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ABSTRACT

This paper presents a general formula for (2m + 2)-point n-ary interpolating subdivision scheme for curves for any in-
teger m> 0 and n > 2 by using Newton interpolating polynomial. As a consequence, the proposed work is extended for
surface case, which is equivalent to the tensor product of above proposed curve case. These formulas merge several
notorious curve/surface schemes. Furthermore, visual performance of the subdivision schemes is also presented.
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1. Introduction

Subdivision schemes have become important in recent
years because of giving a specific and proficient way to
describe smooth curve/surfaces. It is an algorithm method
to generate smooth curve/surfaces as a sequence of suc-
cessively refined polyhedral meshes. Their beauty lies in
the elegant mathematical formulation and simple imple-
mentation. The flexibility and simplicity of subdivision
schemes become more appropriate in computer and in-
dustrial applications.

There are two general classes of subdivision scheme
namely interpolating and approximating. If the limit curve/
surface approximates the initial control polygon and that
subdivision, the newly generated control points are not in
the limit curve/surface, the scheme is said to be ap-
proximating. It is called interpolating if after subdivision,
the control points are interpolated on the limit curve/
surface. Among interpolating subdivision scheme 4-point
interpolating scheme [1] was one of the initial scheme.
Nowadays spacious mixture of interpolating scheme [2-8]
has been anticipated in the literature with different shape
parameters.

In 1978, Catmull-Clark [9] and Doo-Sabin [10] first
introduced subdivision surface schemes, which genera-
lised the tensor product of bicubic and biquadratic B-
splines respectively. After that, Kobbelt [11] gave the
tensor product of the curve case and he generalized the
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four-point interpolatory subdivision scheme for curve to
the surface by using tensor product.

The proposed work gives a new idea in finding subdi-
vision rules for curves and surfaces using Newton inter-
polating polynomial. The proposed method is simple and
avoids complex computation when deriving subdivision
rules. Since higher arity subdivision schemes have high
approximation order and lower support than their coun-
terpart of lower arity schemes. Therefore researchers are
focusing in introducing higher arity schemes (i.e., ternary,
quaternary, ..., N-ary). This paper presents a general for-
mula for (2m + 2)-point n-ary interpolating rules for
curves. Since the subdivision schemes for surface design
have gained more popularity in computer animation in-
dustries. So, a new approach for regular quad meshes
using 2-dimensional Newton interpolating formula is
also the part of this paper.

In the following section, there is presented a brief in-
troduction about the preliminary concepts used in this
work. In Sections 3 and 4, new formula for interpolating
subdivision schemes is given for curves and surfaces by
using Newton interpolating polynomial. In Section 5,
application of the subdivision schemes is also accessible.
A few remarks and conclusions are given in Section 6.

2. Preliminaries

Given a sequence of control points
p“eR",ieZ,N>1, where the upper index k>0

OJApPPS



264 F. KHAN

indicates the subdivision level. An n-ary subdivision
curve is defined by

m
P, =Y 8, P, a=01..,n-1 (2.1)
j=0
where m> 0 and
m
Y8, =1l a=01..n-1 (2.2)
=0
The set of coefficients {a[l‘j,oc=0,1,...,n—1}r_n is

=
called subdivision mask. In the limit k — oo, the proc-
ess (2.1) defines an infinite set of points in RN. The
sequence of control points plk is connected, in a
natural way, with the diadic mesh points
t“=i/n",ieZ The process then defines a scheme
whereby pS™ and pf! replaces the values p¥ and
p<, at the mesh points S and t5" =t respectively,
k! while is inserted at the new mesh points

pni+a

tk+l

ni+a i+1

=l((n—a)tik +atf,) for a=12,...n-1.

n

Labeling of old and new points is shown in Figure 1,
which illustrates subdivision scheme (2.1).

