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ABSTRACT 

In this article, we derive a boundary element formulation for the pricing of barrier option. The price of a barrier option 
is modeled as the solution of Black-Scholes’ equation. Then the problem is transformed to a boundary value problem of 
heat equation with a moving boundary. The boundary integral representation and integral equation are derived. A 
boundary element method is designed to solve the integral equation. Special quadrature rules for the singular integral 
are used. A numerical example is also demonstrated. This boundary element formulation is correct. 
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1. Introduction 

Boundary element methods are efficient for solving lin- 
ear partial differential equation. In this paper we discuss 
a boundary element formulation for the pricing of barrier 
options. An option which is activated or deactivated once 
the price of the underlying asset reaches a set level is 
called a barrier option. The predetermined level is called 
the barrier. There are two types of barrier options, “in” 
and “out” options. A barrier option is said to be of 
knock-out type, if the option is de-activated when the 
stock price hit the barrier.A payment (the rebate) may be 
made when a knock-out barrier option is de-activated. 
The rebate amount may depend on the time of hitting. A 
barrier option is said to be of knock-in type if the option 
is activated upon hitting. Barrier options are path-de- 
pendent exotics. Although our method can be applied on 
both types, we formulate the method for knock-out call. 
A knock-out call with constant barrier and zero rebate is 
easy to price. In this study, we deal with options with 
time-varied barrier and non-zero rebate. 

Since the publication of Black and Scholes’ [1], and 
Merton’s [2] papers in 1973, the Black-Scholes model 
has become the preferred framework for option pricing. 
In the Black-Scholes model, the option price is consi- 
dered as a function of stock price and time. The option 
price  can be obtained by solving the Black- 
Scholes equation. In 1979, Cox, Ross and Rubinstein [3]  

 ,c s t

published a paper detailing how the option price can be 
obtained by evaluating the expected value. Since then, 
most researchers use probability methods to price options. 
Some researchers report pricing barrier options by using 
probability methods as outlined in the literature. For ex- 
ample, Kunitomo and Ikeda [4] used a serial solution for 
the probability of the asset price reaching in an interval at 
the maturity without hitting curved boundaries. As a 
result, the expected value of the option could be obtained. 
Geman and Yor [5] followed Kunitomo and Ikeda’s me- 
thod but used Laplace transform to simplify the formu- 
lation, while Plesser [6] also followed the same argu- 
ments but used contour integral to calculate the inverse 
Laplace transform. In this study, we solve the Black- 
Scholes equation to obtain the barrier option price. 

The Black-Scholes equation is a non-homogeneous 
linear partial differential equation (PDE). Pricing plain 
options only needs to solve the initial value problem. 
However, pricing barrier options and some other exotic 
options necessitate solving initial-boundary value pro- 
blems. Domain type numerical methods, such as finite 
difference method and finite element method, are used to 
solve these kinds of problems, as in [7-9]. Using a set of 
variable transformations, the Black-Scholes equation can 
be converted into a homogeneous linear PDE, i.e., a heat 
equation. Arguably, the boundary element method (BEM) 
may be the best numerical method for pricing double  
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barrier options. BEMs are rarely applied to financial pro- 
blems, although Shen and Wang used a BEM to evaluate 
the expected value of stock price [10]. 

A stock option represents a contract where the holder 
is endowed with the right, but not the obligation, to buy 
or sell a fixed number of shares of a specified common 
stock at a specific price on or before a certain date. A call 
option endows the holder with the right to buy the shares, 
and a put option endows the holder with the right to sell 
the shears. The stock, the specific price and the certain 
date are called the underlying asset, the exercise price 
and the maturity date respectively. In this paper, the price 
of a barrier option is modeled as a solution of the bound- 
ary value problem, and a boundary element method is 
designed to solve the problem. The outline of the paper is 
arranged as follows. In Section 2, we introduce the ma- 
thematical model of the knock-out call option. The re- 
sulting problem is a boundary value problem of a heat 
equation. In Section 3, the integral representations of the 
solution of the boundary value problem are derived. An 
effective boundary element method is designed to solve 
the boundary value problem in the following section. In 
Section 5, we show the results of a simple example. The 
results show the formulation is correct. The last section is 
a short conclusions. 

2. The PDE and the Boundary Conditions 

A knock-out call has a barrier. When the stock price 
touches the barrier, the option becomes null and the op- 
tion writer may pay the immediate rebate to the option 
holder. Hence, the value of the option is determined when 
the stock price touches the barrier. If the stock price does 
not touch the barrier before maturity, the holder may exer- 
cise his/her options with the exercise price at maturity. 

We follow the arguments of Black and Scholes [1]. 
The call option price  satisfies the Black-Scholes 
equation,  

 ,c s t

       
2 2

2
2 , , ,

2
, ,s c s t rs c s t c s t rc s t

s s t

   
  

  
 (1.1) 

where s  is the underlying asset price,  is the time to 
maturity,  is the risk-free interest rate, and 

t
r   is the 

volatility of the underlying asset price. 
At maturity, the payoff of the option has to be the 

maximum of es s  and 0, where es  is the exercise 
price. Therefore, the initial condition is  

 
0, if

,0 .
, if

e

e e

s s
s c s

s s s s


    

      (1.2) 

When the underlying asset price touches the pre- 
determined barrier  us t  at the time to maturity , the 
option holder will receive the immediate rebates 

t
 R t . 

