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ABSTRACT 

This paper explains the basic steps form the classical turbulence mechanics (CTM) to the postclassical turbulence me- 
chanics (PCTM). When the CTM stems from the characterization of the motion states in the infinitesimal surroundings 
of the flow-field points by the flow velocity at these points then the PCTM complements this characterization by the 
curvature of the velocity fluctuation streamlines passing these points. The complementation is formalized by the inclu- 
sion of the curvature of the velocity fluctuation streamlines to the arguments of the probability distribution of the mo- 
tion states in the infinitesimal surroundings of the flow field points. The most radical physical outcome of the realized 
formalism is the characterization of the turbulence viscosity properties by two types of turbulence viscosity against only 
one shear viscosity within the CTM. 
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1. Introduction 

The classical turbulence mechanics (CTM) originates 
from J. Boussinesq [1] and O. Reynolds [2]. It identifies 
the turbulence with a chaotic form of fluids motion and 
sets the turbulence description to the Reynolds-averaged 
Navier-Stokes equation (RANS, called also the Reynolds 
equation), gathering the turbulence effects into the sym- 
metric turbulent stress tensor. The applied to this tensor 
closure assumption reduces its specification to the deter- 
mination of turbulent shear viscosity coefficient, which 
turns the modeling (parameterization) of this coefficient 
to the synonym of the CTM. Different parameterization 
models of this coefficient from the semi-empirical mod- 
els [3,4] to more contemporary turbulence models [5,6] 
have been proposed to solve this task. 

Despite the similarity of the setup of the CTM to the 
setup of the classical fluid mechanics of viscous fluids 
(CFM)—both are formalized within the law of momen- 
tum with the symmetric stress tensor parameterized (for 
incompressible fluids) by just one (shear) viscosity coef- 
ficient—there is still a substantial difference between the 
two. While the CFM grounds the symmetry of the mo- 
lecular stress tensor on the constituted absence of the 
energy-carrying internal rotational degrees of freedom of  

the medium, then the CTM constitutes the symmetry of 
the (Reynolds) stress tensor thus ruling out the energy- 
carrying internal rotational degrees of freedom of turbu- 
lent media. Insofar as this kind of the medium rotational 
degrees of freedom in turbulent media are foreseen by 
another classical conception of turbulence originating 
from L. F. Richardson [7] and A. N. Kolmogorov [8] 
(henceforth, the RK conception which stresses the turbu- 
lence order reflected in its hierarchic eddy structure up- 
hold by the cascading energy transfer through the system 
of eddies of different scales with the large-scale eddies 
obtaining their energy immediately from the average 
flow) the grounding statements of CTM and the RK con- 
ception prove contradicting. 

Unlike the CTM, the postclassical turbulence mechan- 
ics (PCTM) [9,10] treats the problem of turbulence in the 
context of physical doctrine of turbulence (PDT) [11]. 
The PDT sets the formulation of turbulence mechanics 
(TM) into a systemic context [12,13], esteems the RK 
conception and mandates the formulation of the TM wi- 
thin the principles of statistical physics and continuum 
mechanics [14,15]. The PCTM meets this mandate start- 
ing from modifying the very origin of the turbulence de- 
scription setup. The modification consists in distinguish- 
ing the states of motion in infinitesimal surroundings of 
the flow-field points by the curvature of the velocity  
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fluctuation streamlines passing these points, formalized 
by the inclusion of the curvature of the velocity fluctua- 
tion streamlines to the set of arguments of the probability 
distribution of the motion states in the infinitesimal sur- 
roundings of the flow field points. Due to the modifica- 
tion introduced the PCTM appears substantially different 
from the CTM in its outcome. The most prominent dif- 
ference is the asymmetry of the turbulent stress tensor 
providing the turbulent media with two types of viscosity 
against just one viscosity within the CTM. The difference 
ends up in not only diverging formalisms but also dem- 
onstrates the insufficiency of the boundary conditions 
imposed within the CTM to determine the flow situation 
uniquely. Moreover, as shown in the listed in [10] appli- 
cations of the theory of rotationally anisotropic turbu- 
lence, the complementation of the setup of the PCTM 
with the appropriate closure assumptions, the additional 
introduced viscosity of turbulent media appears to be 
much more essential to the description of the related phy- 
sical processes than the turbulent shear viscosity. 

