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ABSTRACT 

The most popular present-day public-key cryptosystems are RSA and ElGamal cryptosystems. Some practical algebraic 
generalization of the ElGamal cryptosystem is considered-basic modular matrix cryptosystem (BMMC) over the modu- 
lar matrix ring . An example of computation for an artificially small number n is presented. Some possible 

attacks on the cryptosystem and mathematical problems, the solution of which are necessary for implementing these 
attacks, are studied. For a small number n, computational time for compromising some present-day public-key crypto- 
systems such as RSA, ElGamal, and Rabin, is compared with the corresponding time for the ВММС. Finally, some 
open mathematical and computational problems are formulated. 
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1. Introduction 

Security of some present-day public-key cryptosystems 
is based on computational complexity of some number- 
theoretical problems. Two of these problems are used 
most often: the integer factorization problem and the dis- 
crete logarithm problem. These problems ensure the se- 
curity of the RSA and ElGamal cryptosystems, as well as 
of the corresponding digital signature schemes [1].  

However, the true level of the computational complex- 
ity of these problems is unknown. That is to say, they are 
widely believed to be intractable, although no proof of 
this fact is known.  

In [2], randomized polynomial-time algorithms for 
computing discrete logarithms and integer factoring were 
presented for the quantum computer.  

Nevertheless, some alternatives should be proposed. 
One of possible approaches is to replace number-theo- 
retical cryptosystems by such algebraic cryptosystems 
that would be resistant to an attack on a quantum com- 
puter. 

Let us now consider some scheme of cryptosystems, 
namely, cryptosystems of group rings.  

In the author’s work [3,4], a scheme of group ring 
cryptosystems was proposed. The idea to apply group 
rings in cryptography is based on the fact that if we fix 
the cardinality of a finite ring R, the cardinality of the 

group ring RG for a finite group G is an exponent of the 
cardinality of the group G. Then, a legal user can per- 
form cryptographic transformations separately in the ring 
R and in the group G using polynomial algorithms and 
the illegal user has to solve computationally difficult 
problems in the group ring RG. 

Let us consider the standardization problem in the 
group ring and two its aspects. The direct standardization 
problem is to construct a standard automorphism  of the 
group ring RG from an automorphism  of the group G 
and automorphism  of the ring R in the following way: 
if an element х of the group ring RG is represented as a 
formal linear combination of elements ig  of the group 
G with coefficients ri from the ring R, then the image of 
the element х under the action of  is a formal linear 
combination of images of the elements gi of the group G 
under the action of  with coefficients that are images of 
the coefficients ri under the action of . 

The inverse standardization problem is formulated as 
follows. For a given automorphism  of a group ring RG, 
find an automorphism  of the group G and an automor- 
phism  of the ring R such that  can be constructed from 
 and  by the way that was mentioned in the direct 
standardization problem or prove that such automor- 
phisms  and  do not exist. 

It is easy to see that, in the case of an efficient specifi- 
cation of the automorphism  in the group G and of the 
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automorphism  in the ring R, one can efficiently com- 
pute the action of the automorphism  on any element of 
the group ring RG, i.e., efficiently specify the automor- 
phism  of the ring RG. 

As for the inverse standardization problem, there are 
some reasons to believe that this problem is computa- 
tionally difficult. However, there is no proof for this 
statement. 

In [5] some generalization of group ring cryptosystem 
is considered in the case of quasigroup ring. 

The question “For which finite commutative rings R 
and finite groups G all automorphisms of the group ring 
RG are standard automorphisms?” was partially an- 
swered in [6-8]. It should be noted that an inner auto- 
morphism of an integral group ring of a finite group is 
not a standard automorphism as a rule. This is why, to- 
gether with the standard automorphisms of the group ring 

, where G is a finite group, we use inner automor- 
phisms. In [9] the group ring 3 , where 3  is the 
permutation group for three symbols, is represented in a 
matrix form as block diagonal matrices of the fourth de- 
gree with two one-dimensional blocks and one two-di- 
mensional block. In [9,10] it is shown that the unit group 
of the group ring 3  is a semi-direct product of trivial 
units  and a free subgroup of rank 3. Since ma- 
trices of the fourth degree from this subgroup contain 
two identity one-dimensional blocks, we can restrict our- 
selves by a free group of matrices of the second degree 
with the free generators [9]: 

G
S S

S
 3S 

.