Let [I,,. be the space of all polynomials of degree

<2m+1, where m is non-negative integer. If
{N j (X)}T:_lmis fundamental Newton polynomial corre-
sponding to the node point {J}T:_lm is defined by

m+1

Pt (X)= 2 aN; ()

j=m

2.3)

In general, the coefficient of the Newton form of
polynomial is called divided difference, the divided dif-
ference a; = y[x,...,X,], 18 a symmetric function,

hence can be found by following method,

Xn = X;

Yom>

f+1

k \ ) Je+1
Py ¢ D; Piny Paiza P ¢ p,

@ (b)

ET AL.

and Nj(x) can originate by the subsequent way,
1 k=]
j (2.5)

k=—m

3. Construction of the Subdivision Scheme
for Univariate Case

This section gives the construction of (2m + 2)-point bi-
nary and ternary interpolating schemes. Then by induc-
tion, a general formula for (2m + 2)-point n-ary interpo-
lating subdivision scheme is formulated for curve case.

3.1. (2m + 2)-Point Binary I nter polating Scheme

To construct the rules for binary 2-point interpolating
scheme, consider {NJ-(X)}]]:0 be the Fundamental

Newton polynomial to the node points {0, 1}. The New-
ton polynomial replicate linear polynomial P in the way
that taking m= 0 in (2.3), we achieve

1
R(X)=2aN;(x), 3.1
i=0

where a; is divided difference can be calculated by
(2.4), and N; () by setting in (2.5). This implies that
R(X)= P, +(P - Py ) (%)

_ ”1_0(_1)” {ﬁ(—l)v c DV}CE (),

v=0

(3.2)

with following Gamma function

X I(x+1)
) o (e

Now, to construct the desired 2-point ternary subdivi-

sion scheme, let
) o1
Py =P ! +E .

Since we want to construct uniform and stationary
scheme reproducing polynomials up to a fixed degree, it
is sufficient to consider the case i = 0 with subdivision
level k= 0. This implies that

Py = p1(i +0):

~ k+1

\,\psns

k+l1

Psives

©

Figure 1. Solid lines show coar se polygons wher eas dotted lines are refined polygons. (a)-(c) represent binary, ternary and
quater nary refinement of coar se polygon using (2.1) for n = 2, 3, 4 respectively.
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p] (0) = p03

oL, 1
RS |=7 Pt P

Now as an affine combination of 2-point p**', p¥*'

i+1 2

we suppose that at (k + 1)th level, the point
. . 2i+a
pk+l is attached to the parametric value kT SO

the desired binary 2-point interpolating subdivision
scheme is given by

p;<I+1 — |k,
| 1 (3.3)
p;+11 :5 puk +5 p|k+1
In composite form (3.3) can be written as
1
= S Sy ens o). a-od
u=0 v=0
(3.4
where
I(x+1) a
“1cx(r) = =—.
tefci(n) R

Continuing in the same way for m = 1 in (2.3), where
Nj (x) be the Newton polynomial to the node points {~1,
0, 1, 2} then we have the following compact form of
4-point binary subdivision scheme

k+1

p2|+a

o]

H

(-1)'cr pW_I}Cj“ (T), a=0,1

3.5)

v=0

where

I'(x+2
Cx+1 (F) — ( ) , X = Z
“ F(X+2—y)F(,u+l) 2
Consequently, we can generate a general form of (2m
+ 2)-point binary interpolating scheme, which is of the
following form

kel 2m+l1
p2|+a = Z ( )

S| Ser

CI!-:-V |+v m) :|C:+m(r)s (36)

where

[(x+m+1)

CrM(T) = ,a=0,1

C(Xx+m+1—u)T(u+1)

corresponding to ng, m>0 and subdivision level
k> 0. 2

3.2. (2m + 2)-Point Ternary I nterpolating Scheme

To construct the rules for ternary 4-point interpolating

Copyright © 2013 SciRes.
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scheme, consider {N j (X)}j}1 be the Newton polyno-

mial to the node points {—1, 0, 1, 2}. The Newton poly-
nomial reproduces cubic polynomial P in the way that
taking m= 1 in (2.3), we achieve

R (x)= Zaij(x). (3.7
j=—1
Now by using (2.4) and (2.5) in (3.5), we have
P(X)= P, +(py = Py ) (x+1)
1 2
+5(R=2p,+p) (X +)
(3.8)