Being grounded on the enlarged physical background 
the PCTM proves comprising the CTM as its particular 
case. By comprising the CTM it comprises also the 
Large-Scale-Eddy (LES) turbulence modeling [16,17], 
diverging from the conventional setup of the TM by ap- 
plying the averaging procedure to the small-scale turbu- 
lence constituent only. The PCTM pays respect also to 
several former ideas which have been remained outside 
the general trends of formulation of the TM. In addition 
to the RK conception it refreshes the idea of G. Mattioli 
[18], who first suggested the inclusion of the equation of 
moment-of-momentum to the setup of turbulence de- 
scription, as well as some recent ideas like the relation of 
the turbulent media to the class of micropolar fluids [19- 
21] and the ideas applied in the structure-based turbu- 
lence models [22,23]. 

The current paper is aimed to explain the PCTM in 
simple terms and graphs avoiding complicated mathema- 
tics and to call up all interested parties, including those 
who see their mission in defending the turbulence de- 
scription standards comprised in the CTM, to critically 
analyze the new situation in the TM altered by the for- 
mulation of the PCTM. The discussion starts (Section 2) 
from decomposition of a velocity fluctuation to its con- 
stituents correlating and not correlating with the curva- 
ture of the velocity fluctuation streamline. Section 3 dis- 
cusses the respective situation in terms of energy. Section 
4 comments on some problems related to the declared in 
the PCTM asymmetry of the turbulent stress tensor. Sec- 
tions 5 and 6 sum up the main points of the novelty in- 
troduced by the PCTM into the turbulence description 
and address the inferences drawn from available data 
confirming experimentally the grounding assumptions of 
the PCTM. 

2. Adjusted Representation of the Turbulent 
Velocity Field 

The PCTM starts its formalism from the classical repre- 
sentation of the turbulent flow velocity  in the form v

 v u v ,                   (1) 

where 

u v                      (2) 

in which the angular brackets denote statistical averaging 
and v  denotes the fluctuating constituent of velocity. 
Let now the probability density, specifying the averaging 
in (2), be detailed as  ,f v k , where  is the curva- 
ture of the velocity fluctuation streamline passing a flow 
field point. By the definition 

k

s  k e  in which 
e  v v and s  is the length of the curve of v  

streamline passing the flow field point. The specification 
distinguishes the flow situations in the infinitesimal sur- 
roundings of the turbulent flow field points by the cur- 
vature of the velocity fluctuation streamlines passing 
these points (Figure 1). 

Representing  f v,k  as 

     1 2f f fv,k v k k ,           (3) 

where 

     1 2f f fv k v,k k  

and  

   2 df f k v,k v , 

we have (Figure 2) 

   +v v v  ,                   (4) 

where (and henceforth) the over-bar denotes the averag- 
ing by  1f v k . It is evident that  in (4) is statisti- 
cally independent from 

v
v  and . Notice, that the 

CTM constitutes the probability density of the averaging 
procedure in (2) specified as 

k

( )f v , which declares  
 v v  and 0 v . 

 
 

dV

k

v

 

Figure 1. Illustration of distinguishing the flow situations in 
infinitesimal surrounding of a flow field point (dV) by the 
curvature k of the velocity fluctuation streamline passing 
this point: the flow situations with the same v  but oppo- 
site k prove different. 
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Figure 2. Decomposition of the flow velocity in turbulent 
flow field accounting for the curvature of the velocity fluc- 
tuation streamlines passing the flow-field points. 

3. Decomposition of Turbulence Energy 

3.1. Primary Decomposition 

In terms of energy the decomposition of velocity fluctua- 
tion in (4) reads as 

1 2K K K  ,                 (5) 

where 21

2
K v is the (total) turbulence energy, while 

21
1 2K v  and 

2

2
1
2

K v  are natural to interpret  

as the energies of the small-scale and the large-scale tur- 
bulence constituents. 

The energy graph in Figure 3 displays the energy 
situation assumed within the CTM and the situation cor- 
responding to (5), for the cascading energy transfer from  

the average flow with energy 21
2

uK u  to the thermal  

energy  through the turbulent phase of motion repre- 
sented by the energies 1

U
K  and 2K . Vertical arrows in 

Figure 3 mark the levels of energy ceding and receiving, 

,ij i jQ u  denotes the work realizing the energy trans- 
fer from the average flow either to K or to 2K , Q  
denotes the work realizing the energy transfer from 2K  
to 1K  and   denotes the dissipation rate of turbulence 
energies K  or 1K . 

