE , and it is readily shown that 
this satisfy  

2

2
= 0zm

m
E

r

 
 
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,zm

d d
r E

r dr dr
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     (4) 

where  and c  is the light speed. The 
parameter 

2 2 2= q 
  is a real quantity in the region 

< .c
q


                  (5) 

This means that we deal with the slow transverse 
magnetic waves. By eliminating the velocity field 
 ,u x t , one can obtain the following equation from 

Equations (1) and (2) 

     , .t
2

2
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, = ,n x t n x t E x
t
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e
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(6) 

Upon solving Equation. (6) by means of the space-time 
Fourier transforms for the induced density  on 
the cylindrical surface, we find 

),( txn

    
=

, = ,m
m

n x t dqN q exp i t
 




     m   (7) 

where 

0= ,z r 

 


 
m

m eff

nie
N E

m
   c

m
qE          (8) 

and    2m2 2= /m ci q       r . Now, we use the 
appropriate boundary condition, we have 

   > <
0

| | =
e

,rm c r r rm c r r mc c
E r E r N


        (9) 
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where 0  is the permittivity of free space and the radial 
component rm  and the azimuthal component E mE  of 
the electric field, are given by 

   
2

= zm
rm

dE rq
E r i

dr
 ,          (10) 

and 

   2
=m z

mq
E r E r

r 
.m

 ,

> ,

          (11) 

On the other hand, the relevant solution of Equation (4) 
is 

      0=zm z m c m cE r E K r I r r r      (12) 

and 

      0=zm z m c m cE r E I r K r r r      (13) 

where  mI x  and  mK x  are the modified Bessel 
functions. Substituting Equations (12-13) into boundary 
condition Equation (9), by using Equation (8), for 

/ cq  , one can obtain the dispersion equation as 
below: 

     
2 2

2 2 2 2
2 2

= ,p c m c m c
c c

m m
i r I r K

r r
        

   
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   



r
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where eff  is the eigen-frequency of 
the 

 1/22
0 0= /p ce n r m 

 -electron gas layer in metallic SWCNTs. The 
solutions of Equation (14) yield complex frequencies 

= r ii   . It may be observed that the imaginary part 

i  will be given simply by / 2 . In fact, by writing 
= / 2r i   , the solutions for finite damping will be 

of the form 

   
1/2

2 2 2
2 2 2 2

2 2
=

4 2p c m c m c
c c

m m
r I r K r

r r
.i

       
             
     



 (15) 

The friction coefficient is the inverse of the electron 
relaxation time  . For CNTs it is taken as =  

123 10 s

= 0

 [13], so we have Hz. Formally 
speaking, the dispersion characteristics of the surface 
waves in the system is dependent on the nanotube 
geometry (including the radius and the chiral angle of the 
nanotube), the wave number, the angular momentum, 
and the friction coefficient. However, it is easy to find 
that by increasing friction coefficient, the dispersion 
curves shift to lower frequencies, so in the following we 
set 

12= 1/ 3 10 

 . 
At this stage, from Equation (15), one can see for 

investigation the dispersion characteristics of the zig-zag 
and armchair SWCNTs, we have to give the values of 

0 . The parameter 0  takes into account the 
influence of the atomic crystal field. By using the 
semiclassical model of the 

/ effn m / effn m

 -electron dynamics, Miano 

and Villone [14], obtained the following estimation: 

0
2

2 1
,F

eff c

n

m r







                 (16) 

where F  is the velocity of the electrons at the Fermi 
level 

0 03
= .

2F

b



 

0  is a characteristic energy  of the 
graphene lattice and  is the Planck constant; it results 
that . The Equation (16) holds 
for zig-zag nanotubes with , for armchair 
nanotubes with  and for chiral nanotubes with 

 0 2.7 3eV 

= 3 < 60m q


610

< 50

(0.9 1) /F m s  

m
= 3q2n m . In the range of validity of Equation (16), 

the parameter decreases as the nanotube radius increases. 
To see clearly the energy band effects on the 

dispersion relation of the surface waves in SWCNTs, in 
the following we consider long and short wavelength 
limits of the Equation (15). For c , by using the 
well-known asymptotic expressions [15],  

r 

   = = (
22

x
x

m m

e
),I x and K x e with the finite m

xx






the dispersion relation can be written approximately as 

2
2 2

2
0

= F

c

e

r

  
 




.             (17) 

One can see unlike the case of Equation (3) in Ref. 5, 
where the dispersion relation is independent of the 
geometrical effects of the tube, the right-hand side of 
Equation (17) in the present work, depends strongly on 
the radius of the nanotube. It is easy to find that as the 
values of the nanotube radius  increases the values of cr
  decrease. 