1 0 1 3 2 3
, ,

3 1 0 1 3 4
A B C

    
           

 

If we fall outside the limits of the matrix representa- 
tion of 3 , we consider arbitrary matrices of the sec- 
ond degree from the ring  and its unit group 

, which contains free rank 3 subgroups  

S


, ,

 2M 
2GL 

G     with the free generators 

   

 

1 0 1
, ,

1 0

1
,

1

A B

C

1


 



 
  

  
   
  
 

     





 

where , ,     and 3, 3, 3      [11]. For 
example, if 3   


 

3,3,3G G
, we obtain a free rank 3 sub- 

group  with the aforesaid free generators 
А, В, and С. 

It should be also noted that all automorphisms of the 
group ring  are inner [12].  3

New practical algebraic generalization of the ElGamal 
cryptosystem will be given in the Section 2, some attacks 
on this cryptosystem—in the Section 4, new hard com- 
putational problems—in the Section 5, comparison of the 
security level of classical RSA, ElGamal and Rabin 

cryptosystems with security level of this cryptosystem 
for the same small number—in the Section 7, some re- 
lated open mathematical and computational problems— 
in the Section 8. It should be noted, that some other theo- 
retical algebraic generalizations of the ElGamal crypto- 
system are given in [13,14].  

S

2. Basic Modular Matrix Cryptosystem 
(BMMC) 

2.1. Key Generation 

User А does the following: 
1) picks large random positive integer n; 
2) picks the random words  and  W X  W U  in 

the alphabet 1 1, , 1A B C    in a free rank 3 group with 
free generators А, В, and С; 

3) computes the noncommuting matrices ,n nX U  by 
replacing the symbols А, В, and С in the words  W X  
and  W U  by the corresponding matrices 

1 0 1 3 2 3
, ,

3 1 0 1 3 4
A B C

    
           





 

and performing matrix computations modulo n, i.e.,  

  mod , mod ;n n X X n U U n   

If nX  and U  commute, then return to 2); n

4) let  f n  be the cardinality of the group  2 nGL   
over n -residue ring modulo n, then user A picks the 
random integers  



         , ,1 ;f n k f n f n s f n f n         

5) public key of user А is  

   1 2 3, , , , , ,s k s
n n n n nn P P P n X U X U U   

and its private key is 

 , , .nU s k  

Remark 1. Orders of matrices 

1 0 1 3
,

3 1 0 1
A B

   
    
   

 

in the group  2 nGL   are equal to n; 
Remark 2. The cardinality of the group  2 nGL   in 

the case in p , p is a prime number, i is a positive in- 
teger, is equals to  

     4 3 2
2 1i

i i

p
f p GL p p p 1     [15]. 

As consequence in the case  are primes, 
we have 

, ,n pq p q

   
     

2

2 21 1 1 1

pqf pq GL

p p p q q q



.    


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2.2. Encryption 

User В does the following: 
1) writes the plaintext as a sequence of N numbers 

from n , where N is a multiple of 4, 1 2 , , , N    , add- 
ing, if necessary, numbers from the first quadruple by a 
cyclic permutation at the end of the sequence; 

2) writes each quadruple of numbers of the obtained 
sequence similarly as matrix: 

   1 1 2
2

3 4

;nm M
 

  
 

 


 
 

3) picks session keys-random integers  
       , , ,i i i ir t f n r f n f n t f n       for each of 

4N  obtained matrices ;  im
4) computes the ciphertext block for each matrix :  im

       1 2 3 1 3 3 2 3, ,

1, 2, , 4.

i i i i i ii i ir t r r t rC C P P P m P P P

i N

  

 

,

i

 

2.3. Decryption 

Using the private key, user А computes for each cipher- 
text block :     1 2,i iC C

       
2 1 .

k
i is s

n nC U C U m  

After obtaining the sequence of matrices 

     1 2 4, , , Nm m m ,  

the sequence of numbers 1 2, , , N     and hence the 
plaintext can be reconstructed uniquely. 

