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ABSTRACT 

This paper researches trajectory controllability of semilinear differential evolution equations with impulses and delay. 
The main techniques in our paper rely on the fixed point theorem and monotone operator theory. In the end of the paper, 
an example is given to explain our main result. 
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1. Introduction 

The impulsive differential systems originate from the 
real world problems to describe the dynamics of proc-
esses in which sudden, discontinuous jumps occurs. Im-
pulsive differential equations have become more impor-
tant in many mathematical models of real processes and 
phenomena studied in control, physics, chemistry, popu-
lation dynamics, aeronautics and engineering. Because of 
their significance, many scholars have been researched 
the solvability of impulsive differential equations in re-
cent years, especially in the area of impulsive differential 
equations with fixed moments, see the monographs of 
Bainov and Simeonov [3], Lakshmikantham et al. [14] 
and Samoilenko and Perestyuk [17] and the papers of 
[1,2,4,9-13,22. Another hand, differential equations with 
delay was initiated about existence and stability by 
Travis and Webb [19] and Webb [21]. Due to such equa-
tions are often more realistic to describe natural phe-
nomena than those without delay, they have been inves-
tigated in different aspects by many authors [2,15]. 

The concept of controllability (introduced by Kalman 
1960) plays an important role in many areas of applied 
mathematics. In recent years, significant progress has 
been made in the controllability of linear and nonlinear 
deterministic systems [8,16,18,20]. But it does not give 
any idea about the control path along which trajectory 
moves.  

In[7], D. N. Chalishajar, R. K. George, A. K. Nanda-
kumaran, and F. D. Acharya studied trajectory controlla-
bility of the following fractional nonlinear integro-dif- 
ferential systems 
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where H and U are Hilbert spaces, the state ( )w t H  
and the control ( )u t U   for each  The operator t J 

( )A D A H H
B J

 
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 is a linear operator not necessarily 
bounded. The maps   
and 
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{( )t s J
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0J s
 are nonlinear operators, where 
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Motivated by the above work, in this paper, we con-

sider the following equation: 
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where [ ]J r T   
( )

. Let X be a real Banach space, the 
state x t X  and the control  is a Banach 
space of admissible control function with U a Banach 
space, 

( ) ( )u t L J U 

( )A D A X 
( )T t

X
0t

 is the infinitesimal generator of 
a C0-semigroup     The maps  and B J U  X 
f J X X   are nonlinear operators. { [D r 0] X  

)

    
is continuous everywhere except for a finite number of 
points s at which ( ) (s s    exist and ( ) ( )}s s     

(0 )D r     for D  the norm of   is defined by 
sup{ ( )t r 0}tD        0 1t t      0 m m  

k

1t t  T 
I X X   k k k( ) ( ) ( )x t x t x t     ( )k x t  and ( )kx t  
denote the right and the left limits of ( )x t  at ktt    

1 2k m    
1 2{ }m

 For any continuous function x defined on 
J \ t t t     and t J   we denote by tx  the 
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element of D defined by ( ) = ( )tx s x t s    
here 

0r s   
( )tx   represents the history of the state from t r   

 the present time t.  up to

)

The rest of this paper is organized as follows: In sec-
tion 2, we present some preliminaries to prove our main 
results. In section 3, by applying some standard fixed 
point principles, we prove the existence of the mild solu-
tions for fractional nonlinear integro-differential equa-
tions. In section 4, the trajectory controllability of the 
system (1.1) is proved by applying the tools of monotone 
operator theory and set-valued analysis. In section 5, we 
give an example to illustrate our main results. 

2. Preliminaries 

In this section, we introduce definitions and preliminar-
ies which are used throughout this paper, and then we 
give the mild solutions of systems (1.1). 

Let  be a real Banach space. We denote by 
 the space of X-valued continuous function on J, 

with the norm 

(X
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denotes the Banach space of bounded linear operator 
from X to X with norm ( )B X     
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Definition 2.1. A function x X 
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(mild solution) of the system (1.1) if it satisfies 
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Definition 2.2. The system (1.1) is said to be com-
pletely controllability on J if for any 0 1x x R    and 
fixed T, there exists a control  such that the 
corresponding solution 
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( )x   of (1.1) satisfied 1( )x T x   

Let  be the set of all functions  defined on 
[0 ]
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 such that 0  and z is 
differentiable almost everywhere.  
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Definition 2.3. The system (1.1) is said to be T-con- 

trollability if for any  there exists a control 
 such that the corresponding solution 

z
u L x   of 
(1.1) satisfied ( ) ( )x t z t  a.e.   t J 

[ ] [0 ]i f it t T t
Definition 2.4. The system (1.1) is totally controllable 

on J if for all subinterval J   







 the sys-
tem (2.1) is completely controllable. 

