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ABSTRACT 

This article presents a review of our research effort on the eigenanalysis of open radiating waveguides and closed reso- 
nating structures. A two dimensional (2-D) hybrid Finite Element method in conjunction with a cylindrical harmonics 
expansion is established to formulate the open waveguide generalized eigenvalue problem. The key element of this ap- 
proach refers to the adoption of a vector Dirichlet-to-Neumann map to rigorously enforce the continuity of the two field 
expansions along a truncation surface. The resulting algorithm was able to evaluate both surface and leaky eigenmodes. 
The eigenanalysis of three dimensional (3-D) structures involves vast research challenges, especially when they are 
electrically large and open-radiating. The effort herein is focused on the electrically large case including the losses due 
to the finite conductivity of metallic walls and objects as well as the loading material losses. The former is introduced 
through impedance or Leontovich boundary condition, resulting to a non-linear-polynomial generalized eigenvalue 
problem. A straightforward linearization solution is adopted along with a more efficient alternative technique which 
mimics analytical approaches. For this one the linear eigenproblem formulated assuming metals as perfect electric con- 
ductors is initially solved and their finite conductivity is accounted through impedance boundary conditions enforced 
locally on the resulting eigenvectors. Finally, some numerical results are presented to verify the performance of these 
methodologies along with a discussion on their possibilities for extension to open 3D structures as well as to character- 
istic modes eigenanalysis. 
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1. Introduction 

The interest in the analysis and design of waveguiding 
and cavity structures is always of high priority in the 
microwave community. The tense of this era for the uti- 
lization of even more complex and smart microwave de- 
vices and the increase of the required frequency band, 
demands the genesis of “smart” techniques. One idea up- 
rise in our laboratory is the development of the eigen- 
analysis for the evaluation and exploitation of the modal 
characteristics of the studying structure. In this manner 
the physical properties of each structure are revealed and 
thus the eigenanalysis provides the guidelines for its ana- 
lysis. 

Valuable analytical eigen-solutions of canonical cross 
section closed waveguides are well established since the 
early days of microwaves. Arbitrary cross-section wave- 
guides, partially or inhomogeneously loaded with either 
isotropic or anisotropic materials can also be studied with 
the aid of numerical techniques and particular the Finite 

Element Method (FEM), e.g. [1]. 
Addressing the first steps of this effort a hybrid Finite 

Element in conjunction with a cylindrical harmonics ex- 
pansion is established for the analysis of open wave- 
guides. The unbounded solution domain is truncated by 
enclosing the FEM subdomain (inhomogeneous wave- 
guide) within a circular contour, where the field outside 
of that is expanded into cylindrical harmonics. The trans- 
parency of the fictitious circular contour truncating the 
finite element mesh is ensured by enforcing the field 
continuity conditions according to a vector Dirichlet-to- 
Neumann mapping (DtN) [1]. The resulting generalized 
eigenproblem is extremely nonlinear due to the presence 
of the unknown eigenvalue (complex propagation con- 
stant) within the argument of the cylindrical Bessel func- 
tions. The approximation corresponding to the physical 
condition of wave cut-off in the axial direction (almost 
transverse propagation), yields an approximate linearized 
eigenproblem. Even though this seems a rough approxi- 
mation is proved to be quite accurate for the major part 
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of the eigenspectrum covering both surface and leaky 
modes. For the remaining part of the spectrum, the non- 
linear eigenproblem is solved using an iterative Regula- 
Falsi technique, in conjunction with Arnoldi algorithm, 
by exploiting the approximate linear eigenproblem re- 
sults as starting values. 

For the extension to three dimensional open radiating 
cavities (e.g. cavity backed antennas) the finite element 
method can be bind together with the corresponding 
spherical harmonics expansions of the free space. The 
continuity of the field will be now enforced on a trans- 
parent fictitious spherical surface, strictly following a Di- 
richlet-to-Neumann mapping formalism. Once again the 
resulting generalized eigenvalue problem is non-linear 
since the unknown eigenvalue (complex resonant fre- 
quency) occurs within the arguments of the spherical 
Bessel functions. Different linear approximations are cur- 
rently considered in order to acquire a good starting solu- 
tion to be exploited in the solution of the non-linear ei- 
genproblem. However, the extreme nonlinear nature of 
this problem is an open challenge which we try to over- 
come with newly developed techniques. 