Theorem. Decryption in the ВММС is correct. 
Proof. It is sufficiently to consider a case of one block 

of the ciphertext:  

   

 
 

2 1

3 2 3 3 1 3

3 2 3 3 1 3

0

.

s k s
n n

kr t r s r t r s
n n

r t r s r kt r s
n n

r s kt s r s r kt r s
n n n n n n n n n n

r s kt kt r s
n n n n n

r s r s
n n

C U C U

mP P P U P P P U

mP P P U P P P U

mU U X U U U U X U U

m U X U X U

m U U m



   

   

    

   

  









 

  

 

 





 

It should be noted that algorithms of the BMMC are 
implemented using the algorithm of matrix modular ex- 
ponentiation similar to the usual modular exponentiation 
algorithm in which multiplication of integers is replaced 
by multiplication of matrices with reduction of their ele- 
ments modulo n. In addition parallel computations may 
be used in matrix multiplications to increase the compu- 
tational efficiency of the cryptosystem. 

Let n be a large 256 bit integer, then the cardinality bit 
length of the group  would be near 800 bits or 

more. For comparing in the case of the ElGamal crypto- 
system the bit lengths of p and the cardinality of corre- 
sponding multiplicative group of residue field 

2 nGL 

p

 19

 are 
equal. But one reduction modulo 1024 bit number in the 
ElGamal cryptosystem costs as some reductions modulo 
256 bit number in the BMMC. Therefore, under corre- 
sponding choice of parameters the BMMC may be faster 
than the ElGamal cryptosystem with the same security 
level, because the gybrid problem and the transformation 
problem are harder than the discrete logarithm problem 
in the groups of the same cardinality.  

3. Example  

3.1. Key Generation 

User А does the following: 
1) picks two prime numbers  and  17р q  and 

computes 17 19 323n    ; 
2) picks the words in the free group:  

   4 3 1, ;W U C A B W X B C    

3) computes matrices modulo n: 

 

 
4 3

mod

321 3 1 0 1 3
mod3

320 4 3 1 0 1

228 26
,

236 51

nU U n




      
                   
 

   
 

23  

 

 
1

mod

1 3 321 3
mod 323

0 1 320 4

7 314
;

320 4

nX X n




    
             
 

   
 

 

matrices n  and nU X  do not commute and, therefore, 
the user passes to the next step; 

4) picks the integers 1, 2;k s    
5) the public key is 

 1 2 3, , ,

7 314 227 39 303 148

16

 
  
 

323, , , ;
320 4 101 107 275

n P P P

n
     

            
     

 

the private key is 
228 26

, 1
236 51

k s
  

       
. 

3.2. Encryption 

User В does the following: 
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2) writes the plaintext as two matrices from  2 nM  : 1) writes the plaintext as a sequence of numbers from 

n . The length of this sequence is multiple of 4. If nec- 
essary, some numbers are added. For example, let the 
plaintext be 


   1 2

4 5 17 15
, ;

7 8 10 4
m m

  
     
  





 

3) encrypts each block (matrix) separately choosing 
different session keys. For example, the first block is 
encrypted as follows; 

4 5 7 8 17 15 10 ;  

here, a number should be added to the last block by 
shifting the first number cyclically, the user obtains two 
quadruples of numbers from : n

4) picks the session key for the first block r1 = 2, t1 = 
1; 

5) computes the ciphertext of the first block modulo 
323n  : 4 5 7 8,17 15 10 4;  

 

   
2 2

1 2 2
1 3 1 3

303 148 7 314 303 148 220 245
mod mod

275 16 320 4 275 16 105 114
C P PP n n



      
            

     





 

     
2 2

1 1 2 1 2
2 3 2 3

4 5 303 148 107 284 303 148 217 206
mod .

7 8 275 16 202 227 275 16 205 13
C m P P P n



         
                 

       
 

 
The ciphertext of the second block  is computed 

similarly with the choice of another session key . 

