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ABSTRACT 

A Lattice triangular expansion matrix is presented based on the classical Hadamard matrices, which is defined over the 
fields of finite characteristic. Also, the modular Lattice and Pentagon expansion matrices are structured from triangular 

 matrix, each of the expansion matrices are modular the sides of the shape p. The issue for the existence (neces-
sary conditions) of odd and even order matrices of that kind is addressed. The modular Lattice code is highly efficient 
since it requires only additions, multiplications by constant modulo p. The modular 6 Lattice triangular expanded con-
stellation is even possible efficiency to gain advantage from the channel selection and maximum likelihood (ML) de-
coding in the interference Lattice alignment (IA) system. 
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1. Introduction 

The generalized reverse jacket transforms (GRJT) as 
multi-phase or multilevel generalizations of the WHT 
and the even-length DFT were introduced in [1]. With 
the rapid technological development, many different and 
generalized forms of signal processing transforms with 
independent parameters have been proposed. It has been 
discovered that the new proposed transforms with many 
parameters have been widely used in various signal 
processing, CDMA, cooperative relay MIMO system 
analysis. However, it can be proven that matrices having 
the abovementioned properties with entries from the field 
of complex numbers do exist only for even orders [2]. So, 
it seems the problem of the existence of similar trans-
forms on distinct odd dimension spaces sounds natural. 
By that motivation, in this Letter, we consider a family 
of matrices (under the name jacket modulo prime matri-
ces) over the fields of finite characteristic, the properties 
of which resemble very closely those of the conventional 
Hadamard matrices. 

For basic definitions and notions the reader is referred 
to [3]. The primary generalized reverse jacket transform 

, defined in [4], is a permuted version of the 
 DFT, so called mixed-radix representation 

of integers from the set , which retains the 
first n rows and columns unchanged, and reverses the 
last n rows and columns of the corresponding DFT ma-
trix (a Vandermonde matrix based on a primitive 2nth 

root of unity on the complex circle). 

(GRJT s
2 lenn 

For the two-user interference channel, one of the best 
known achievable regions is that introduced by Han and 
Kobayashi [5]. This achievable region can be naturally 
generalized to more than two-users. However, a “good” 
choice for the auxiliary random variables and their joint 
distribution in the generalization of the Han & Kobaya-
shi coding scheme is not known. In [6], it is shown that a 
layered lattice coding scheme can result in an improved 
set of achievable rates than an i.i.d. Gaussian Han & 
Kobayashi region. The layered lattice coding 1It is 
known from [7] that i.i.d. Gaussian is in fact a reasonably 
good choice for the two user Gaussian interference 
channel. It is therefore somewhat surprising that this is 
not true for the K > 2 user case scheme in [6] attempts to 
separate the signal and interference signals into non- 
interfering levels. Although the scheme in [6] achieves a 
higher DoF (and a better set of rates at any SNR) than 
i.i.d. Gaussian Han & Kobayashi -style coding, it does 
not achieve the same DoF as obtained using the schemes 
in [8-10]. In order to obtain a better achievable region 
than in [6], we allow the signal and interference lattices 
to interact with one another in the case of channels with 
integer channel gains in [12], and determine algebraic 
mechanisms of separating signal and interference. Al-
though the scheme in [12] achieves a strictly better set of 
rates than in [6], it still falls short, in terms of degrees of 
freedom, than that achieved in [8,9]. 

)
gth

{0,1,..., 2 1}n 
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2. Center Weighted Hadamard Matrix 

In this section, we introduce some definitions and nota-
tions. First, we recall the center weighted Hadamard ma-
trix of order 4 in [12] 

4

1 1 1 1

1 1
[CWH]

1 1

1 1 1 1

 
 

 
   
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 

  

 

where   is a nonzero complex parameter. The inverse 
of this basic matrix can be easily obtained by element- 
wise inverse matrix as follows: 

1
4

1 1 1 1

1 1
1 1

[CWH]
1 1

1 1

1 1 1 1

 

 



 
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   

 

Definition 2.1: A matrix ,[ ] ( )N N i kJ j   of order N 
whose entries are complex is called a Jacket matrix, if 
the element in the  entry of its inverse matrix is 
equal to the product of 

( , )i k
1 N  and the inverse of the ele-

ment in the  entry of ( , )k i [ ]N NJ  . In other words, if 
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then is called a Jacket matrix. 
From the definition of Jacket matrices, it is easy to see 

that any Hadamard matrices of order are Jacket matrices. 
In addition, the center weighted Hadamard (CWH) is 
also a Jacket matrix. 

