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ABSTRACT 

Chemotaxis-haptotaxis model of cancer invasion with tissue remodeling is one of the important PDE’s systems in medi- 
cine, mathematics and biomathematics. In this paper we find the solution of chemotaxis-haptotaxis model of cancer 
invasion using the new homotopy perturbation method (NHPM). Then by comparing some estimated numerical result 
with simulation laboratory result, it shows that NHPM is an efficient and exact way for solving cancer PDE’s system. 
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1. Introduction 

Cancer invasion model is a so complex process which 
includes many biological procedures. Actually, different 
models in Mathematics were improved for many kind of 
cancer disease and also so many scientists tried to give 
more proper and applicable models (see [1], as an in-
stance). 

Cancer is connected with degradation of the extracel- 
lular matrix (ECM) that is degraded with the matrix deg-
radation enzymes (MDEs) which are concealed by col-
ony of tumor cells. The degradation produces spatial gra- 
dients which aim movement of invasive cells through a 
procedure named chemotaxis (cellular locomotion aimed 
to response to a concentration gradient of the diffusible 
MDE) or through a procedure which is called haptotaxis 
(cellular locomotion aimed to response to an association 
gradient of the non-diffusible adhesive molecules within 
extracellular matrix). Chaplain et al. [2,3] introduced a 
system of partial differential equations of cancer invasion 
with tissue. As long as this introduction, other research-
ers proved uniqueness and existence of solutions associ-
ated to this PDE model [4-8]. 

Chemotaxis-haptotaxis model of cancer invasion with 
tissue remodeling [6] like other systems of PDEs are of- 
ten too complicated to be solved exactly and even if an 
exact solution is obtained, the required calculations may 
be too complicated. Very recently, many methods have 

been presented, such as the Adomian decomposition 
method [9,10], the variational iteration method [11,12] 
and the differential transform method [13,14]. 

The homotopy perturbation method (HPM) was pro- 
posed by Ji-Huan He [15]. Convergence of the HPM for 
PDEs is given in [16]. In this method, the solution is 
considered as the summation of an infinite series, which 
usually converges rapidly to the exact solution. New ho- 
motopy perturbation method (NHPM) is a new modifica- 
tion of HPM which have been used for solving system of 
PDEs, Efficiency and exactness of this method are more 
in comparison with HPM (see [17]). 

This paper is arranged as follows. Section 2 describes 
the chemotaxis-haptotaxis model of cancer invasion of 
tissue. In Section 3, the new modification of HPM which 
called NHPM is presented. In Section 4 model is solved 
by NHPM. In Section 5 computed solution by NHPM is 
compared with simulations results. 

2. Mathematical Model of Cancer Invasion 

In this section, we recall the setting of [3,18,19]. Cancer 
invasion model consists of the 3 variables; the matrix 
degrading enzyme concentration (MDE concentration) 
 ,u x t , the extracellular matrix density (ECM density) 
 ,v x t , and the cancer cell density  ,w x t . In this pa-

per, we will investigate the results in case that these 2 
characteristic migrating procedures operate synchro-
nously. 

We assume following boundary conditions presented *Corresponding author. 
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by the equations from [3]  
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and we consider following the initial conditions 

           0 0 0, ,0 , , ,0 , , ,0u x t u x v x t v x w x t w x   . 

The equations describing the dynamics of each vari- 
able as follows (according to [3]): 

   
production decaydiffusion

,uut D u w u      


         (1.1) 

 
proteolysis remodeling

1 ,vt uv v v w      
          (1.2) 

     

 

1 2

chemotaxis haptotaxisrandom motion

proliferation

1 ,

wwt D w w u w v

w v w

 
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         

  

 



   (1.3) 

where 1 2, , , , , , , ,u wD D         are assumed to be po- 
sitive constants. 

Diffusion-Production-Decay: Now we suppose disper- 
sal cell density is altered. Then let uD  as the cell ran-
dom motility coefficient, which classify how cells scatter 
from high-density cells to the low-density ones. In (1.1), 
the concentration of MDE is affected by diffusion pa-
rameter, decay and production. 