 2m

2 2,r t
the following: using its private key, for each ith block, 
computes 

   1
2 1 ;

ii
n nC U C U  3.3. Decryption 

User А, having obtained the ciphertext from user В, does  in particular, for the first block, he obtains 
 

   

 

1 11

2 1

1

217 206 51 297 220 245 228 26
mod

205 13 87 228 105 114 236 51

217 206 248 97 4 5
mod .

205 13 90 86 7 8

n nC U C U n

n m

      
                
    

          
    

 

 
4. Some Attacks on ВММС 

4.1. Find the Private Key  , ,nU s k  by the  
Public Key  1 2, ,n P P 3, P  

1) Let the cardinality of the group  be 2 nGL  

   2 ;nGL f n  

Since 3 n , the cryptanalyst can try to solve the 
equation with two unknowns Y and х:  

P U 

3,xY P  

where       3 2, ,nY P GL f n x f n    .
2) Since 

2 1 ,s k s
n nP U P U  

the cryptanalyst can try to solve the equation with two 
unknowns Z and х: 

1
2 1 ,xZP Z P   

where      2 ,nZ GL f n x f n    , what leads to 

the private key by applying 1) to each solution  
(which we call the transforming matrix). 

0

4.2. Find the Private Key  , ,nU s k  by the  
Ciphertext  1 2,C C  

Since the private key is applied in the ciphertext  1 2,C C  
not directly but only via the public key, the knowing of 
only the ciphertext does not yield additional possibilities 
to the attacks from 4.1 for the attack on the private key. 

4.3. Find the Session Key  by the  
Ciphertext 

 ,r t 
 1 2

r t rP P

,C C  

1) Since 1 3 1 3C P , the cryptanalyst can try to 
solve the equation with two unknowns Z and у: 



1
1 1 ,yZC Z P   

where     2 , .n Z GL f n y f n     
 ,2) For any solution 0 0Z y  of the equation from 1), 

the cryptanalyst can try to solve the equation with two 
unknowns Y and х: 
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0 ,xY Z  

where      0 2, ,nY Z GL f n x f n     

4.4. Find the Corresponding Plaintext m or the 
Session Key  by a Chosen Ciphertext  ,r t
 1 2,C C





 

Cryptanalyst chooses the random  and 
computes 2 , then send it to user A for decryption. 
User A computes:  

2 nm GL 
mC

   2 1 2 1 .s k s s k s
n n n nmC U C U m C U C U mm       

and send the result to cryptanalyst, which computes the 
plaintext: 

 1 .m mm m    

Hence for protecting cryptosystem the modification of 
encryption algorithm is: 

2 3 2 3 3 2 3 ,r t r r t rC P P P mP P P     

the modification of decryption algorithm is: 

1 2 1 .s k s s k s
n n n nU C U C U C U m    

5. Computational Problems in Ensuring 
ВММС Security 

From the consideration of attacks 4.1-4.4 one can formu- 
late some problems, the solution of which is necessary to 
implement the corresponding attacks. 

5.1. The Transformation Problem 

Let a matrix 2  be conjugated with an unknown inte- 
gral power of a matrix 1  for two given matrices 

1 2 2 . Find all solutions of the equation with 
two unknowns Z and у: 

P

 n
P

,P P GL

1
2 1 ,yZP Z P   

where      2 ,nZ GL f n y f n    . 
Let us consider a particular case of Problem 5.1. 
1) The conjugation problem. 
For two given conjugated matrices 2  and P 0

1
yP  

from the group , find a transforming matrix 
, i.e., matrix Т such that 

2 nGL  
 2 nT GL 

01
2 1 .yT P T P   

5.2. The Hybrid Problem 

Find all solutions of the equation with two unknowns Y 
and х 

0 ,xY Z  

where  in the group 
. 

     0 2, ,nY Z GL f n x f n   
 n2GL

Let us also consider two particular cases of Problem 
5.2. 

1) The discrete logarithm problem in a cyclic subgroup 
of the group  2 nGL  . 