Clearly, T-controllability Total controllability  
Complete controllability.  

Now, we give the following properties which would 
be used to our main result in the next.  

Lemma 2.1.([5]) Let X be a Banach space, and 
P Q X X    two operators satisfying:  

(i) P is a contraction, and  
(ii) Q is completely continuous,  

then either  
(a) the operator equation ( ) ( )x P x Q x   has a solu-

tion, or  
(b) the set { ( ) ( ) (0xx X P Q x x    1)}         is 

unbounded. 
Lemma 2.2. ([6])(Main Theorem on Monotone Op-

erators) Let  be a real, reflexive Banach space, and 
let 

X
X X    be a monotone, hemicontinuous, bounded, 

and coercive operator, and  Then there exists a 
solution of the equation 


b X 

u b


    

3. Existence of Mild Solutions 

In this section we prove the existence and uniqueness of 
the mild solution of problem (1.1). Before stating and 
proving the result, we assume the following conditions 
hold: 

(1)H   There exist a constant  such that 0M 

( )sup{ }B XM T t J       

(2)H   B satisfies Caratheadory condition, i.e., 
( )B t U X    

is continuous for t J  and  is meas-
urable for 

( )B y J X  
y U    

(3)H 
( )

 f satisfies Caratheadory conditions like B, i.e., 
f t X X    is continuous for t J  and 
( )f x J X    is measurable for x X 

( )a t 
  

(4)H   There exist two functions 0  0
1( )b t L ( )J X   

and two constants 1 1 0a b    such that B and f satisfy 
following growth conditions: 
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(5) ( )H f t x   is Lipschitz continuous with respect to 
x , i.e. there exist constants 0   such that  

1 1 2 2 1 1 2( ) ( )f t x f t x x x         

for all 1 2x x X t J    
) 

  
(6H

m

 there exist constants  0 1 2kd k       m

with 
1

1k
k

M d


  such that  

( ) ( )k k kI x I y d x y x y X          

Now, let us begin prove the existence and uniqueness 
of the mild solution of (1.1).  

Theorem 3.1. If the conditions  hold, 
then the problem (1.1) has at least one mild solution on 
X.  

(1) (6)H H
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Proof. Transform the problem (1.1) into a fixed problem. 
Consider the two operators  
defined by 
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Then the problem of finding the solution of problem 
(1.1) is reduced to finding the solution of the operator 
equation  We shall show 
that the operators P and Q satisfy all the conditions of 
Lemma 2.1. For better readability, we break the proof 
into a sequence of steps.  
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Lebesgue dominated convergence theorem, we have 
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Step 2. Q maps bounded sets into bounded sets in 

  ( )PC J X 
It is enough to show that for any 0 

}

 there exists a 
positive constant l such that for each 

{ ( )x B x PC J X x l
         we have Qx l    

So we choose x B   then for each  we have t J 

1

1

0

0 1 00

1

0 0 10

1

( ) ( ) (0) ( )[ ( ( )) ( )]

(0) [ ( ) ( ) ( )

]

(0) [ ( ) ( )] [

]

t

s

t

s

t

L

L

Qx t T t T t s B s u s f s x ds

M M b s b u s a s

a x ds

M M b s a s ds M a x

b u







      

       

  

     

 





  

 





  

As  then we have  1
0 0( ) ( ) ( )a t b t L J X  

1 1

0 00

1 1

[ ( ) ( )]
t

L L

Qx M M b s a s ds

a x b u l

  

   
   

   
 

Step 3. Q maps bounded sets into equicontinuous sets 

of ( )PC J X     
We consider B  as in step 2 and let  1 2 1 2 mJ t t t        

1 2    Thus if 0   and 1 2      we have 

 

2 1

2 1

1

2 1

2 1

2 10 0

2 10 0

2 1

2 1 0 10

 ( ) ( )

( ) (0) ( ) (0)

 ( ) ( ( )) ( ) ( ( ))

  ( ) ( ) ( ) ( )

