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ABSTRACT 

The coefficients in the confluent hypergeometric equation specify the Regge trajectories and the degeneracy of the an-
gular momentum states. Bound states are associated with real angular momenta while resonances are characterized by 
complex angular momenta. With a centrifugal potential, the half-plane is tessellated by crescents. The addition of an 
electrostatic potential converts it into a hydrogen atom, and the crescents into triangles which may have complex con-
jugate angles; the angle through which a rotation takes place is accompanied by a stretching. Rather than studying the 
properties of the wave functions themselves, we study their symmetry groups. A complex angle indicates that the group 
contains loxodromic elements. Since the domain of such groups is not the disc, hyperbolic plane geometry cannot be 
used. Rather, the theory of the isometric circle is adapted since it treats all groups symmetrically. The pairing of circles 
and their inverses is likened to pairing particles with their antiparticles which then go on to produce nested circles, or a 
proliferation of particles. A corollary to Laguerre’s theorem, which states that the euclidean angle is represented by a 
pure imaginary projective invariant, represents the imaginary angle in the form of a real projective invariant. 
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1. Introduction 

Poincaré discovered his conformal models of hyperbolic 
geometry in an attempt to understand whether there were 
solutions to the hypergeometric equation of higher peri- 
odicities than the then known circular and elliptic func- 
tions (of genus 0 and 1, respectively). The names, Fuch- 
sian and Kleinian functions, which he coined, belong to a 
certain class of automorphic functions that live on tiles 
that tessellate the half-plane or disc, depending on which 
model is chosen. 

The indicial equation is a solution to a differential equ- 
ation in the neighborhood of a singular point. An equa- 
tion of second-order can have at most three branch points, 
which are conveniently taken to be 0, 1, and ∞. The use 
of a matrix to describe how an algebraic function is 
branched had been introduced by Hermite, but it was 
Riemann who first considered products of such matrices. 
Frobenius showed that the hypergeometric equation is 
completely determined by its exponents at its singular 
point. If the only effect of analytically continuing two 
solutions around a singular point is to multipy them by a 
constant, then the differences in the exponents must all 
be integers, without the solution containing a logarithmic  

term. In other words, the matrices are rotations about 
each of the singular points where performing a complete 
circuit multiplies the solution by a constant factor. We 
will generalize these rotation matrices through real an- 
gles to complex ones, and in so doing elliptic transforma- 
tions will become loxodromic ones. 

The monodromy matrices of Riemann are generators 
of a group, and are either homothetic (magnification) or 
rotation. These are related to the hyperbolic and elliptic 
geometries, respectively, both of which preserve the unit 
circle. According to the Riemann mapping theorem, any 
arbitrary region bounded by a closed curve can be map- 
ped in a one-to-one fashion onto the interior of a unit disc 
by an analytic function. Riemann arrived at his theorem 
as an intuitive conjecture in 1852, and it is hardly com- 
prehensible that it took almost fifty years to prove it. 
According to Schwarz, the only biunique analytic map- 
pings of the interior of the unit disc onto itself is a linear, 
fractional (Möbius) transform of the hyperbolic or ellip- 
tic type; that is, magnification or rotation. 

The relevant equation for quantum theory is the con- 
fluent hypergeometric equation, where two the branch 
points of the hypergeometric equation merge at ∞ to be-  
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come an essential singularity. The origin is the regular 
singularity. The two parameters of the equation deter- 
mine the Regge trajectories, and the degeneracy of the 
angular momentum states. The Regge trajectories express 
the angular momentum in terms of the energy, and if the 
potential is real, or the energy is greater than the potential 
energy, the angular momentum will be real and discrete. 
The parameter that determines the trajectories discrimi- 
nates between quantized motion of bound states and un- 
stable resonance states. In the former case it is negative, 
and identified as the radial quantum number, whereas in 
the latter case it can be associated with a complex angle. 
In the case of the nonrelativistic coulomb interaction, the 
Bohr formula for the energy levels of the hydrogen atom 
result when the parameter is set equal to a negative inte- 
ger, which is also the index of the Laguerre polynomials 
that represent the radial component of the wave function. 
All this can be obtained without the usual procedure of 
expanding the radial wave function in a series and ter- 
minating it at a certain point to obtain a quantum condi- 
tion. 

Rather, if the energy becomes positive, the potential 
complex, or the potential energy greater than the total 
energy, quantization does not occur, and the parameter 
represents an angular point whose homologue is branch 
point. The new point is the generalization of the angular 
point to complex values. This is not unlike the generali- 
zation of the scattering amplitude to make it a function of 
the angular momentum. In order to make the scattering 
amplitude a function of the angular momentum, it had to 
be made complex and continuous so that one could take 
advantage of Poincaré’s theorem which says that if a 
parameter in a differential equation, the angular momen- 
tum, or the wavenumber, appears only in the analytic 
function in some domain of the parameter, and if some 
other domain a solution of the equation is defined by a 
boundary condition that is independent of the parameter, 
then this solution is analytic in the parameter in the do- 
main formed from the intersection of the two domains. In 
other words, Poincaré had shown that, under suitable 
conditions, the smooth solution to the differential equa- 
tion could be made an analytic function of the parameters 
of that equation by allowing them to become complex 
and continuous, instead of real and discrete. 

The reason for naming the trajectories after Regge [1] 
was that he brought Poincaré’s theorem to the attention 
of high energy physicists. Instead of confining his atten- 
tion to integer angular momenta, Regge transformed the 
scattering amplitude so that it became a function of the, 
continuous, angular momenta. In order to do so, he had 
to allow it to become complex. Regge’s idea was not new, 
it had already been used by Poincaré himself, and 
Nicholson in 1910, to describe the bending of electro- 
magnetic waves by a sphere. Sommerfeld and Watson  

used it to describe the propagation of radio waves on the 
surface of the earth, and their scattering from various 
potentials. It has become known as the Sommerfeld- 
Watson representation. 