Proteolysis: Spread of a cancer disease relay on occu-
pies and metastasizes (for detailed information see [20- 
22]). 

Chemotaxis: Chemotaxis is movement of microorgan-
isms and cells in response and to a chemical sign and in 
the enclosing location in tissue [23]. Chemotaxis appears 
as a key step in a number of biological procedures in 
body, from fertilization to fight against infectious dis-
eases by immune system. The main studies on the che- 
motaxis deals with these inquiries that how microorgan-
isms move, when they respond to the chemical signs, and 
also what can cut off these procedures. During the che- 
motaxis process, single cells, unicellular organisms, and 
little multicellular organisms respond to chemicals sig-
nals by moving further away from them or closer to them. 
Single cells, unicellular organisms and multicellular or-
ganisms have receptors which are sensitive to specific 
chemicals of interest so they can respond and react to 
them, using a variety of approaches for movement.  

Chemoattractants are chemicals that prefer to increase 
the desire to move towards a given chemical origin, 
while chemorepellants encourage organisms and micro-
organisms or cells to move in the converse and opposite 
direction. 

Now we give an example to obtain application of 

chemotaxis process. This process could be both benefi-
cial (in life phenomenon) and destructive (cause of dis-
eases) for body. During the fertilization, chemotaxis is 
the main step that sexual reproduction depends on, to 
permit migration of sperms toward an egg, following 
chemoattractants which produced through the egg. There- 
fore chemotaxis can complete fertilization. 

Chemotaxis could be interrupted by the chemical sig-
nals. Confusion and disorientation of cells is the reasons 
to make mistakes. Another factor to interrupt this move-
ment is limitation by environmental factors which can 
lead to the errors in navigation; moving organisms to-
ward the toxins and away from sources of nutrition. In a 
nerve injury moving the new growing cells (during the 
replacement procedure with the damaged cells) toward a 
wrong direction may be lead to create a cancer tissue. 
Also there is a considerable motivation for the research-
ers in all over the world to learn more about the chemo-
taxis and correspondence procedures, as this process is 
very important both in treating injuries and harsh dis-
eases as well as addressing barrenness [see 23]. 

Haptotaxis: Cell haptotaxis describes cell migration 
toward or along a gradient of chemoattractants or adhe-
sion sites in the extracellular matrix [24,25]. 

Proliferation: This rate depends on the kind of cancer 
disease, age and other biological parameters in patients 
(see complete details about proliferation in [26,27]). 

3. The Basic Idea of NHPM 

The general form of a system of PDEs can be considered 
as the following: 

 

 
1 1 1

1 1

, , , , , ,

, , , , 1, ,

j
j n n

j n

U
N x x t U U

t
g x x t j n









 

 

 
       (1.4) 

Coresspondence with the following initial conditions: 

   1 1 0 1 1, , , , , , 1, ,j n j nU x x t f x x j n      

where Uj is the solution of the jth equation, 1, , nN N  
are non-linear operators, which usually depend on the 
functions Uj and their partial derivatives, and 1, , ng g  
are inhomogeneous terms. 

For solving system (1.4) we follow the steps which are 
quoted from [17], by using NHPM, we construct the fol-
lowing homotopies: 
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or 
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1, , ,

j
j j j n n j

U
u p u N x x t U U g

t
j n




   




 


 

(1.5) 

where ,0ju  is the initial condition of the jth equation in 
PDEs system and p is a real number (usually called 
“embedding parameter”) in the close interval  0,1 . 

By applying the inverse operator, 
0

1 d
t

t

L t    on the 

both sides of Equation (1.5), we obtain 
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 (1.6) 

such that 

   1 1 0 1 1 0, , , , , , , 1, , .j n j nU x x t u x x t j n      

Let us present the solution of the system (1.6) as the 
following: 

2
,0 ,1 ,2 , 1, ,j j j jU U pU p U j n         (1.7) 

where , , 1, , , 0, ,i jU i n j n    are functions which 
should be determined. Suppose that the initial approxi- 
mations of the solutions of (1.4) are in the following 
form: 

     ,0 1 1 0 , 1 1
0

, , , , , ,

1, ,

i n i j n j
j

u x x t a x x p t
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

 






 


  (1.8) 

where  , 1 1, , , 1, , , 0, ,i j na x x i n j n      are un- 
known coefficients and      0 1 2, , ,p t p t p t   are spe- 
cific functions. 