( ) (0) ( ) (0) |

  ( ) ( ) [ ( ) ( ) ]

s s

Qx Qx

T T

T s B s u s ds T s B s u s ds

T s f s x ds T s f s x ds

T T

T s T s b s b u s ds

 

 

 

 

   

 

 

   

 


  

  

       

       

 

        

 

 


1

1

2

1

1

1

1

2

1

2 1 0 1

2 0 1

2 1 0 10

2 1 0 1

2 0 1

  ( ) ( ) [ ( ) ( ) ]

  ( ) [ ( ) ( ) ]

  ( ) ( ) [ ( ) ]

  ( ) ( ) [ ( ) ]

  ( ) [ ( ) ]

s

s

s

T s T s b s b u s ds

T s b s b u s ds

T s T s a s a x ds

T s T s a s a x ds

T s a s a x ds

Q



 





 



 





 



 

 









        

      

        

        

      












1 2 3 4 5 6 7Q Q Q Q Q Q      

   

We easily get, 

1

1

1

1

1

1

1 2 1 1 2

2 2 1 0 10

2 1
[0 ]

0 10

1 2

3 2 1 0

( ) (0) ( ) (0) 0   as 

( ) ( ) [ ( ) ( ) ]

    sup ( ) ( )

       [ ( ) ] 0

as  0

( ) ( ) [ ( )

s

L

Q T T

Q T s T s b s b u s

T s T s

b s ds b u

Q T s T s b s b

 

 

 



 

ds

     

 

 

  

 



  





     

        

   

   

   

      







 

 

1 1

1

1
1

2

1

2

1

1

1

2 1
[ ]

0 1

1 2

4 2 0 1

0 1

1 2

5 2 10

( ) ]

    sup ( ) ( )

       [ ( ) ] 0

as  0

( ) [ ( ) ( ) ]

    ( [ ( ) ( ) ] 0

as  

( ) ( ) [

s

L

u s ds

T s T s

b s ds b u

Q T s b s b u s ds

M b s b u s ds

Q T s T s

  



 









 

 

  



 

 

  





 

   

   

   

      

     

 

     









 

 

1

1

1

1

1

[ ]1 1

1

1

0 1

[0 ] 2 1

0 10

6 2 1 0 1

2 1

0 1

( ) ]

    sup ( ) ( )

       [ ( ) ] 0

as  0

( ) ( ) [ ( ) ]

    sup ( ) ( )

       [ ( )

s

s

s

L

s

a s a x ds

T s T s

a s ds a x

Q T s T s a s a x d

T s T s

a s ds a x

  

 

 



 



 

 



 

 
  

  







  

   

   

 

        

   

 







 

 

 

  1

1 2

] 0

as  0
L

  

 

   

s  

Copyright © 2013 SciRes.                                                                               OJAppS 



M. J. BIN, Y. L. LIU 40 

2

1

2

1

7 2 0 1

0 1

( ) [ ( ) ]

    ( [ ( ) ] 0  as  0

s

s

Q T s a s a x ds

M a s a x ds













      

       




 

Then, we get 2 1( ) ( ) 0Qx Qx     as 1 2    
0    since  is a strongly continuous operator 

and the compactness of  for  implies the 
continuity in the uniform operator topology. This proves 
the equicontinuity for the case where k  
It remains to examine the equicontinuity at   
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which tends to zero as  0h  
Define     

0 1( ) ( ) [0 ]Q x t Qx t t t      
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( )

( )
i i

i
i i

Qx t t t t
Q x t

Qx t t t




   
    



 

Next, we prove equicontinuity at Fixed it t  2 0 
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such that  For 2 2{ } [k i it k i t t      ]  20    
we have 
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which tends to zero as  The equicontnuity for 
the cases 1 2

0h  
0    and 1 20    follows from the 

uniform continuity of φ on the interval   [ 0]r  
As consequence of Steps 1 to 3 together with Ar-

zela-Ascoli theorem it suffices to show that B maps B 
into a precompact set in X. 

Let  be fixed and let 0 t T  0 t   be a real 
number. For x B  we define 

0
( ) ( ) (0) ( ) ( )[ ( ( ))

             ( )]

t

s

Q x t T t T T t s B s u s

f s x ds


   


    

  
  

Since  is a compact operator, the set ( )T t ( )X t   
{ (Q x t) x B }    is precompact in X for every   
0 t    Moreover, for every x B   we have 
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Therefore, there are precompact sets arbitrarily close 
to the set ( ) { ( ) }X t Q x t x B     

( ) }
 Hence the set 

( ) {X t Q x t x B    
( ) ( )Q PC J X PC J X   

 is precompact in X. Hence the 
operator  is completely con-
tinuous. 