+%( P, =3P +3p, — Py ) (X' )
-S| S e ferm

Now to construct the 4-point ternary subdivision
scheme, take

1 2
p3| ps( +0) p3|+1 p3( gja p3|+2 p3( 3)

(3.9)
From (3.7) and (3.8), we get
p} (0) = p():
(1 __ S, .20, 10 4
P3) s Pt P g g P

2 4 10 20 5
P (_j =Pyt Bt P P

3 81 27 27 80

we attain the following iterative rules for ternary 4-point
interpolating subdivision scheme,

p3k|+1 = pik,
. 5 20 10 4
Pl == P+ R Rl Pl (B10)
K+l 4 ‘ 10 20 , 5
= p =P =Pk,
p$|+2 81 27 p| 27 p|+l 80 p|+2

In composite form, the above rules can be written as

3 u
S | Sy e e () -0
= v=
(.11

where
'x+2
Ci(T)= (x+2) ,  X=
g T(x+2—p)T(p+1)
Accordingly, general formula for (2m + 2)-point ter-
nary interpolating scheme is given by

wI|R

2m+1

o =%y [i(—w c:’rl.+<vm>}c:+m<r>, 612

#=0 v=0
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where
[(x+m+1)
C(X+m+1—-u)T(u+1)

S E ,a=0,1,2

corresponding to X= —, m>0 and subdivision level
k> 0. 3

3.3. (2m + 2)-Point n-Ary Interpolating
Subdivision Scheme (Generalization)

Now there is presented a general formula for (2m + 2)-
point n-ary (i.e. binary, ternary and so on) interpolating
subdivision scheme by using Newton interpolating poly-
nomial. This new formula will be helpful to drive inter-
polating subdivision rule plainly and quickly. The gen-
eral formula for (2m + 2)-point n-ary interpolating subdi-
vision scheme has the following form

2m+l H
Prie = 2 (= ){Z( 1) c .Hm)}cz”“(r), (3.13)
1=0 =0
where
x+m I(x+m+1)
C, (F): a=0,1..n-1

L(x+m+1-p)T(u+1)
corresponding to X:Z,mZO and k>0 indicates
n

the subdivision level, where n stand for n-ary scheme.
Remark 3.1. In the following, we see that some other

well-known interpolating schemes come from our pro-

posed Formula (3.13).

e Setting the value of m= 1, and n = 2, in above result,
which is the 4-point DD scheme [12],

k+1 k

P =hR,

1 9 9 1
k+1 k k k k
=——p,+—p +—p,,——P.,-
p2|+l 16 pl—l 16 pl 16 p|+1 16 p|+2
e By setting m=2, and n= 2, in proposed result, we get
6-point DD scheme [12],

P =
3 25 75
k+1 k k k
— == 4=
p2|+1 256 pl—z 256 pl—l 128 pl
ST 25 e 3
128 1+1 256 1+2 256 1+3°

e Taking m= 1, and n = 3 in (3.13), we get ternary
4-point interpolating scheme [13],

P = p
N 5 20 20 4
p3k|+11 =757 |k—1 +—- plk +—- p|k+1 p|k+2=

81 277 o7 Mgy

N 4 20 20 5
p3k|+12 = a p|k—1 +E p|k +E pik+1 _ﬁ pik+2

Copyright © 2013 SciRes.
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e By setting m=2, and n = 3 in (3.13), we get ternary
6-point interpolating scheme [13],

p;H - |k H
. 5 20 20 4
p;(Hll =751 k by p|k +— p|k+1 p|k+27

81 277 T a7 g1

. 4 20 20 5
p§|+12 = E plk—l +E plk +E p|k+1 _a p|k+2

4. Tensor Product of (2m + 2)-Point n-Ary
I nter polating Subdivision Scheme

Given a sequence of control points p,'fj eR",
i,j€Z, N>2, where the upper index k>0 indicates
the subdivision level. An n-ary subdivision surface
scheme in the tensor product form is defined by

prl;:la n+g — z z

r=0s=0

18P e @ B=0,1.n—1,(4.1)

where {a }10

Lo and {a, )" satisfy (2.2). Given ini-

tial values pl(fj eR",i,jeZ, then in the limit k — o
the process (4.1) defines an infinite set of points in
RN. The sequence of values {plk j} is related, in a natu-

ral way, with the diadic mesh points (I—k,lkj, i,jeZ.
n n

k+1

The process then defines a scheme whereby Py, yis

replaces the value
(i+a/ n j+p/n

pﬁam,“ﬂ/n at the mesh point

n ’ n

k+1
an—a nj+

j for «,f €(0,n), while the val-

ues ; are inserted at the new mesh points

(M Mj for «,f€0,1,..,n—1. Labeling of

nI<+l ’ I,,Ik+l

old and new points is shown in Figure 2 which illustrates
subdivision scheme (4.1).