Substituting (1.7) and (1.8) into (1.6) and equating the 
coefficients of p with the same powers leads to 
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0

1 1 1 1,0 ,0 1, 1 , 1, , , , , , , , , , d .
t

i n n j n j
t

t N x x U U U U t       

             (1.9) 

Now if we solve these equations in such a way that  ,1 1 1, , , 0i nU x x t  , then Equations (1.9) yield  

   ,2 1 1 ,3 1 1, , , , , , 0i n i nU x x t U x x t      . 

Therefore the exact solution may be obtained as the following: 

       1 1 ,0 1 1 1 1 ,
0

0

, , , , , , , , , d .
t

i n i n i n i j j
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u x x t U x x t f x x t a p t t

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       

 
It is worth mentioning that if  1 1, , ,i ng x x t , and 
 1 1, , ,i nu x x t  , are analytic around 0t t  , then their 

Taylor series can be defined as 

    ,0 1 1 , 1 1 0
0
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i n i j n
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u x x t a x x t t
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    1 1 , 1 1 0
0

, , , , , ,
n

i n i j n
j

g x x t a x x t t
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
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    

which can be used in (1.9),  , 1 1, ,i j na x x  , 1, ,i n  , 
0, ,j n  , are unknown coefficients which must be 

computed, and  , 1 1, ,i j na x x
 , 1, ,i n  , 0, ,j n  , 

are known ones. 

4. Solving System by Using NHPM 

In this section we are going to solve this complicated 
PDEs model numerically and by using the so-called mo- 
dification of the Homotopy Perturbation Method that 
named New Homotopy perturbation Method. We just 
calculate two order of the He’s polynomials but you will 
see how is the exactness of this way and be motivate and 
interested to use this numerical way in your models and 
systems. 

By definitions of gradient    and laplacian      
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Equations (1.1)-(1.3) can be rewritten as follows: 
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For solving this system by using NHPM, we consider the following homotopy (under this assumption which 

0 0 0, ,u v w  are solutions): 
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Applying the inverse operator, 
0

1 d
t

t

L t   , on the both sides of the system (1.10) and assuming solutions of system 

like presented form in (1.7) leads to 
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 
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Substituting Equation (1.7) into the above equations, collecting the terms with the same powers of p  and equating 
each coefficient of p  to zero, we obtain 

   

   

   

0 0
0

0
0 0

0

0 0
0

,0 , d .

: ,0 , d .

,0 , d .

t

t

t

U U x u x t t

p V V x v x t t

W W x w x t t


 


  


  








                                 (1.11) 
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According to the previous section, assume 
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








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
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





                             (1.12) 

 
By substituting (1.12) into (1.11),  0 ,U x t ,  0 ,V x t , 
 0 ,W x t ,  1 ,U x t ,  1 ,V x t ,  1 ,W x t ,   can be 

calculated easily. Now if we set the Taylor series of 
 0 ,U x t ,  0 ,V x t ,  0 ,W x t ,  1 ,U x t ,  1 ,V x t , 

 1 ,W x t  at t = 0 equal to zero, then the coefficients 
 na x ,  nb x ,  nc x , 1,2,3,n    are determined as 

follows (at the first step for 0t  we have  0 0a x  , 
 0 0c x  ). 
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   
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Finally it is done and we reached to the finall solutions. 

Solutions preferably are written in their completed form 
and without any simplification for using and examinig of 
readers. Note that you can replace your constant parame- 
ters and initial conditions without any restrictions, be- 
cause you can use you can use initial conditions, v, u, w 
in their function forms depending on x and their deriva- 
tions to x. 