The new, unphysical, regions provided proving grounds 
for speculative high energy physics. The passage from a 
real to a complex parameter is not nearly as radical as 
that from a discrete to a continuous one, or from a posi- 
tive to a negative one. How does one define negative 
angular momenta? The angular momentum is represented 
in the equation for the energy as a centrifugal repulsion. 
At a constant attractive potential, the only way the en- 
ergy could be made more negative, thereby allowing 
more bound states to be formed, is to convert a centrifu- 
gal repulsion into a centripetal attraction by allowing the 
angular momentum to become negative. The limit occurs 
where the two indicial solutions to the Schrödinger equa- 
tion with a centrifugal term coincide. One is called the 
regular solution because it goes to zero at the origin, 
while the other is the irregular solution because it blows 
up there. Conventionally, the latter solution is rejected 
because any admixture of the two would not lead to a 
unique solution. However this is incorrect because both 
indicial exponents determine how the ratio of the solu- 
tions, which is an automorphic function, transform. 

An automorphic function is a periodic function under 
the group of linear (fractional) substitutions. When Po- 
incaré came on the scene in 1880 the only two periodic 
functions that were known were the trigonometrical and 
elliptical functions. By cutting and pasting edges of the 
fundamental region together one could get solid figures 
with different amount of holes, or genus. Trigonometric 
functions had no holes, elliptic functions, one hole be- 
longing to a torus, and Poincaré wondered if there were 
automorphic functions with a greater number of holes. 
Any given point of the fundamental region would be 
transformed into the same point in an adjacent funda- 
mental region by the linear fractional transformation. It 
would not connect points in the same fundamental region, 
for, otherwise, it would not be “fundamental”. 

For instance, if the angular momentum is negative and  

in the interval 
1

0,
2

  , the plane would be tessellated    
by crescents formed from the intersection of nonconcen- 
tric circles whose angle would be the degeneracy of 
states. It is precisely in the unphysical region that the 
greater than unity cosine has become a hyperbolic cosine 
with a complex angle. The crescent of the plane with a 
given angle will be successively transformed by the 
fractional linear transformation ultimately returning to 
itself. Thus, the entire plane is divided into portions equal 
in number of the periodic order of the substitution. 

When two particle collide there is a scattering angle, 
 , whose cosine resides between  and 1 1  in the  
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physical region. However, by allowing cos  to go to 
either plus or minus infinity, enables one to consider in- 
finite momentum transfer. Such large momentum transfer 
occur over extremely small distances. Thus, large cos  
is adapted to the study of strongly scattered waves that 
can bind and resonate. 

Poles can be expanded in a bilinear series of the pro- 
ducts of Legendre functions of the first and second kinds. 
Only when the pole is within a given ellipse will the 
series converge. The ellipse is determined by the trace of 
the monodromy matrix which is a hyperbolic cosine with 
a complex argument. The hyperbolic cosine of the real 
component is the semi-major axis of the ellipse, while 
the imaginary component is the eccentric angle of the 
ellipse. In the case of coulomb scattering the real com- 
ponent is the ratio of the charges to the velocity of the 
incoming particle so that the ellipse will be larger the 
smaller the velocity of the incoming particle. This is 
referred to as the classical region. As the velocity in- 
creases we are transformed into the relativistic region 
with a decrease in the size of the ellipse. 

What is a complex angle? In optics, complex angles 
arise when a refractive wave does not penetrate into the 
second medium, but rather, propagates parallel to the 
surface. The system is then said to suffer total internal 
reflection. There is no energy flow across the surface, 
and at the angle of incidence there is total reflection. For 
angles of incidence greater than the critical value, the 
angle of reflection becomes complex with a pure imagi- 
nary cosine meaning the wave is attenuated exponentially 
beyond the interface. 

The three poles of the second order differential equ- 
ation are associated with the thresholds of particle crea- 
tion in high energy physics [2]. Their residues are given 
by the angles of a triangle which tessellate the complex 
plane. The angles themselves may be complex like the 
argument of the hyperbolic cosine above. In order to 
tessellate the plane it must reproduce itself by rotating 
about any given axis. When the angles become complex, 
it will not only rotate the sides of the triangle but will 
also deform them. The fact that any two angles are 
complex conjugates, related to source and sink, will 
render the sum of the angles real but, may not be equal to 

. 
For Regge trajectories these angles represent the com- 

plex angular momentum. Below threshold the imaginary 
component of the angle momentum vanishes for there is 
no state to decay into so the resonance width is zero. 
Regge gave an interesting interpretation to the imaginary 
component of the angular momentum. Just as the longer 
the time the smaller the uncertainty in energy, so that 
long time uncertainty is related to small resonance widths, 
imaginary angular momentum is related to change in 
angle through which the particle orbits during the course 

of a resonance. For extremely long resonances, the angle 
of orbit is large until it becomes permanent in a bound 
state. 

Triangle functions which tessellate the complex plane 
are described by automorphic functions which represent 
solid figures. The automorphic functions are the inverses 
of the quotients of the two independent solutions to a 
second order differential equation. These quotients can 
be moved around the complex plane by linear fractional 
transformations which delineate the fundamental regions. 
Schwarz showed how these automorphic functions map 
one complex plane onto another, just like the hyperbolic 
cosine maps ellipses in one plane onto circles in another. 
The angles are either the interior, or exterior, angles of 
the triangle which is the fundamental region. In the case 
of large, but real, cos , the automorphic function is 
none other than the expression for the Legendre function 
of the second kind at a large value of its order, the 
angular momentum [3]. It tessellates the surface of a 
sphere with triangles whose bases lie on the equator of 
the sphere, each angle being  radians, and one vertex 
at the north pole whose angle is proportional to the diffe- 
rence between the order of the Legendre function and the 
angular momentum of the Regge trajectory. The solid is 
a double pyramid, or a dihedron, whose triangles have 
sums greater than 



  radians, and, therefore, belong to 
elliptic geometry. 