We can find that Jacket matrices have reciprocal or-
thogonality and reciprocal relation. The basic Jacket ma-
trix of order 3 is defined as 

2
3

2

1 1 1

[ ] 1

1

J  
 

 
   
 
 

 

where   is the third primitive root of unity. The in-
verse of 3J  is 

1
3 2

2

1 1 1

1 1 1
[ ] 1

3
1 1

1

J
 





 
 
 
   
 
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which satisfies 
1

3 3[ ] [ ] [ ]3J J I   

where nI  is the identity matrix of order n. From (10), it 
is easy to see that the inverse of 1

3[ ]J   can be easily 
obtained from the forward matrix 3J  by taking the in-
verse of each entry 3J  of and then transposing the re-
sulting matrix. Hence the Jacket transform has following 
two advantages: 

1) Element-wise inverse orthogonality. 
2) The entries of the forward and the inverse trans-

forms have a reciprocal relationship. 

3. Jacket Matrix over Finite Characteristic 
Fields 

Without loss of generality we may focus on the fields 
, where p is a prime and define the notion of the 

jacket modulo prime matrix over them. 
( )GF p

Definition 3.1: A jacket modulo prime ( )JMP  matrix 
J of order n over  is an  non-singular ma-
trix of 

( )GF p n n
1s  that field such that 

T
nJJ nI                  (1) 

where nI  is the identity matrix of order n. 
As usual, the notation TM  is used for the transpose 

matrix of a given matrix M. We shall use also the nota-
tion ( )JMP p

(GF
 for the set of jacket modulo prime matri-

ces over . )p
Example 1: Triangular  matrix (Figure 1) 77
Let nJ , where 4n pk   and  be a 

square matrix of order n consisting of with the following 
description. Its first row and column consist entirely of 

1,2,...,k 

1s ; its last row and column consist of 1s  with excep-
tion of the corner entries, and all other entries are equal 
to1 with the exception of those on the main diagonal. For 
instance, 7 ( 3J p , 1)k   looks as:  

7

1 1 1 1 1 1 1

1 -1 1 1 1 1 -1

1 1 -1 1 1 1 -1

= 1 1 1 -1 1 1 -1

1 1 1 1 -1 1 -1

1 1 1 1 1 -1 -1

1 -1 -1 -1 -1 -1 1

J

 
 
 
 
 
 
 
 
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also 

-1
7

1 1 1 1 1 1 1

1 -1 1 1 1 1 -1

1 1 -1 1 1 1 -1
1

= 1 1 1 -1 1 1 -1
7

1 1 1 1 -1 1 -1

1 1 1 1 1 -1 -1

1 -1 -1 -1 -1 -1 1

J

 
 
 
 
 
 
 
 
 
 
 

 

The inner product of a pair of rows equals either to 
, i.e. in  the following matrix equa-

tion holds: 
3 1 3pk    (3)GF

7 7 77TJ J  I                 (2) 

Clearly, 7
1

7 7
TJ J J   , where 7

TJ  is the transpose 
matrix of 7J . So, 7J  is an orthogonal matrix over the 
filed . We stress once again that in this ex-
ample the operations are taken modulo 3. Thus, 

( 3)p GF

nJ  is a 
JMP  matrix over . ( 3 )GF P

Example 2: Extended Lattice Triangular 10 10  ma-
trix (Figure 2) 

Similarly, by the same way as shown in the example 1, 
the  matrix can be expressed as follow 10 10

10

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
,

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

L

 
   
  
 

  
  
 

  
   
  
   
         

 

 

 

Figure 1. Triangular and circular internally tangent. 
 

 

Figure 2. Lattice and circular internally tangent. 

The inverse of 10J  can be easily calculate as 

1
10
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1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
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  
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Clearly, that 
1

10 10 10
TL L L                 (3) 

1
10 10 1010 (in 6)L L I GF 

1 T

       (4) 

By the Definition 2.1,  are also Jacket 
matrices over . 

10 10 10, ,L L L
(6)GF

Example 3: Extended Pentagon Triangular 9 9  ma-
trix 

Also, the Pentagon Triangular  matrix can be 
structured as  

9 9
9p

9

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

p

 
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  
 

  
   
 

  
   
  
        

 

Clearly, that 
1

9 9 9
TP P P                (5) 

1
9 9 99 (in 5P P I GF 

1 T

)           (6) 

By the Definition 2.1,  are also Jacket ma-
trices over  

9 9 9, ,P P P
(5)GF

Over these 3 examples, the modular (5,6) Jacket ma-
trix Jn is constructed based on the triangular (7 7)  
matrix, where n = p + 4, 5,6p  is the number of sides for 
the shape (that’s meaning pentagon, lattice). Note that 
this scheme is highly efficient since it requires only addi-
tions, multiplications by constant modulo p, and it is even 
possible to gain advantage from interference alignment. 