In the opposite limit 0cr  , where the phase 
velocity of the surface plasmon is comparable to the 
velocity of light, surface plasmon oscillations couple 
with the electromagnetic wave and retardation effects are 
present. Retardation effects on low-dimensional plasmons 
are investigated in details in Reference [16]. If we 
neglect the retardation effects, by using the well-known 
expressions of Bessel functions, 

   
1

= (
1 2

m
m ) ,

x
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x x
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then we may obtain for  = 0m
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that is a quasiacoustic mode and for , we get 0m 
2

2 2
2 2

0

= F

c c

e
m

r r


 


 2

.m            (19) 

which is also quite sensitive to the geometric of the 
nanotube. Comparing the long-wavelength and 
short-wavelength limits, it can be seen that the energy 
band structure play an important role in the dispersion 
relation, for all values of wavelength. 

To better understand the energy band effects on the 
dispersion relation of the plasmon waves in the system, 
we illustrate in Figure 2, the dependence of the 
frequency   on the variable  for different nanotube 
geometries with  and 1. One can see that the 
dispersion curves 

q
= 0m

  for the zig-zag (27,0) with radius 
 and armchair (15,15) with radius  

 are largely similar. This means that behaviors 
of the plasmon waves are not sensitive to the types of 
metallic nanotubes with same radius. 

= 1.056cr
1.017 nm

nm =cr

In order to study the mechanism of exciting plasmon 
waves on the SWCNTs for future waveguide usage, we 
plot the speed lines of three electron beams in Figure 
2(a), by considering the expression = q 

/ s

. As seen, 
when the electron beam velocities locate in the range 

 (i.e., the velocity of 
the electron beam can be equal to the phase velocity of 
the surface plasmon modes), the electron beam is in 
synchronization with the surface waves, and they interact 
with each other and instability occurs between them. 
Thus, we conclude that surface waves in the system can 
only be excited by applying some relativistic electron 
beams with the speed of about . 

60.93 10 / < < 4 10 /m s m sv 

610

6

m
Finally, let us look at the spatial extension of the 

electromagnetic field associated with the surface- 
plasmon polariton as shown in Figure 3, for a nanotube 
with radii c . The attenuation length is determined at 
long- wavelengths (where retardation effects are present) 
by means of the penetration depth. However in the 
nonretarded surface plasmon condition, i.e., 

r

/q c
q

, 
the penetration depth in the system is  thereby 
leading to a strong concentration of the electromagnetic 
surface-plasmon field near the interface. This means that 
the dispersion curves in Figures 2 and 3, can show the 
relation between frequency and the inversion penetration 
depth. From Figures 2(a) and 2(b), one can see that, as 
increasing the wave frequency, the radial penetration 
depth of the TM surface modes decrease 

1/ 

3. Conclusions 

In summary, a theoretical model based on the classical 
electrodynamics and linearized hydrodynamic theory is 
employed to describe the plasmon wave propagation on 
the surface of the metallic SWCNTs, where the effects of 

the energy band structure is taken into account. It has 
been found that the nanotube geometry play an important  

 

 
(a) 

 
(b) 

Figure 2. The dispersion curves from the surface waves for 
different nanotube geometries, for (a) m = 0 and (b) m = 1, 
respectively. The straight dotted lines correspond to differ-
ent v for  = vq. 
 

 
Figure 3. Surface TM modes of a nanotube as a function of 
the radial coordinate r. 
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role in the dispersion relation of the surface waves, for 
all value of wavelength. Also, numerical results show 
that behaviors of the plasmon waves are not sensitive to 
the types of metallic nanotubes with same radius. In 
addition, the results obtained make us believe that the 
hydrodynamic theory in conjunction with semiclassical 
model is available and appropriates for studies of the 
plasmon wave oscillations in CNTs, especially for dif- 
ferent nanotube geometries. 
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