In fact, this automorphic function has been proposed 
as a partial wave scattering amplitude. Another proposal 
was made by Veneziano [4] who showed that the Euler 
beta integral satisfies the duality principle of high energy 
physical where the scattering amplitude remains the same 
under the exchange of total energy and momentum 
transfer. Experimentally, this is achieved by replacing the 
particle with its anti-particle. It so happens that the beta 
integral is the automorphic function of Schwarz for tri- 
angle tessellations. The angles are the Regge trajectories 
which become complex above threshold. In fact, a beta 
integral with real arguments could not represent a com- 
plex scattering amplitude for it would be physically 
measureable being the distance between the angles in the 
triangle. The Veneziano model, which has served as the 
impetus of string theories, was found to be wanting in the 
hard sphere limit because it did not reflect the granular, 
or parton-like, behavior observed in deep inelastic scat- 
tering experiments. 

What is the use of automorphic functions in high en- 
ergy particle physics? First, it provides restrictions on the 
nature of the complex Regge trajectories and on the na- 
ture of the potentials. The potentials must be real for 
bound states, complex, or imaginary, for resonances. 
Second, the possibility of their being a complementarity 
between continuous groups in quantized systems and 
discrete groups with a continuous range of non-quantized  
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parameters for bound states and resonances. Third, the 
spectrum of resonances that lie along a Regge trajectory 
is likened to the nesting and proliferation of circles when 
the number of generators is increased. 

2. Nonrelativistic Coulomb Interaction 

The confluent hypergeometric equation arises from the 
confluence of two singularities in Riemann’s hyper- 
geometric equation leaving the regular and irregular sin- 
gularities at 0 and ∞. It can therefore describe an infi- 
nite-range potential like the coulomb potential for which 
it is given by1 

2

2

d d
1 0

dd

c a

r r rr

       
 

 2 1 ,c  

1 ,a i

.         (1) 

The parameters for the coulomb interaction are 

                (2) 

and 

  


 

                (3) 

where  is the total angular momentum,  
2 2ZZ e E   is the coulomb parameter which is  

negative if the charges Ze  and Z e
E

1c m  

a n 
n

0E 

 are opposite, and 
 is the energy of the incoming particle in units 

. 
The parameter a determines the nature of the tra- 

jectories. If , the system has bound states where 
 is the radial quantum number, and the total energy, 

. This specifies the Kummer function   as a 
Laguerre polynomial of index . Specifying the Regge 
trajectory (3) avoids the introduction of a series ex- 
pansion in the Schrödinger equation, and imposing a cut- 
off. When 

n

0



  , the solution to Equation (1) reduces to 
a product of an exponential function and a hyperbolic 
Bessel function. 

The confluent hypergeometric Equation, (1), can be 
easily converted into the Schrödinger equation, 

2 2

2 2

d 1 1
4 1 0,

4dr r

   
 

    
 

i
r

     (4) 

by the substitution 
 1

1 d
2e

c r r
 

 
 2 1

0r 
1,

.  , where  
Alternatively, if we didn’t know Equation (1), we could 
transform (4) into it by inverting the substitution. The 

indicial equation as  is 

Ar Br                 (5) 

where the constant A  is conventionally set equal to 
zero in order for   not to diverge at the origin. How-  

ever, at 
1

2
 

r

 both terms give the same dependence 

upon . It is precisely at 
1

2
 

B

  where the regular,  

, and irregular, A , solutions in Equation (5), coincide. 
There is no reason to constrain the angular momentum to 
positive integral or semi-integral values since we are 
considering “elementary” and “composite” particles, 
which may be stable or unstable. 

We may look for a solution to Equation (1) in the form 
of a Laplace transform [6], 

   2

1
e d ,rr

 


    


     

           (6) 

for the (normalized) wavenumber, . Introducing it into 
(1) results in 

   

     

2

1

2

1

2

1

d
1 e d

d

1 e

d
1 d ,

d

r

r

c a

c a

 










     


   

     


    
 

 

      





 

after an integration by parts has been performed. If the 
limits 1  and 2  can be chosen so as to make the 
integrated part to vanish, then   

 

 will satisfy 

   d
1 0.

d
c a    


      

    11 1 ,
c aaC      

C

    11 1 e d ,
c aa rr C 

 

The solution to this first order equation is 

          (7) 

where  is a constant of integration. In view of the 
Laplace transform, (6), we find 

    


     (8) 

where, if the contour  is not closed the integrand in (8) 
is required to have the same value at the endpoints. 

In contrast to the original confluent hypergeometric 
Equation (1), which has branch points at 0 and  , we 
have added an additional branch point at 1 by con- 
sidering the wave number. This branch point may be 
thought of as placing a bound, 

1This is formerly identical with Equation (26) on page 52 in Ref. [5]. 
However, the definition of 

 2 ,p E

p

 

on the momentum  by the square root of twice the 
total energy, like the maximum momentum of a Fermi 
gas of elementary particles at absolute zero [8]. 

  there is real. The same expression can 

be found in Ref. [6]. But then the quantization condition a n  is 

complex [6, Equation (27) p. 156]. Since E2  is imaginary for 
bounded states, and not the velocity , the quantization condition is 
real. Rather, in Ref. [7] the condition  is taken as the condi-
tion of the poles of the -matrix, giving the position of the 

v
a n 

S n
Regge pole. 
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The difference between (2) and (3) determines the 
second angle as 

   1 ,i a    

y y

c a            (9) 

which is the complex conjugate of (3). We will appreci- 
ate that attractive and repulsive coulomb potentials al- 
ways appear as complex conjugates, or, equivalently, for 
every source there is a sink. 