4. Lattice Alignment Application 

In this section, we consider 3-pairs interference system, 
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where each transmitter Ti and receiver Ri equipped with 
one antenna, respectively. The channel coefficients ,i jH  
define links from transmitter i to the receiver j, where 

.  , 1, 2,3i j

4.1. Channel Selection with Lattice Constellation 

Motivated by the advantage of having a structured inter-
ference, we propose an approximate lattice alignment 
scheme in which the precoders are designed to best align 
the receiving lattices. However, we accept the fact that 
lattice alignment may not be perfect (due to infeasible 
configurations and imperfect CSI effects) and try to 
model and minimize the effect of the residual lattice 
alignment errors. The lattice alignment error is given by 

e = | |H
a j ij j Lu h v a              (7) 

where La

, }a

 is the lattice coordinate as shown in the Fig-
ures 3 and 4. As a result, the design parameters 

i i L  in (7) are chosen to minimize the effects of 
the lattice alignment errors. 
{ ,u v

The error is smaller, the channel state information 
(CSI) is better. The optimal is .The conditional 
error probability given 

e =0a

ju  can be upper bounded as 
follows: 

2 2

( | ) { }

{|| || || || }
H
j ij j

H
j j ij j L

H
j ij j L

u h v

P e u P u h v a

P u h v a


 

    

where  is the maximized distance in the constellation, 
on the other hand  is the length of side. 




 

 

Figure 3. Pentagon and circular internally tangent. 
 

 

Figure 4. Lattice alignment constellation with imperfect CSI. 

4.2. Lattice Alignment in 3-pairs Interference 
Chanel 

In the conventional works, the perfect IA requirements 
for all k K  are summarized as 

,U H V 0 ,H
j i j j                 (8) 

,rank(U H V )= .H
i i i i id              (9) 

Eq. (8) guarantees that all the interfering signals at 
destination l K  are aligned in a subspace of k iN d  
dimensions and can be zero-forced by jZ . Eq. (9) guar-
antees that destination k K  is able to decode all jd  
intended data streams successfully. When both equations 
(8) and (9) are satisfied, the interference alignment is 
feasible for the given DoF. 

We will work with a many-to-one Gaussian interfer-
ence channel with 3 users, where interference is only 
present at receiver 1. The desired symbols of receiver 

1,2,3k   can be estimated as 
interference signa

desired signal

, ,y = u + u +u n

l

k
H H

i i i i i j i j j i
i j

x h x




h H
i  

where ,i j  is the n nh   channel matrix from transmitter 
j to receiver i, jx  is the transmitted symbols and ni is 
the additive white Gaussian noise with variance 2 . 

At receiver 1, there is interference from users 2 and 3. 
By suitably choosing  and  in such a way that 2v 3v

12 2 13 3.h v h v  

We can perform lattice alignment of the interfering sig-
nals from users 2 and 3 at the first receiver’s as follow: 

12 2 13 3 13 3( ) (L h v h v L h v )   

where  is the lattice generated by the matrix ( )nL J nJ . 
Then the desired signal belongs to the lattice 1 11 1 Lh v a  , 
while the sum of the interfering signals 

12 2 2 3[ (x x )L h v ]  is aligned in the lattice 2 12 2 Lh v  a , 
where La  is the Lattice alignment coordinate which 
will be introduced in the next section. Then the received 
signal at the receiver 1 can be rewritten as: 

1 1 2y x x n1    

where 1 11 1 1x h v s  and 2 21 2 2 3[ ( )]x L h v x x   belong to 

the Lattice constellation coordinate. 
After successfully channel selection, we wish to de-

code the desired signal k
ix  at stage-II as illustrated in 

Figure 5. The desired signal is detected given by 

1| |k H k H H
i i i i jy u y u x u x    2         (10) 

Compared with the alignment error and ML decoding 
algorithm in first and second stage, both of them are the 
Euclidean distance. Let’s focus on: 
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Figure 5. 3-piars interference channel. 
 

 

Figure 6. ML decoding based on Lattice expansion triangular. 
 

, ,| (

| |

k
k H k H H
i i i i i i i i j i j j j

i j

H k
i i i a j L j

y u y u h v x u h v x

u y x e x a x



  

   





) |
     (11) 

where La  is given as the coordinate in each constella-
tion, , i

H
i i i i ix u h v x . We can find that the ML decoding 

mapping constellation should include the lattice constel-
lation. 

Also, in the Figures 4 and 6, the area of the lattice 
expansion triangular is greater than the lattice. It’s also 
satisfied the formula in (7). 

5. Conclusions 

Clearly, the Lattice triangular expansion matrix, which 
can be given for an arbitrary field of finite characteristic, 
is presented based on the conventional real Hadamard 
matrices. In this paper, we have also addressed a neces-
sary condition for the existence and presented a con-
struction of odd and even order JMP matrices. The 
modular Lattice and Pentagon expansion matrices are 
structured by the triangular 7 7  matrix, and modular 
the sides of the shape p.The modular Lattice is highly 
efficient since it requires only additions, multiplications 
by constant modulo p. The modular 6 Lattice triangular 
expanded constellation is even possible to gain advan-
tage from the channel selection and maximum likelihood 
(ML) decoding in the interference alignment (IA) sys-
tem. 
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