Here, we present a general formula for tensor product
of (2mt2)-point n-ary interpolating scheme in the fol-
lowing form,

2m +12my +1 o

il = 3 3 (- )[z $

=0 py= v =0v,=0

cacy [xcam (ryce ™ (r), @2)

Pii-m), vz -my)
where
(% +m+1)
(X +m+1- )T (g +1)
(% +m,+1)
(% +m, +1-2,)T (1, +1)

. " (r)=

C ™ (I) =

Hy
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fe+l f+1
K+l K+l K+l K+l kel 4] K+l el Do a: N
Painjer P12 Daivanje Diizjes Piazis Py Piia3j3 Puiajes 24 Puissajia
i T k k T T & k. T T ! ko
DPijn | Pis,jn Pijn | Prja Piji | i,
| | | . S G U G
| p;.*;”z -—— 4 —— —t——— Dinzjn : } :
| - | | kel (41
k+1 k+1 — —_— — —_
Pripjel — S T T T T Doies 241 | | Poigjn ™~ = 7t — 1t Puasin
Daiipja | el _ | ! | | |
e | 33+ 1 'Jl' T T Piizzin B L
S G U S
| | | I I I
k k k k k k
Pri ! P Py | L Py Py ! ! L P
k+1 -+l k+1 k+1 e+l k+1 K+l e+l Je+] kel
212 Daisipj Daiv2j Diisj Psivsp Pijasy  Pana Diiaj Diiaa; Daivaa
@ (b) (©

Figure 2. Solid lines show one face of coar se polygons whereas dotted lines are refined polygons. (a)-(c) can be obtained by
subdividing one face into four, nine and sixteen new faces by using (4.1) for n = 2, 3, 4 respectively.

. a . 5 20 10 4
Here, ¢ =0,1,..,n -1 corresponding to X=n—, P3ki,3]j+1=—ap.'fj,l+ﬁphj+Epi‘fj+l—apl'fj+2,
. B
=0,1..,n, -1 ding to Xx="—, m>0,k>0 N 4 10 20 5

P ;1 comesponding fo X=- Pisjea = =7 Pl + o B+ Al — o Al

indicate the subdivision level and n;,n, > 2.

Remark 4.1. In the following, it is to be noted that p;<_+1 _ :_i pk _ +£ pk_ +£ pk _ _i pk _
. . . . e i+1,3] -1, ] (] =1, ] 1+2,)°

some of the bivariate interpolating subdivision schemes 81 27 27 81

come from our proposed formula (4.2).

o For obtaining Kobbelt [11] subdivision scheme, sub- AT :iplk_”_]_ 100 - 0 -
stitute n,n, =2 and m,m, =2 in (4.2), we have ’ 6561~ 2187 ' 2187 ¢
the following refinement rules, 20 100 400