If 1  and 2  are any two particular solutions to the 
hypergeometric equation, then the Wronskian is given by 
[9] 

  1
1 ,

c a b
r r

  

2

1 2
2 1

d d

d d
cy y

y y C
r r

   

where C is a constant. Dividing both sides by 2y , it be- 
comes the derivative of the ratio 1 2  of the two 
particular solutions. Now, any other two solutions, say 

 and  can be expressed as linear combinations of 
 and , viz., 

w y y

1y 2y
1y 2y

1 1 2y y y   

2 1 2y y y

 

     

so that the quotient of the new solutions, 1 2  is 
related to the quotient of the old, , by a linear 
fractional transformation 

w y y  
w

.
w

w
w

 
 

 


               (10) 

When the quotient of the solutions is inverted, we get a 
function automorphic with respect to a certain group of 
the linear fractional transformations. For the hyper- 
geometric equation, the group of automorphisms are tri- 
angular tessellations of the unit disc. 

Our interest will be focused on the momentum space at 
 in (6). Since the hypergeometric equation with the 

coefficient , 
0r 

0b 
2

2

1 1

d
  

2 2d d
0,

1 d

Y Ya a

  
  

 

    (11) 

has one solution, 

  11 1 d ,
a

t t
2 0

, , aY a c C t


          (12) 

which is an incomplete beta function,  , ;B a a  , if the 
constant of integration is set equal to unity. The second 
solution 

1 2 ,Y wY

 1w 

                 (13) 

is given by an automorphic function . 
Dividing the Wronskian, 

  11 1 ,
c a   

2
2Y

 

1 2
2 1

d d

d d
aY Y

Y Y C
 

   

11

2
2

1
,

aa

w C
Y

   
 

 

by , it becomes the derivative of the ratio, viz., 

 

which has the Schwarzian derivative,  

 
  

 

2

2 2

2 2

3
, :

2

1 11 1
,

12 2 1

w w
w

w w

a aa a



  

       
  

  


   (14) 

where the prime now stands for the derivative with 
respect to  . 

With the transformation, 

   ln 1 ln 1e ,c aY Y     

0,Y IY

 

(11) can be converted into 

                     (15) 

 2 ,I wwhere  , with the Schwarzian derivative 
given by (14). The Schwarzian derivative has a long and 
glorius history dating back to Lagrange’s investigations 
on stereographic projection used in map making [10]. 

The third angle can be read off from the Schwarzian, 
(14), and is 

 1 ,c                   (16) 

which is the original angle of the crescent, having branch 
points at 0 and  . This is due to the centrifugal poten- 
tial in the Schrödinger equation. The coulomb potential 
introduces the complex conjugate angles,  and a a , 
which make the interaction independent of whether it is 
attractive or repulsive since they appear symmetrically. If 
we adhere to the triangle representation, the requirement 
that the angles be less than  limits   to the closed  

interval 
1

,0
2

  . In this interval, centrifugal repulsion    
  21 r   becomes centrifugal “attraction”. 

For 
1

2
, the sum of the angles of the triangle,  

1

2
i  

 
 , 

1

2
i  

 
, and 0 is . [11] The analytic  

function , ;B a a   given by (12) for  maps the 
upper half-plane 

1C 
  0 

a
 onto the interior of a half- 

strip formed by the two base angles  and a  corre- 
sponding to the points 0 1  and  in the   - 
plane. The distance between the two vertices in the - 
plane is 

B

 

 

1 11

0

1 1
1 d

2 2

cosh

aat t t i i 



            
  








   (17) 
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In general, the amplitude will be given by the com- 
plete Beta function 

     
  

1 1
.

2 1

i i
, ;1 =B a a

   


  

 

 
    (18) 

otentials. In the attractive case, there 
is an infinite number of Reggie poles determin
poles in the numerator of (18) [7], i.e., 

The beta function is symmetric with respect to attract- 
tive and repulsive p

ed by the 

2

 of the numerator 
8) are equa site so

alyticity of th de. In the
tial, with E ation (18) tells us there there 

pole
esp n

t

po

1 .
2

ZZ e
n

E


                 (19) 

These are bound states with 0E  . In the case of 
resonances, 0E  , the imaginary parts
of (1
an
poten
wi

l and oppo
e amplitu

0 , Equ

 to 

 as to preserve the 
 case of a repulsive 

ll again be an infinity of Regge s. However, these 
will not corr o d to bound states or resonances be- 
cause the Regge poles are restricted to the left half of the 
  plane. This information is contained in the amplitude, 
and it is equivalen two S -matrix elements, one being 
the inverse of the other [7]. 

Parenthetically, we would like to point out that the 
Regge pole behavior for an infinite-range potential is 
quite different than that for short range ones. A Regge 
trajectory for a short-range tential would have the form 

   1 ,E   E E           (20) 

where the prime stands for differentiation. The intercept 
of 1  is called for by the form of the angular momen- 
tum term  1   in the Schrödinger equation. The fact 
that the cross-sections do not vanish asym
the energy, but increase slowly with it is at

r, a
gula

ptotically with 
tributed to an 

exchange of a Reggeon whose intercept is +1 [12]. How- 
eve  positive intercept cannot be interpreted as origina- 
ting in the an r momentum. This is substantiated by 
the fact that only negative intercepts give rise to the con- 
servation of angular momentum in hyperbolic space [13]. 

In Equation (20) there would be no violent jump in the 
trajectories as the energy passes through zero. In the case 

0E   the poles are complex, but there is no violation of 
analyticity since they are complex conjugates. In the 
asymptotic case of large angular momentum the ampli- 
tude (18) will be modulated by oscillations, viz., 

  21, ;1 e .
i

i
B a a

i


 


 

   
 


 

The Schwarz-Christoffel transform remains valid even 
when one of the vertices of the triangle coincides with 
the point at infinity. The lengths of the sides from either 
vertex to the vertex at infinity are infinite, so that 

   

 

1 1
2 2

0
, ; 1 d

i i

i

B a a t t t
 




    




       (21) 

3. Generators from Monodromy Relations 

If 
2

0
lim ,I


0

1 d

1

t t

t t t

    
  



will map the upper half-plane   0   onto the interior 
of the “half-strip” shown in Figure 1. 