Let 0H Y  be a fixed cyclic subgroup of order j of 
the group  2 nGL   with the generator 0Y , M H  be 
an arbitrary element. Find the unique solution 0x x  of 
the equation 

0 ,xY M  

where х is an integer such that 0 x j  . 
2) The problem of extracting a root of the ith power in 

the group  2 nGL   (the matrix RSA problem). 
Let  M GL 2 n  be an arbitrary element,  be a 

fixed integer satisfying the condition 
0i

 n00 i f   and 
  0 , 1i f nGCD  . 

Find all solutions of the equation with a single un- 
known Y: 

 0
2, .i

nY M Y GL    
According to the Problem 2), in turn, one can also 

discern the following problem. 
The problem of square-root extraction in  2 nGL  .  
Find all solutions of the equation with a single un- 

known Y: 
2 ,Y M  

where  2, nY M GL  . 

6. Computational Complexity of Problems 
5.1, 5.2 

If the order    1 2O P O P j   is a large number, then, 
the fact that the generators in a cyclic group are indistin- 
guishable and random choice of k in the key generation 
show, on the one hand, that the identification of matrices 

1
yP  in Problem 5.1 is a hard problem and, on the other 

hand, the impossibility to implement the exhausting 
search in practice for a large number j. 

Considering Problem 5.1 1), it should be noted that 
this problem is solvable in the free subgroup  

 3,3,3G G  of the group  (see [16]). The 
possibility to extend this algorithm for a subgroup of the 
group 

 2GL 

 2 nGL   depends on the solution of the follow- 
ing problem: for a given matrix  2n n nX G GL   , 
find the word  W X  and matrix X G  whose reduc- 
tion modulo n yields the matrix nX . 

Nevertheless, even in the case of a solved problem of 
extension, the problem about the existence of an efficient 
algorithm for solving Problem 5.1 1) remains open. 

Let us now consider Problem 5.2. As it is a problem 
with two unknowns, this problem is more complicated in 
the general case than its particular cases, the discrete 
logarithm problem and the problem of extracting a ma- 
trix root modulo n. It is worth to note that the square-root 
extracting problem is computationally difficult for large 
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number , p and q are primes.  n pq
Let us now turn to the discussion of the cardinality of 

the set of secret keys for ВMМС. Note that, for classical 
cryptosystems, the uniqueness of the secret key can be 
reached by fitting of parameters. For BMMC, the situa- 
tion is other. Indeed, if a matrix  transforms the ma- 
trix  into the matrix , i.e., 

0T

1
iP 2P

1
0 1 0 2 ,iT P T P   

then the matrix 0 0Z T
0

 also transforms 1  into 2  for 
any matrix 1

iP P
Z C P

 n
, where  is a centralizer 

of  in , because 
 1C P

i i


1P 2GL

     1 1 1 1 1
0 0 1 0 0 0 0 0 1 0 0 0 0 2.T Z P Z T T Z Z P T T P T P      i 





 

Thus, if the secret key is considered as ini- 
tial, the cryptanalyst can compromise the BMMC by any 
real key of the form 

 , ,nU s k

 0 ,s
nZ U k , where  0 1Z C P

0W
. 

Then, for the cardinality of the set of real keys , we 
have 

 0 1W C P  

and when generating a key it is necessary to choose ma- 
trix  so that 1P

 
0

1
2 n

W
W

GL



 

was negligibly small, e.g.,  
80

1 2 .W   

This protects from random guessing of the private key.  

7. Comparison of Computational Security of 
Classical RSA, ElGamal, and Rabin 
Cryptosystems with ВММС 

For demonstrativeness, we compare the cryptosystems 
for a very small number . 35n 

7.1. RSA Cryptosystem 

Let the public key be .  35, 19n e 
In this case, the cryptanalyst instantaneously compro- 

mises RSA by factorization , from which 
finds , and computation of the secret 
key  either by the extended Euclid’s 
algorithm or by exhaustive search. Then the cryptanalyst 
finds the secret key: 

35 5 7n   
  4 6 24n   

 1e modd  n

 119 mod 24 19.d    

7.2. Modified ElGamal Cryptosystem 

In the unit group 35  of the ring 35  one has to 
choose an element of the maximal order. For this purpose, 

 is factorized as 35 , and the generators 

are chosen in the groups 



35n  5 7 

5
  and , e.g., 7



5 2   and 7 3  . 