+— L ———p  4+—D
6561 "+ " 187 i T P
SR N N
. 1, 9 . 9 1. 729 2187 ! 2187
pzi,2j+1:_Epl—l,j+Ep|,j+gpi+l,j_gp|+2,17 +@pk A—mpk o 40 o
o | ) 9 ) ) ) ) 729 1+1, ] 729 1+, j+1 2187 1+1,j+2
=P =P =P, —— P,
p2|+1,21 16 pl,]—l 16 pl,j 16 p|,1+l 16 p|,1+2 i 20 p|k+2 - 80 p|k+2
" . 9 9 6561 "7 2187 T
p2i+1,2j+1:gpl—l,j—l_ﬁpl—l,j_2_56p|—LjH 3 40 p,k+2-+1+ 16 plk+2.+2’
) 9 , 81 2187 76561
N S —— D +——Dp
256 P2 " 56 P T 56 P i 20,50 100
_,’_ﬁpk. _ipk. _ipk . p3i+l,3j+2 - 6561 plfl,jfl 2187 plfl,j 2187 plfl,j-i—l
256 1, j+1 256 1, j+2 256 1+1, -1 . 25 ’ 80 ; +200 ’
S8l Bl 9 6361 72 217 Pt a9 B
256 M1 056 TR 056 MY 400 100 40
Rl VIS T Pij2— Pisija
L A 720 "M p187 Thit2 g8y M
256 T 256 ! L1004 200 0 50,
S T 729 Mot T 09 Pt T g7 P
256 142, j+1 256 1+2,]+2 16 pk ~ 40 pk
e For obtaining tensor product of ternary 4-point inter- 6561 2T 2187 )
polating scheme, taking the values n,n, =3 and _ 80 0 4 20 ok,
m.,m, =1 in (4.2), we get the following refinement 2187 BRI g561 TR
rules,
4 10 20 5
. e T S N S S S
p3ki,3lj = pllfj, p3i+2,3j 81 pl—l,] +27 pl,] +27 pl:l,] 81 p|+2,J’
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ol 20 80 40
Psis23ja :ﬁ P o _m P _m By
L6 S0 200
6561 1" 2187 "M 729 T
100 40 100
%H,m—mﬂ,m—mﬂﬂ,j_l
B+ e By~ B,
729 1+1,] 729 1+1, j+1 2187 1+1,j+2
L2 100
6561 T 2187 T
50 20
_mpwz,jﬂ ﬁplﬂ,h—r
p3kitr]2,3j+2 = %21 plk—l,j—l _% p.:,j _% plk—l,jJrl
L2040 100,
6561 "1 2187 M 729 T
200 S0 80
729 U217 THIg187 I
T e . Y
729 1+1, ] 729 1+1, j+1 2187 1+1,]+2
L2050
6561 T 2187 T

100, 25

k
o4+ —Dn . .
2187 p|+2,J+1 6561 p|+2,]+2

Lemma 4.1. [14] Given initial control polygon
P, =P, i.]€Z, let the values p,ﬂ, k>1 be de-
fined recursively by subdivision process (4.1) together
with (2.2), then the schemes derived by tensor product
naturally get four-sided support regions.

Remark 4.2. It can be loosely say that the support is
the tensor product of the supports of the two regions, just
as one can loosely say that Kobbelt subdivision scheme
for surface [11] is the generalization of the tensor product
4-point DD subdivision scheme [12].

Lemma 4.2. [15] Given initial control polygon

pﬁi =P, I,]€Z, let the values p,'fj, k>1 be de-
fined recursively by subdivision process (4.1) together
with (2.2), then if a scheme is derived from a tensor
product, then the level of continuity can be determined
between pieces by reference to the underlying basis func-
tions, i.e., all the tensor product schemes have the same
continuity as their counterparts.

5. Application

This section is devoted for the visual performance of
curves/surfaces. It is illustrated by some examples, ob-
tained from the proposed work (3.13) and (4.2). The
stepwise subdivision effects are shown in Figures 3 and
4.

Copyright © 2013 SciRes.
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(®)

Figure 3. Dotted line indicate initial polygon whereas continu-
ous curve generated by ternary 4- and 6-point interpolating
subdivision schemes[12]. (a) 4-point: 1<t level; (b) 2nd leve; ()
3rd leve; (d) 6-point: 1st level; (e) 2nd leve; (f) 3rd levd.

Figure 4. Tensor product of 4-point binary approximating
scheme: (a)-(d) show the initial polygon, 1st-, 2nd-subdivi-
sion levelsand limit surface respectively.
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6. Conclusion

This work gives a variety of subdivision schemes for the
univariate and bivariate cases by using Newton’s inter-
polating formula. The work presented here is a new ap-
proach to the subdivision rules, which reduce the com-
putational cost. Most of the well-known subdivision
schemes are the special cases of the proposed work (3.13)
and (4.2).
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