                   (22) 


the indicial equation for the branch point 0 is  

 n n 1 0.    

The two unequal roots, 1n  and 2n , are the exponents 
e integrals of the equation 

1
1

nY 

of th

   

so that ratio of the solutions is 

2
2 ,nY    

1 2
1 2

n nw Y Y    

quadratic form is 
21 4 ,a 

we have 

            (23) 

Since the discriminant of the 

 

2

2

1 1

4

a
I




   

in view of (22). 
en as  

1 iw   

The ratio of the two solutions, (23), can be writt

               (24) 

ing to Riemann, the exponents of the indicial 
equation, 


Accord

 1,2

1
1 ,

2
n a               (25) 

 

 

Figure 1. The half-strip obtained by the conformal mapping 
Equation (21). 
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“completely determine the periodicity of the function” [14], 
in reference to the solutions of the hypergeometric equa- 
tion. Equation (25) shows that the difference in roots of 
the indicial equation, or exponents as they are commonly 
referred to, is the angle at the singular point. The mono- 
dromy relations imply that the roots to the indicial equ- 
ations are rational numbers, which, in turn imply elliptic 
generators. Here, they are generalized to complex num- 
bers so as to allow for loxodromic generators, and take as 
a definition of monodromy as the invariance of auto- 
morphic functions, or functions inverse to the quoti nt of 
two independent solutions of a differential equation, 

  

e

under a certain group of transformations. 
A circuit around  in the positive direction that 

returns 1Y  as 12
1ei n Y , while it returns 2Y  as 22

2ei n Y , 
is performed by  

1

2

2

2

e 0
.

0 e

in

in





 
  
 

  

The monodromy theorem asserts that any global analy- 
tic function can be continued along all curves in a simply 
connected region that determines a single-valued analytic 
function on every sheet of the branch points, one sheet 
per branch point. The monodromy matrix about    , 

2

2

e 0
,

0 e

i

i





 
  




             (26) 


has unit termi nd trace  de nant, a

 2cos 2 ,    

so that it is an elliptic transformatio  Rather, around 
0  , the monodromy matrix, 

Tr

n.

 

 

e 0
,

0 e

i i

i i











 

 
   
 




         (27) 

also has unit determinant, but trace, 

 Tr 2 cos ,i            (28) 

so that it is a loxodromic generator
around 1  , where 

 
,

0 e i i 


  

         (29) 

ose

 

. This is also true 

 e 0i i  


 

wh  trace is 

 cos .i             (30) 

The product of any two matrices, or thei
yield the third, or its inverse. Stated slightly differently, a 

points in a positive 
(anti-clockwise) direction will give a 
third branch point in the negative (clo

atrices are abelian since they have the same 
fixed points, 0 and 

Tr 2

r inverses, will 

circuit around two of the branch 
circuit around the 
ckwise) direction, 

since    is the unit matrix. 

The m
 .   and   are loxodromic be- 

cause their traces, (28) and (30), are com
Loxodromic transformations do not leave the disc in- 

sfer the inside of the disc to the outside 

The generators, (27), (29), and (26
points 0 and ∞ in common. Conjugation with the Cayley 
m

plex and 2 . 

variant: they tran
of its inverse. 

), have the fixed 

apping, 

  ,
z i

z
z i





               (31) 

carries these fixed points to 1  and 1 , respectively, 
while se, 1its inver  , takes them to i  and i , re- 
sp

ca

 
   

1

cosh si

sinh cosh

i i

i i i


 







  


    

 
 

 

s to

w w  
carries points in the interior of wI  to the exterior of 

w

ectively. For instance, the conjugate generator of (27), 

   
   

1

cosh sinh
,

sinh cosh

i i

i i

 
 



   
 

 
    

 
 

 
     (32) 

rries the fixed points 0 and ∞ to −1 and 1, respectively, 
while those of the inverse conjugation, 


 nh

,
i      (33) 

carry the fixed point  i  and i , respectively. 
The loxodromic transformation, (32), pairs the iso- 

metric circle, I , with its inverse, I . That is, 

I . The fixed points of (32), 1  and 1, lie i

w

n wI  and 
I , respectively. With 0 , (32) is pure stretching, 

pushing points from 1 , the source, to 1 , the sink. 
The cyclic group consists of one generator, and apply- 

ing it n  times gives 

   
   

cosh sinh
,

sinh cosh
n n n

n n

 
 

 
  


 
 

        (34) 

for 0 . Whereas the isometric circle of (32) is 

  sinh cosh 1, z            (35) 

the isometric circle of (34) is 

   sinh cosh 1.n z n          (36) 

he isometric circle, (35), has its center at T  coth   , 
and radius  1 1 sinR h   . The isome c circle, (36tri ), 
on the other hand, has its center at  coth n   , and 
radius  1 sinhnR n . Since  sinh sinhn     , 
it follows that 1 nR R . And since this is true for any 

1n  , the isometric circles will be neste
another, becoming ever smaller until the limit point is 

hed. 
x posed 

d inside one 

reac
The lo odromic generator, (33), can be decom
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into a product, 

   
   
     

sinh cosh

cosh sinh cos

i

i i i

i


 

 

 

 


 

  

     sinh cosh sin cosi  
    

 
 

sin 








cosh sinhi i   





 


of hyp
with the same fi nts. The isometric circles of 

 

 
 

erbolic,  , and elliptic,  , transformations, 
xed 

 

poi   
s inverse, 1 , 

   
and it

sinh cosh 1,i z     

have their centers on the imaginary axis at  
0 cothz i   , and radius  1 sinh  . Part of the 

ental 
on for the gr ted by   [15]. In other 

words, it does not de tic transformation 

Since the isometric circle is defined by 

 

plane exterior to these two circles is the fundam
oup genera

pend on the ellip
regi

 . 