Now  

        2
0 1 2,u x t a x a x t a x t    ,  

        2
0 1 2,v x t b x b x t b x t    , 

        2
0 1 2,w x t c x c x t c x t      

and therefore solutions can be expressed as follows: 
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5. Comparing with Simulation’s Results 

In this section  ,u x t ,  ,v x t ,  ,w x t  which are ob- 
tained by new homotopy perturbation method (NHPM), 
are compared with reality numerical simulation. Aim of 
this section is to show the exactness of the presented 
“New Homotopy Perturbation Method (NHPM)” by 
comparing with computer results and laboratories results. 

All of our requiremetns for reaching to this purpose is 
initial conditions and positive constants. Now consider 
the  ,u x t ,  ,v x t ,  ,w x t  which was calculated in 
the past section with the following initial conditions ac- 
cording to Lolas and Chaplain’s results (see [3]) 

   2,0 exp 100u x x   

   2, 0 1 0.5 exp 100v x x      

   2,0 0.5exp 100w x x   

additionally, consider every t equal to 3 hours and nu- 
merical result of positive parameters according to [3] as 
follows 

210uD   410wD   3
1 5 10    3

2 5 10    

0.3   0   0   0.05   10   

At this stage, by using the Maple software (version 15) 
and plotting  ,u x t ,  ,v x t ,  ,w x t  which are com- 
puted by NHPM we obtain 

Figure 1 shows difference between  ,u x t ,  ,v x t , 
 ,w x t  which are estimated and computed by NHPM 

and  ,u x t ,  ,v x t ,  ,w x t  which are obtained by 
laboratory’s results from [3], is very close. Graph of the 
NHPM results is almost adjacent to laboratory’s results 
and this can demonstrate the exactness of the NHPM. 

As you saw in past section, we calculated and esti- 
mated our solutions just by by two steps and orders (with 
very long term and complicated calculations) in the 
NHPM, but the figures show it is sufficient for our esti- 
mation. While by the Homotopy Perturbation Method 
(HPM) and Adomian Decomposition Method (ADM) we 
had to collapse finall series to a well known or calculate 
another orthers and steps for a exact solution, the New 
Homotopy Perturbation Method (NHPM) reached to the 
exact solution just by two steps of our calculating. 

In Figure 2,  ,u x t ,  ,v x t ,  ,w x t  (which are 
computed by NHPM) are plotted in 3D scheme using the 
Maple software. By observing Figure 1 and comparing 
with Figure 2 (that is a real capture from a cancer cell) it 
is seen NHPM results approach to the laboratory and     
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u(x, t)                                   v(x, t)                                    w(x, t) 

(a)                                      (b)                                      (c) 

Figure 1. 2D figures in above: (Horizonal axis: x (cm)) Comparing laboratory and simulation’s results ([3]) (doted line) with 
results were obtained by NHPM (solid line). It shows MDE concentration u(x, t) (Orange line, (a)), ECM density v(x, t) (red 
line, (b)) and cancer cell density w(x, t) (blue line, (c)) in t = 100 (300 hours or about 12 days). The difference between simula- 
tion results and NHPM results are very small.  
 

       
u(x, t)                                             v(x, t) 

(a)                                                (b) 

Figure 2. 3D graphics of results were obtained by NHPM. MDE concentration u(x, t) (orange shape, (a)) and ECM density v(x, 
t) (red shape, (b)) in t = 100 (300 hours or about 12 days). More about process of the u and v in Figure 2: Plots of the spatio- 
temporal evolution of the degraded matrix density. A wave of chemoattractants and growth factors arises from the degraded 
extracellular matrix. This leads cells to proliferate and migrate which, in turn, continues the stimulation of enzyme produc- 
tion and the corresponding degradation of the ECM. As a result, a migration feedback loop is established. 
 
simulation’s results at 100t   (12 days). 

6. Conclusion 

New homotopy perturbation method (NHPM) is applied 
to the numerical solution for solving chemotaxis-hapto- 
taxis model of cancer invasion of tissue (a complicated 
nonlinear PDEs system). As it was seen, differences be- 
tween simulation results and NHPM results are very 
small. Thus the present method is very effective and con- 
venient. Our suggestion is to use this numerical way to 
solve other PDEs system for example in biology. 
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