Hence, the boundary conditions are  

    ,uc s t t R t ,             (1.3) 

A set of variable transformations is used to simplify 
the mathematical problem. Let  

ln ,x s t                  (1.4) 

  , e e ,rt x tu x t c t ,             (1.5) 

where 
2

2
r

   . The Black-Scholes equation will be  

transformed to a heat equation,  
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2

,
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The initial condition becomes  
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and the new boundary conditions are  

    ,r ru b t t R t ,              (1.8) 

where the transformations of the barrier and rebate are  

   ln ,r ub t s t t               (1.9) 

  ert
rR t R t ,               (1.10) 

The PDE (1.6), the initial condition (1.7) and the 
boundary conditions (1.8) compose a well-posed bound- 
ary value problem. In the following sections, we derive 
the boundary integral equation and solve the equation 
numerically. 

3. The Integral Representation 

The solution of the boundary value problem can be for- 
mulated by an integral representation. We describe the 
integral representation briefly and then perform a limi- 
ting process to obtain the boundary integral equations in 
this section. Let  0 0, ; ,G x t x t  be a fundamental solu- 
tion of the dual equation of Equation (1.6), that is  

   

 

2 2

0 0 0 02

0 0

, ; , , ; ,
2

, ,

G x x t G x t x t
t x
x x t t





 
 
 

  
  (1.11) 

where  ,x t  is the 2-D Dirac delta function. There is a 
fundamental solution  0 0, ; ,x t x t ,G   
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 (1.12) 

where  0H t t  is the Heviside step function,  
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Since  fulfills Equation (1.6) in domain   ,u x t

    , 0 , r x t t T x b t    , 
Applying the integration by parts on Equation (1.13), 

we obtain the integral representation for the point 
 0 0,x t  in domain  . The integral representation is  we have  
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Because the solution  is continuous on the set  ,u x t
 ,     , 0 , rx t t b t  


T x , the limit has to be 

the boundary value when the point 0 0,x t  approaches 
the boundary point   0 0,rb t t , that is  
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Be noted that  
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where the principal value integral is defined as  
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Therefore, Equation (1.15) becomes  
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In Equations (1.18),   ,x ru b t t   is unknown function. For convenience, let  
 

    ,r x r .f t u b t t                                      (1.19) 

 
Substituting the boundary conditions (1.8) into Equation (1.18), we obtain Equation (1.20). 
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Equation (1.20) is the boundary integral equation for 

the unknown function  rf t . 

4. Boundary Element Formulation 

In this section, a boundary element method is designed to 
solve the moving boundary value problem. In order to 
evaluate  ,u x t , the function  rf t  of Equation (1.20) 
have to be  first. 

We consider that the problem  
tim

 solved
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Substituting these approximations into the boundary 
integral Equation (1.20) at the collocation points, we 
have  
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The quadrature rule for can be
follows.  
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Then we have the quadrature rule for ,   ,r
iD x t

 
      1

,

, , ,

r
i

r
a r i a r i r i i

D x t

D t t D t t P v t t  



   , ,

where  

 (1.33) 

   ,r r
r i i ix v t t x      

Similarly, quadrature rules for  is  
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Simpson’s rule is used for the quadrature rule of 
integral  ,I x t . Let  
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The boundary integral Equation (1.20) becomes  
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and where r
kf  

,i kE  
nging

are the unknowns. It should be
 and are zeros when 
earra  Equation (1.38), ve  
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Equation (1.39) is the stepping equation. 
Therefore, we may solve 1 2,r

3, , ,r r r
nf f

 (1.25)-(1.27), the nu
f f  sequen- 

tially. By using the functions merical 
solution of  is  ( , )u x t
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 (1.40) 

The option price  ,c s t  can be obtained by the in- 
verse transformation,  

  , e lnrtc s t u    (1.41) 

where 

 ,      ,s t t

2

2
r

  . 

5. A Numerical Example 

In this section,a numerical example is presented to verify 
the boundary element formulation. We compute the pri- 
ce  a bars of an option with rier. we consider a knock-out 
call. The barrier  us t   us t  

xer
 is 100, i.e. is a constant 

with respect to ti aturity. The e cise price me to m  es  
and rebate  R  are 80 a

asset 
nd 0 respe

of underlying 
ctively. The volatility 

   and risk free interest rate   r  
 are 0.02 a ectively. In t , close form

solution is available. Figure 1 shows the option price 
gure, time to maturity 

n with dashed line. The 

le, B
to a e

nd 0.2 resp his case

with respect to asset price. In this fi
is 0.5. The exact prices are draw
solid and dashed lines can not be distinct. Therefore we 
use Figure 2 to show the differences between the exact 
and numerical solutions. The differences are small. 

6. Conclusion 

In this artic lack Scholes’ equation and barrier condi- 
tion are transformed  boundary value problem of th  
heat equation. Then a bem is designed to solve this b.v.p. 
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Figure 1. The numerical and exact solutions of  c s t,
solutions are 

cide in

. In 

this figure, time to maturity is 0.5. The exact 
drawn with dashed line, but the two curves coin
figure. Here 

 this 
0.2   and  are used. 

 
n 500

 

Figure 2. The differences between the exact and num
solutions. The differences are small. 
 
Finally, the method is applied to a barrier option. This 
formulation is correct. 

S 

637-659. doi:10.1086/260062

erical 
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