  2
1, 


   

 

sinh coshi z   

and that of its inverse by 

   

   

21 nh
  

2

si cosh

sinh cosh

i z

i z

 

 

 

   


 

, 

,

whatever is inside the isometric circle of 
   sinh cosh 1,i z      

i.e., 1   is outside of its inverse, because 1 1   , 
and vice versa. 

Let   and   be the generators whic
ometric circles, wI  with its inverse, 

h pair off the 
is wI , and vI  

, respect andwith vI ively. The matrices      will 
al to one anot  be extern her provided cosh

, and 
2  2. 

pairs circles 
coth


The matrix, (32), has fixed p

 
oints 1

with centers,  radii, , and the same 
 sinh  , on the real   will be 

located in the circle on the negative axis, while the 
attracting fixed point +1, which is a sink, will be located  

 axis. The fixed point 1

in the circle on the positive axis, since  1
ta 1

2
nh    

for whatever value   happen be. 
rtherm  the iso

s to 
Fu ore, let    be associated with - 

metric circle zI . If I ternal to one an- 
ot en

v

her th  
 and wI  are ex

zI  is n wI  [15, p. 53, Thm 12]. For sup- 
pose that the circles are not tangent to one other, th  

if p   a point outside of, and not on, , the generator 

 i
an en

is vI

 

  will carry the point p  into, or on, vI , say p  
with a decrease in length, or at least no change in length. 
Since p  is wI ,   will transforoutside of m it with 
a decrease ine in length. Consequently, the comb d opera- 
tion,  , will transform p  with a decrease in length, 
implying the p  is outside of z . And since every point 
on or outside of vI  is also outside of zI , the latter 

sting in a 
ne ith their

vI

must be inside the former. 
Each time we add a generator, we get a ne
sting of circles w  proliferation [16, p. 170]. 

The isometric circle  will contain three nested circles, 

zI , and zI for the generator    , and another 
for 

 
 . This is shown in Figure 2. 

E ch of the other three discs will also have three 
sted discs. Increasing th  generator by e, so that 

there are now three generators, or “letters”, there will be 
three nested discs in each  th ormer discs, and so on. 
Thus, there would be no limit of an elementary particle, 
but, r her, particles with n particles within particles 
and so on. There may result in high energy collisions 
additional particles to those of the compound particle 
disintegrating into its compon

a
ne e on

 of e f

at i
 

ent parts because there 
m

lativ
tio ometric ci

gene and one for its in- 
ve

ay be sufficient energy that can be converted into mat- 
ter before disintegrating again into other forms of mat- 
ter. Moreover, the re istic phenomenon of pair crea- 

n may be related to pairs of is rcles, one for 
the rator of the transformation, 

rse. 

4. The Coulomb Phase Shift as a Projective 
Invariant 

The absolute conic for elliptic geometry is the null conic. 
It is defined in projective coordinates by an equation with 
real coefficients, but it is composed exclusively of imagi- 
nary points. The secant through the points 1k  and 2k  
join the conic at i  and i . The cross ratio is 
 

2If the inequality becomes an equality, it is treaded by the example Ref. 
[16] which is the condition that the four circles are tangent to one an-
other. The trace of the commutator is –2 indicating that the two fixed 
points have coalesced into one at the point where the circles touch. Both 
groups are Fuchsian since their limit points are either on a line or on a 
circle. 

 

igure 2. The nesting of circles in the isometric circle and 
its inverse. 
F
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 
  
  

 
 

1 2

1 2

2 1

2

, ; ,

1 tan
e ,

1 tan
i

k k i i

k i i k k k

k i i k k k

i

i






 
 

 


 



1 2 2 1

1 2 2 1

1

1

i k k

i k k

  

  
    (37) 

tanwhere tan  2 1    , and tani ik  , for  

er a real conic with imagi- 

1ik  and 2ik , so that their join cuts the ab- 
solute at  and 1. The cross ratio is now 

1,2i  . 
Equivalently, we can consid

nary points, 
 1

 

  
    

 

1 2

2 1 1 2 2 1

2

, ; 1,1

1 1 1

1 tan
e ,

1 tan
i

ik ik

ik ik k k i k k

i

i







    


 



which is the complex conjugate of (37). Thus, the eucli- 
dean angle, 

1 2 1 2 2 11 1 1ik ik k k i k k    
     (38) 

 

Figure 3. The real conic, tangents, pole P, and polar. 
 

1
1

0
0

tan ,
j

j j

  
 





 
      




 
     (42) 

which is none other than a generalized Breit-Wigner 
expression [20] in the neighborhood of a resonance where 
the angular momentum, j, stands in the for resonance 
energy, and 2

   1 2, ;
2 2

k k i i ik ik
i i

  (39) 

ca
ar he

(3 any valued 
quantities. In order to associat ent 1 2k k  with the 
logarithm of the cross ratio, a pure imaginary absolute 
constant must be chosen [17]. 

Conjugacy with respect to a polarity general
pendicularity with respect to an inner product thus allow- 
ing euclidean geometry to be defined from affine geo- 
metry by singling out a polarity. [18] The imaginary 

t poi 1  and 1 hown in Figure 
3. 

The coulom ase shift, 

1 2

1 1
ln , ; , ln 1,1 ,      

n be expressed in terms of a cross ratio, and, hence, is a 
projective inv iant. T  logarithms of the cross ratios, 
(37) and 8), are pure imaginary and m

  is the width. 
It was Laguerre’s great achievement to define eucli- 

dean geometry from affine geometry by singling out a 
polarity. The projective invariant (42) is a projective in- 
variant in that it expresses an euclidean angle directly as 
the logarithm of the cross ratio [18]. It seems odd that the 
same name, Laguerre, should be associated with both the 
orthogonal polynomials when a  is a negative integer in 
the an 

eometry from affine geometry through a projective 
invariant. 