Aiming at the eigenanalysis of electrically large three 
dimensional structures the effort is currently restricted to 
closed geometries, like the reverberation chambers or fo- 
cused microwave cavities. For this purpose the initial 
Finite Element eigenanalysis formulation is extended ac- 
cordingly [2]. For the first approach a brute force tech- 
nique have been applied where the whole structure is 
discretized and solved respectively, while in parallel an 
eigenvalue domain decomposition technique is under de- 
velopment. However, working toward an efficient and 
realistic modeling of these electrically large structures, 
numerous challenging problems are encountered. In par- 
ticular when finite conductivity losses are included 
through an impedance or Leontovich boundary condition, 
the eigenproblem becomes nonlinear. A methodology of 
evaluating losses effects and particularly the quality fac- 
tors within practical accuracies by just solving the linear 
eigenproblem resulting from perfect electric boundary 
conditions is devised by our group [3]. In particular, the 
eigenproblem is formulated and solved assuming cavity 
walls and the metallic object surface as perfect electric 
conductors. The resulting linear eigenproblem is solved 
to yield modal eigenfunctions which for the Neumann 
data (normal electric and tangential magnetic field com- 
ponents) are of practically acceptable accuracy all over 
the solution domain including the neighborhood of the 
metallic surfaces. These are in turn exploited for the eva- 
luation of the Dirichlet boundary data (tangential electric 
and normal magnetic field) through the Leontovich boun- 
dary condition. Hence, finite conductivity losses are in- 
corporated into the modal eigenfunction through this 
post-processing.  

This article concludes with a discussion on some 
thoughts on how to handle the challenges brought up by 
the eigenanalysis of open three dimensional structures, 
especially the non-linearity. Additionally, some propos- 
als are entrusted for future extensions to the formulation 
and solution of characteristic modes for open structures 
as well as for the periodical ones. 

2. Hybrid Finite Element Method for Open 
Waveguides 

The geometry of an arbitrary cross section, inhomoge- 
neously loaded open waveguiding structures enclosed 
within a circular separation contour-C is shown in Fig- 
ure 1. Time harmonic fields as ejωt and propagation along 
the z-axis as e−jβz are assumed. The field vectors as well 
as the nabla operator are discriminated into transverse 
(t-subscript) and longitudinal components (z-components) 
as: 

ˆt zE z Ε Ε                 (1) 

ˆt z
z


 


                  (2) 

 

Inside the contour-C (region II) the vector wave equa- 
tion for the electric field is considered and the standard 
Galerkin procedure is applied to yield a weak formula- 
tion of the form [1]: 
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Figure 1. General open radiating waveguide geometry. 
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where  is the vector weighting function and 
SII the area of the bounded region-II. The contour inte- 
grals IA and IB along the fictitious contour-C, constitute 
the means for coupling the FEM-field inside-C to the 
field expansion outside-C. This coupling strictly follows 
the vector Dirichlet-to-Neumann (DtN) mapping, which 
ensures the transparency of this fictitious contour, e.g. 
Givoli [4,5]. 

ˆt zT z T T

The field in the unbounded region-I is expressed as a 
superposition of TEz and TMz modes, which according to 
classical Jackson textbook [6] constitute a complete set 
of vector solution to Maxwell equations. The longitudi- 
nal components in unbounded Region I read: 
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where 2
0k k

2   is the radial wavenumber and 
 2
mH  the Hankel functions of the second kind. Since, β 

is the unknown complex eigenvalue its presence in the 
argument of the Hankel functions through kρ causes the 
problem non-linearity. 

Following a standard waveguide analysis, e.g. Pozar 
[7], the transverse field components are expressed in 
terms of their axial counterparts (5), (6) by expanding 
Maxwell curl equations in Cartesian coordinates [1].  