Then the element of maximal order in 35
  is ob- 

tained from the solution of the following simultaneous 
congruences either by inspection or by the Chinese re- 
minder theorem: 

 
 

od5 ,

od 7 .

x

x





2 m

3 m




 

It follows that 17x   and its order is  0 17 12 . 
Let one of cyclic subgroups of order 12, for example, 

17G   be chosen in the group 35 . In the group G, 
another generator may be chosen, e.g., 


3G  . 

Let the modified ElGamal cryptosystem be considered 
in a cyclic group G of order 12 with a generator 3   
and let the public key be  

 35, 3 mod35 33 .an    ,   

In this case, the cryptanalyst instantaneously compro- 
mises the modified ElGamal cryptosystem using exhaus- 
tive search in the cyclic group of order 12 finding the 
secret key а = 5 since  3 d35 335 mo . 

Remark. In the case of choice n as , where p is 
a prime number, we compare BMMC with classical El- 
Gamal cryptosystem. 

n p

7.3. Rabin Cryptosystem 

Let the public key be  35n  , then the cryptanalyst 
instantaneously compromises the Rabin cryptosystem in 
this case by factorizing the number by prime multipliers 

5 7n   . 
One can see that, in all three cases, the cryptanalyst in- 

stantaneously compromises these classical cryptosystems 
for 35n  . Let us now the case of the BMMC crypto- 
system for 35n  . 

7.4. BMMC  

Let the public key be 

1 2P 3

23 33 31 0 31 5
35, , , ,

12 34 31 26 15 16
n P P
      

                     

 1 2

12 5 18
, ,

8 30 18
C C

    
             

14

18
 

be the ciphertext of a certain matrix m. 
Compromising BMMC in this case needs essentially 

more efforts than for the classical cryptosystems and 
exhausting search in the space of the search containing  

775,760 matrices gives 
7 8

2 3
m

 
 
 

 ; secret key—  
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33 32
, 17, 5, 3

26 21nU k s
 

    
 

  1r; session key—  , 

. 1t  

8. Some Open Mathematical and  
Computational Problems 

1) For which finite groups G and rings R the unit 
group of group ring RG is a semi-direct product of trivial 
units and a free subgroup of a finite rank? 

2) For which groups G and rings R every automor- 
phism of the group ring RG has a standard form? 

3) For which subgroups of the group  2 nGL   it 
takes place the property of small centralizers i.e. every 
element has a cyclic centralizer? 

Remark. It is well-known [16] that in the free group of 
finite rank centralizer of any element is a cyclic sub- 
group.  

4) Is there a polynomial-time algorithm for construct- 
ing cyclic centralizer of any element in a free group of 
finite rank? 

5) Is there a polynomial-time algorithm for solving the 
membership problem for cyclic subgroup of the a) free 
group of finite rank, b) subgroup by mo- 
dulo n in a group ? 

3,3,3G G 




 2 nGL 
6) Is there a polynomial-time algorithm for solving the 

modular factorization problem, i.e. to represent every 
matrix from the subgroup  by modulo n 
in a group  as a word in an alphabet of 

3,3,3G G
2 nGL 

11 1, ,A B C    by modulo n? 
7) How to compute the number  f n  for arbitrary 

positive integers n? More exactly, is there a polynomial- 
time algorithm for computing  f n ? 

8) Is there a polynomial-time algorithm for computing 
maximal order elements in a subgroup  3,3,3G G  
by modulo n in the group  2 nGL  ? What is a cardinal- 
ity of this subgroup ? nG

9. Conclusion 

The practicality of the BMMC is provided by the absence 
of the necessity in the computer algebra systems used for 
computer realization of cryptosystem algorithms and ef- 
ficient matrix computations by modulo number of essen- 
tially less bit length than that are usually used in classical 
cryptosystems under the same security level. 
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