5. Relativistic Coulomb Interaction 

ts 

e a segm

izes per- 

points, 1ik  and 2ik , lie on the polar whose pole, P , is 
determined by the point of contact of two tangent lines to 
the real conic a nts , as s

b ph   , which determines pure- 
ly electrostatic, or Rutherford, scattering is also a pro- 
jective invariant. It is defined by [19] 

 
 

0

1
22

0

!
e e .

!

j
ii

j

i j i

i j i
  

 

 



  
 

  
 

 
   (40) 

Transposing and taking the logarithm of both sides give 

 0
0

1
1

0

1
ln

2

tanh .

j

j

j

j

j i
i

j i

i

j

 








 




 
 

 

 
   
















       (41) 

The coulomb phase shift i us giv y 

 coulomb interaction and the derivation of euclide
g

The relativistic generalization of the nonrelativistic cou- 
lomb interaction is given in this section. By specifying 
the coefficien in the confluent hypergeometric equation, 
we can obtain Dirac’s expression for the energy of the 
hydrogen atom from the Klein-Gordon equation instead 
of from the Dirac equation. 

The coefficients in the confluent hypergeometric equa- 
tion for the relativistic coulomb interaction are  

 
2

2 2 21 1

2 2
a i E E m 

        
   
   (43) 

2

2 ,c
 

21 1

2 2


 
            

              (44) 
s th en b
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where Z  ,   is the fine structure constant, and 
we have reinstated the mass m . If 0a   and E m , 
we have scattering, and the second angle will be  

 
2

2 2 21 1
.

2 2
c a i E E m 

         
   
   (45) 

The two base angles, corresponding to the branch 
points at 0 and 1 in the  -plane, are, again, complex 
conjugates, the + and – signs, before the energy term (43) 
and (45), correspond, respectively, to an attractive and 
repulsive coulomb potential. 

The third angle is 

 
2

1
1 2

2
c

   
 









 to

2 ,         (46) 

and in order  it  be   , the second inequality in for

 2 21
1 ,

4
                (47) 

has to be satisfied. The other inequality is the con
that (46) is real. The upper bound converts a repu
centrifugal 



w al quantum number. This avoids the 
necessity of looking for a series solution to the radial 
wave equation, and imposing a cut-off on the
condition that a be equal to a negative integer implies 

a- 

Equation (48) gives the exact energy 
particle bound by a coulomb potential  

dition 
lsive 

force into an attractive force, as can be seen 
in the Klein-Gordon equation, (50), below. 

Alternatively, for 0a  , and E m , the Regge tra- 
jectories for the bound states are given by 

 1 ,a n n                (48) 

here n is the princip

 series. The 

that the Kummer function becomes a generalized L
guerre polynomial. 

levels of a Dirac 

,

1

2

nE m 

 
 




2

2
1

1 1

 


         

 

2 2 1
2

2 2
n n


                    

 
2

      


(49) 

This is rather surprising since the confluent hyper- 
geometric equation with coefficients, (43) and (44), is 
completely equivalent to the Klein-Gordon equation 

   2 2 22

2 2

1d 1
0.

d

E m E

rr r

  
      

 
(50) 

4 
 

It is commonly believed that (50) describes a spinless 
particle in a coulomb field, and is, therefore, not capable 
of describing the hydrogen atom since electrons have  

spin 
1

2
 [21]. 

Now the indicial equation for (50) about the origin has 
exponents 

2
2

1,2

1 1
,

2 2
n 

        
   

which reduce to 1n

        (51) 

   and  2 1n     in the non- 
relativistic limit [cf. Equation (5)]. This would lead us to 
consider a solution to the indicial equation with only the 
former exponent. However, with 0 , the square root  

can become complex for 
1

2
  , and the solution would  

diverge. A further complication is that the exponents,  

(51), become complex for 
1

2
   and 0 . With a  

complex exponents, the solutions near the origin would 
at  [21] contends that the value of Zoscill e. Bethe  that 

w

avelength so as to invalidate the solution 

ould be required to make the exponents complex would 
correspond to atoms whose radii are several times the 
Compton w

lne
,

i r

r



                 (52) 

for small r . However true th it would still 
make the energy levels, (49), complex, again making it 
unacceptable. We now address this in some detail. 

In the nonrelativistic limit, the  of the two solu- 

is may be, 

ratio
tions is r , where    . The conformal 
mapping between the z  a  planes is [22] 

 2 1
nd r

12 cote i pr



12 cot

,
i

z i              (53) 
e pr 

which upon solving for r  becomes 

1ln 2 cote e .r i p z i

z i
      

         (54) 

The circles intersect at i  and i , and p  is the dis- 
tance from the smaller circle to the origin as shown in 
Figure 4. These correspond to the branch points 0r   

 . Now, 1cot 
si

 1cothp i ip  and the and r 
right-hand de of (54) is the cross ratio, 

    

 
 


 

 2

1 1

co cot1 1
e i

p z

i ii i    


 

   
(55) 

1 12 coth cothlne e
ip izr p i z i

p i z i


   
  

 

t
,

1 1 cot cot

1 1

p z i i

i i

 


 



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Figure 4. Crescent formed from intersecting circles making 
an angle λπ. 
 

e pwher cot  and cotz  . 
Taking the logarithm of both sides of (55) gives 

 2 ln ,i r             (56) 

where the cross ratio is the distance between the points 
cos ,s  cos ,sin ,0   with respect to 

the circ nity,  and  1, ,0i  in 
om plane  called circular 

points at infinity because they lie on the complexification 
of every real circle. Both points satisfy the homogeneous 
equation, 

2
2 3 3 0.x Ex      (57) 

By specifying the line at infinity, 3 0x  , the circular 
points then satisfy, 

2 2
1 2 0,x x                 (58) 

 

 in ,0   and 
ular points at infi
plex projective 

 1, ,0i
. They arethe c

2 2
1 2 1 32 2Ax Bx Cx x Dx  

if 1A B  . The involution, (58), is elliptic since it has 
maginary cii rcular points for its fixed elements. Equation 

fines a pai  1 2 0x ix  . (58) de r of im laaginary p nes,

In the relativistic case, where 
1

Z    the in
2

dices,  

(51), become 

1,2 .
2

1
n i               (59) 