Step 4. P is a contraction.  
Let ( )x y PC J X     then for t  we have J 
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i.e.,   
0
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t t
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0

1
k

k
t t

M d
 

   then P is a contraction.  

Step 5. A priori bounds.  
It remains to show that the set 
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x
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Now we consider the function   defined by 

( ) sup{ ( ) } 0t x s r s t t T            
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previous inequality we have for note 
[t   ]r t ( )  

(J
( )t x t 

t
t J  

t t   

1 1

0 01 0

1 1 1

( ) ( (0) ) [ ( ) ( )]

         [ ( )]

tm

kk

m

kkL L

t M I M b s a s ds

M a x b u M d t

 







     

  

 


 

   
 

i.e., 

1 1

1
1

0 00

1 1

(1 ) ( ) ( (0) )

                             [ ( ) ( )]

                             [ ]

m
m

k kk
k

t

L L

M d t M I

M b s a s ds

M a x b u

 




   

 

 

 



 

   





 

Hence there exists a constant K such that, 
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By the definition of   we have 

sup ( ) ( )
t J

x x t T K x 


        

This shows that the set   is bounded. As a conse-
quence of Theorem 3.1 we deduce that  has a 
fixed point which is a mild solution of problem (1.1).  

P Q

The proof is completed. 

4. T-Controllability Results 

In this section, we are concerned with the trajectory con-
trollability of semilinear differential evolution equations 
with impulses and delay.  

We make the following additional assumption on B: 
H(7): B satisfies monotonicity and coercivity condi-

tions, i.e., 
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Now let begin proving the T-controllability results for 
the problem (1.1).  

Theorem 4.1. Under the conditions  the 
problem (1.1) is T-controllable. 

(1) (7)H H 

Proof. Let  be the prescribed trajectory with z T
(0) (0)z    we want to find a control u satisfying 
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The equation (4.1) can be written as 
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Differentiating with respect to t, we get 
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Equation (4.3) can be written as 
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t
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Define an operator  by 2 2( ) (L J X L J X  
t

)

0
( ) ( ) ( )y t g t s y s ds               (4.5) 

We easily know that 0  is continuous in ( )y t ( )J g t s   
is continuous in J J   then for any 2 ( )1 2y y L J X    
we have 
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n  is a contraction for sufficiently large n. Hence by 
generalized Banach contraction principle, there exists a 
unique solution y for (4.4) for given 2

0 ( )y L J X    
Therefore, T-controllability follows if we can extract 

 from the relation ( )u t
( ) ( ( ))y t B t u t  

)

           (4.6) 

To see this, define an operator  by 2 2( ) (N L J X L J X  
( ( ))t u t  ( )Nu t B           (4.7) 

By the conditions H(1) and H(4), N is well-defined, 
continuous and bounded operator. Also, ( ( ))B t u t  is 
monotone and coercive, then we can easily get N is 
monotone and coercive. A hemi-continuous monotone 
mapping is of type (M). The nonlinear map N is onto. By 
Lemma 2.2, there exists a control u satisfying (4.6). The 
measurability of  follows as u is in ( )u t 2 ( )L J X   This 
proves T- controllability of the problem (1.1). 
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The proof is completed. 

5. Application 

Example. We consider the following semilinear impul-
sive equation: 

21
( ) ( ) [cos ( ) cos ( )]

3
                   [0 ]

(0 ) (0 ) 1 2

( ) ( )

( ) ( ) ( ( ))

k

k k k k

w t x w u t x x t w t
t

t J T t t

w x x in k m

w t x t x in J

w t x w t x I w t x




 

        
     

          
      


     

  (5.1) 

where   is abounded domain in  with smooth 
boundary  

( 1nR n 
( )L  

)
2(0 ) ( )x t x     

2 ( )X L We take  and define the operator 
( )A D A  X X  by 

2 1
0( ) ( ) ( )  ( )D A H H Aw A x D w         

It is easily turned out that the operator A generates 
equicontinuous -semigroup on X. re the control term 

 is linear, 
0C

)( ( )) (B t u t u t 

21
( ) [cos ( ) cos ( )

3t ]f t x x t w t    

is Lipchitz conditions. It satisfies the conditions of 
Theorem 4.1, then the problem (5.1) is T-controllable. 
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