3.2. Secondary Decomposition 

The secondary decomposition of the turbulence energy 
stems from the definition of the kinematical-dynamical 
pair of the Eulerian flow-field characteristics [10] 

 v k  and  M v R        (6) 

where 
2R k k  is the curvature radius-vector corre- 

sponding to . The defined k   (henceforth, the gyroc- 
ity) has the sense of average angular velocity of rotation 
of medium particles at a flow-field point in respect to the 
random curvature centres of the velocity fluctuation 
streamlines passing this point, and  (henceforth, spin) 
has the sense of average density (per unit mass) of the 
moment of fluctuating constituent of momentum w  

M

UChaos 

Order 

1K

2K

uK

K

Q



Q



Q

Primary decomposition (PD)CTM  

Figure 3. Primary decomposition (PD) of the turbulence 
energy: the energy graphs of turbulent flow field for the 
situation assumed within the CTM and for the situation 
corresponding to (5). 
 

 v k  and  v R ,       (7) 

explaining the gyrocity and the spin as the characteristics 
of velocity fluctuation constituent v  only. 

Using (1), (4)-(7) we have for K  and 2K  

0K K K  ,                (8) 

0
2 2K K K                  (9) 

and 
0
2 1

0K K K  ,               (10) 

where  
1
2

K  Μ  ,               (11) 

   0
2

1
2

K     v R v k          (12) 

and 

   0 1
2

K     v R v k  .        (13) 

Figure 4 outlines the situation corresponding to (5), (8)- 
(10) as an extension of the situation shown in Figure 3 
for the energy of average flow representing just one 
source of turbulence energy. Notice that: 

(a) the energies 1K  and 0
2K  characterize the mo- 

tions of different scales of the same order while K  
and 0

2K  characterize the motions of the same scale of 
different order; 

(b) the decomposition of  into the sum of 1  and 

2 , realizing the energy transfer from the average flow 
to the turbulence constituents of different order, evidence 
about the presence of two types of turbulent viscosity 
against just one viscosity within the CTM; 

Q Q
Q

(c) the nature of the work 1 , connecting the transla- 
tory degrees of freedom of medium motion (realised in 
the form of the average flow) and its rotational degrees 
of freedom (realized in the form of rotation characterized 
by the gyrocity and the spin), specifies an additional vis- 
cosity as related to the antisymmetric constituent of the  

Q

ith
R  standing for the (random) arm of the moment. Let us 
note, that s s v  is statistically independent f m k  
(and f  

o ro
rom

 a
R ), the expressions (6) can be written also as 
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Figure 4. Secondary decomposition of turbulence energy: 
the energy graphs corresponding to the PD and to the 
secondary decomposition. 
 
turbulent stress tensor, which abolishes the notion of 
“evident symmetry” of the turbulent stress tensor holding 
within the CTM; 

(d) for the cascading character of energy transfer the 
work  vanishes and Figure 4 explains the role of the 
work  in transforming the motion organization 
quality to the form allowing its reception on the level of 
small-scale turbulence constituent. (For a more detailed 
discussion of the specifics of the cascading process con- 
sider [24-26].) 

2Q
Q

(e) finally, all representations (4), (8)-(10) are direct 
corollaries of the adopted specification of the applied 
averaging and of definitions (6) (or (7)) while the energy 
transfer directions indicated in Figure 4 correspond to a 
typical but not to the only possible situation. 

4. The Setup of Description of Turbulent 
Flows 

The fundamental inference from definitions (6) (or (7)) is 
that the turbulent media is related to the class of mi- 
cropolar fluids [27-33]. The relation suggests the inter- 
connection of the gyrocity  and the spin    M  by 

2 M  ,                  (14) 

where  defines the characteristic average scale of mo- 
tion, and delegates the description of motion to the sys- 
tem of two equations—the Reynolds equation (with the 
asymmetric tensor of turbulent stresses) and the equation 
for the spin . 



M
Referring for the details of the setup of description of 

turbulent media with the non-vanishing spin to [9,10], we 
first accent here on the inherent to this description asym- 
metry of turbulent stresses—the most conflicting point in 
the relation between of the CTM and the PCTM—start- 
ing from the expression for the dual vector to the anti- 
symmetric constituent of turbulent stresses k kij ije  , 
where kij  denote the components of the Levi-Civita 
tensor, expressed as [9] 

e

,k kij s i je v v R    

Denoting the components of the velocity fluctuation 
constituent along R  as ,j s j sv v R R  from (15) we have 

 k kije v v     Rj i ,           (16) 

or in the vector form 

σ    Rv v .               (17) 

Accounting for (4) and the perpendicularity of v  and 
 we have from (17), that  R

σ    Rv v .               (18) 