The ratio of the two solutions is 2ir  , which is the 
crescent problem, but with an imaginary angle. Rotate 
the crescent by 2 , and the circles intersect at 1  and 
1, which lie on the disc. Again specifying the line at 
infinity, x3 0 , the c 7), re ces to 

2 2 0,x x               

onic, (5 du

1 2

for 1

  (60) 

A B   . Equation (60) is a hy  involution, 
since it has 1  as

perbolic
 its fixed elements, and defines a pair 

, 0x x  . 
e ted, here p

of real planes
With the cr

1 2

scent rota p ip  , w  , the 

ss ratio ocro f the 4 points,  ,1,0p ,  ,1,0z ,  1,1,0 , 
and  1,1,0  is real and is given by 

 

 
 

 
 

 2

1 1 cot 1 c 1p z

e  

 
 

1 12 coth coth2 ln 1
e e

p zi r
 

1p z 1

1 1 1

1 1

1 1 1 1

coth 11 1

oth

p z

p z  coth 1 

 






 
   

 

   





where cothp








   (61) 

  and cothz  . Hence, 

  ln .i r                 (62) 

The substitution is hyperbolic s
hich lie

ince it has real fixed 
points w  on the disc in terms of the homogeneous 
coordinates  osh ,sinh ,0   and  cosh ,sinh ,0  . 

A compariso  (56) and (62) shows that whereas in the 
fo

c
n

e the lo  the 
a many-valued quantity, i

 the logarithm o
es 

e ,ir

rmer the angle is real whil garithm of cross 
ratio is pure imaginary, and n 
the latter, the angle is imaginary while f 
the cross ratio is real. Thus, in both cas

                  (63) 

where the condition,      determines the single- 
valued principal value of ln r . Both (55) and (61) ex- 
press angles in the form of a projective invariant
the logarithm of both sides of the first equality in (55) 
yields 

. Taking 

 1 11
ln cot cot .

2
r i z p          (64) 

ducing (63 taking th f both 
sides yield 

Intro ), and e cotangent o

 

1 1 cot cot 1
cot

2 cot cot

,

zp

p z

 

cot

 
 

             (65) 

 

which, upon equating arguments, becomes 

 2
.  


                (66) 

Likewise, taking the logarithm
(61) gives 

1h

 

 of the first equality in 

1ln cot coth .i r z p           (67) 

Introducing (63) and taking the hyperbolic cotangent of 
both sides result in 

 

1 coth coth 1
coth

coth coth

coth ,

zp

z p

  
 

 

 
 

 

 




or

   (68) 

 upon equating the arguments give 
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  .                  (69) 

Whereas the Möbius transformation in (65), 

,
1

z p
z

pz

 


                (70) 

 an imaginary 
circle, the Möbius transform in (68), 
has imaginary fixed points, and is related to

,
z p

z
 


                (71) 

 points and is the most general analytic 
function that maps the unit circle onto itself

i

1 pz 

has real fixed
. [23] That is, 

for ez  , 1z   since 

 ei i i iz p p         e e 1 e 1 .p p pz        

Consequently, the small r solution to the Klein-Gor
equation, (52), not allow r  to be interpre
real, radial coordinate. This is in contrast to the usual  

interpretation wher

don 
ted as a  does 

eby the factor 

1
2 21

2


 
 
  

du   

 


  intro-  

ces a fixed branch cut along the real axis from
1

2
    to  1

2
  Wh . en 

1

takes the cal state 0 , and there is no consistent 

ant in (55) is pure 
imaginary, meaning that we are dealing 
substitution, while the angle is
jective invariant in (61) is real, meaning that hyperbolic 

inally,  all r  solution to the non- 
relativistic Schrödinger equation and show that if r  is 
real, 

2
   this cut over-  

physi
solution. [24] 

In summary, the projective invari
with an elliptic 

 real, whereas the pro- 

substitutions map the real circle into itself, while the 
angle pure imaginary. 

F we return to the sm

  must be c lex. If we ag rotate the cre
ce

omp ain s- 
nt in Figure 4 so that the vertices are at 1  and 1 , 

while keeping p  real, we have  

 1 11 2 coth coth2 cot 1
e e

 2e .

1

z ipi p z
r

       

i 

z      (72) 

 as a Equation (72) shows that in order to interpret r
real, radial coordinate, the angle   must be complex, 
except i it a  t lim

confo

n the lim  . In th it the crescent s p a
degenerates into a half circle, and (72) becomes real. 
This is in contrast with rmal analysis which holds 
that r  is complex and the angle   is real and positive. 

The corresponding Möbius transform, 

,
1

z ip
z

ipz

 


                (73) 

has fixed points at 1  and 1 , which are the vertices 

of the crescent. In the limit as p  , (73) becomes an 
inversion, 1z z  . This, again, m ps circles into circles 
for which straight lines are regarded as circles that ass 
through the point of infinity. In other words, this 
transformation associates points in the interior of a u it 
circle with poin  exterior to it. S

a
p

n
ts o that it would appear 

that classical quantum mechanics emerges when confor- 
mality disappears, and the independent coordi
comes real as well as the coefficient in the
geometric equation, (1). 

nate be- 
 hyper- 

Equation (73) can be written as 

1 1
,

1 1

z z

z z
K

  


  
 

where the multiplier of the transform, 

 1 iip  2

shows that the transformation 

e ,
1

K
ip

 


 

is elliptic, i.e., 1K  . 
The angle is constrained to the interval 0 2   , and 
is determined by the eight o he center of the smaller 
circle of the crescent from the origin of the r  plane. 
The transformation (72) will therefore map the upper half 
of the z  plane onto the interior of the crescent in the r  
plane with angles 

 h f t
 

 . 
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