Expression (18) explains the antisymmetric constituent 
of stresses describing the average momentum flux in 
direction of R  either accelerating of decelerating the 
eddy rotation. Notice, that the velocity fluctuation con- 
stituent v , playing a crucial role in definitions of   
and , does not contribute to . The second accent 
concerns the work  in Figure 4, represented in terms  

M σ

1Q

of  as σ 1Q   σ ω , where 1
2

 ω u  1
2

 ω u   

is the vorticity. For the relation of closure for  in the 
form 

σ
σ 4 ( )ω  [9,10], where   denotes the 

coefficient of turbulence rotational viscosity, it is evident 
that, dependent on the relative values of  and ω , the 
work 1  may be either positive or negative, i.e. the me- 
dium rotational viscosity manages to explain the eddy-to- 
mean energy transfer without introduction of notion of 
“negative viscosity” [34] or without ascribing the actual 
3D nature of turbulence with 2D properties. The third 
accent is related to the effect of rotation of frame on the 
medium turbulence, which, though not influencing , 
influences 1 . The latter explains the frame rotation as a 
potential cause of the eddy-to-mean energy conversion. 


Q

σ
Q

5. Discussion 

The PCTM realizes a modification of the TM setup 
originating from complementation of characterization of 
the motion states in the infinitesimal surroundings of the 
flow-field points by the curvature of the velocity fluctua- 
tion streamlines passing these points. The modification is 
undertaken to distinguish the flow field states in the in- 
finitesimal surroundings of the flow field points depend- 
ent on the curvature of the velocity fluctuation stream- 
lines passing these points. The necessity for the comple- 
mentation is one implication of critical analysis of the 
situation in the TM from the point of view of the wid- 
ened physical-historical background of the turbulence 
problem specified as the PDT [11]. The analysis em- 
braces the CTM together with some ideas incompatible 
with the CTM. Within these ideas the leading positions 
belong to the RK conception about the cascading eddy 
structure of turbulence and to the idea about the turbulent 
media pertaining to the class of micropolar fluids [19-21]  s             (15) 
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(as well as to the related to it earlier idea of G. Mattioli 
[18], first suggesting the inclusion of the equation of 
moment-of-momentum to the setup of description of tur- 
bulent flows). The analysis displays the statement of the 
CTM about the evident symmetry of the turbulent stress 
tensor erring against the principles of continuum me- 
chanics [15], relating the solution of the symmetry prop- 
erties of the stress tensor to the context of specification 
of the medium internal rotational degrees of freedom. 
Within the shortcomings of the CTM note also its inabil- 
ity to propose physically correct explanation to the eddy- 
to-mean energy conversion, explained within the PCTM 
as the act of turbulence rotational viscosity neglected 
within the CTM. The CTM also does not distinguish the 
turbulence properties in rotating and non-rotating frames 
which by now is verified observationally. 

Let us underline that the PCTM does not “discover” 
the additional (rotational) viscosity of turbulence—this 
type of turbulence viscosity has been foreseen and de- 
scribed in a sufficiently complete form by the RK con- 
ception—but merely removes the obstacle from the ex- 
plicit inclusion of this fundamental property of turbu- 
lence into the setup of the TM. Let us highlight also, that 
applying all classical motion integrals—of momentum, 
of moment-of-momentum and of energy—the PCTM 
formulates the turbulence description in mechanically 
closed form and as such completes the formulation of the 
TM. 

We conclude the comments on the PCTM referring to 
the paper [35], which utilized the data available within 
the Global Drifter Program to estimate the gyrocity and 
the spin immediately from observations. The estimated 
gyrocity and spin provide the grounding declaration of 
the PCTM about the non-vanishing gyrocity and spin of 
the turbulent flow with the sense of experimental fact. 

Finally, the PDT [11] postulates the conditions of for- 
mation of probability distribution properties of momen- 
tary states of motion determined as the state of motion 
fixed in terms of the TM. These conditions are specified 
within the CTM and within the PCTM differently. The 
commented role of the TM is emphasized here to stress 
the scientific merit of the TM wider than a particular 
turbulence description in average terms. 

6. Conclusion 

The PCTM mandates a critical analysis of the results 
following from the CTM. It also mandates the planning 
of new tasks and research projects from the position of 
the PCTM. The latter mandate is addressed to the initia- 
tors of new projects rather than huge number of scientists 
participating in turbulence-related applied projects and 
following firmly established standards. This mandate is 
also addressed to the people educating new generation of 
specialists in the field of fluid mechanics. 
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