Dirichlet to Neumann mapping: For the coupling of 
the field expression inside and outside-C the vector DtN 
principles are in turn applied. Its first step requires that 
“the solution in the unbounded region-I to be constructed 
from Dirichlet data on the separation contour-C”. Since, 
the electric field wave equation is solved using FEM in 
the interior of C, then the Dirichlet data are comprised of 
the tangential field components  FEM

zE ,  FEME . Hence, 
the related field continuity conditions read: 

   
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Exploiting the orthogonality properties of the azi- 
muthal eigenfunctions e−jmφ the unknown coefficients Am, 
Bm of the expansion are evaluated [1] through Equations 
(7) and (8). Namely, this step has indeed established the 

solution in the unbounded domain (region I). The DtN 
second step reads “establish a Dirichlet-to-Neumann map 
on the separation contour-C by differentiating the solu- 
tion in the unbounded domain with respect to the trans- 
verse-radial ρ-coordinate and enforce their continuity 
across-C”. Since, the Dirichlet data are comprised of the 
electric field, the differentiation with respect to ρ-coor- 
dinate is given by the Maxwell Curl equation eΕ  
which yields the magnetic field tangential components all 
over region I e

zH  and eH . The e
zH , eH  values on 

the C-contour comprise the Neumann data. Their avail- 
ability enables the evaluation of the coupling integrals IA, 
IB through the enforcement of the tangential magnetic 
field continuity. 

   

c c
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The coupling integrals IA, IB of the weak formulation (3) 
and (4) are then rewritten by means of Maxwell Curl 
equations in cylindrical coordinates as:  

 0 ˆ dA t z
C

I j H    T l           (11) 

0 dB z
C

I T H l               (12) 

The substitution of (9), (10) into (11), (12) and through 
that in (3) and (4) concludes to the final “equivalent 
closed hybrid FEM formulation”. This is in turn discre- 
tized over the whole region-II included within the con- 
tour-C using the interpolation functions for hybrid edge/ 
node triangular elements (line elements for C) according 
to [8]. The resulting expressions are then separated into a 
group of terms involving the unknown eigenvalue    
and terms independent of that to yield a non-linear gen- 
eralized eigenvalue problem [1]: 

   0 ,A k e   0              (13) 

The eigenvalues of (13) are the complex propagation 
constants of the waveguiding structure. 

Discussion on Uniqueness: It’s worth noting that the 
DtN procedure described above contradicts the electro- 
magnetic uniqueness theorem which states that the en- 
forcement of either tangential electric field or tangential 
magnetic field continuity on the contour-C yields a uni- 
que solution. In contrary, DtN presumes the enforcement 
of both electric and magnetic field continuity. However, 
the DtN provisions were indirectly well established by 
Prof. Harrington in 1989 [9], who states that enforcement 
of both conditions is absolutely necessary in order to 
avoid matrix singularities at the frequencies of internal 
resonances. At this point one may recall that the propa- 
gation constants are the solutions of some kind of a char- 
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acteristic equation which is identical to the transverse 
resonance condition. Hence, this is indeed a condition of 
internal resonance and both tangential electric and tan- 
gential magnetic field continuity conditions must be en- 
forced. Additional support to the above statement is pro- 
vided by the algebraic manipulations necessary to obtain 
analytical eigensolutions for canonical open waveguides. 
It is well understood for example that in order to extract 
the modal characteristic equation for a dielectric slab or 
cylindrical dielectric rod both tangential electric and tan- 
gential magnetic field continuity must be enforced across 
the dielectric-air interface. 

Non linearity and equivalent linear eigenproblem: Eq- 
uation (13) represents a non-linear generalized eigenpro- 
blem, since the unknown eigenvalue    occurs in 
multiple terms but also within the argument  

2
0k k

2   of the Hankel functions in (5) and (6).  

Hence, for the solution of (13) a good initial guess is 
inevitable, which can be in turn improved employing a 
Matrix Regula Falsi method [10]. The necessary starting 
solutions are obtained by formulating and solving an ap- 
proximate linear eigenvalue problem. The latter is estab- 
lished by approximating the argument of the Hankel 
functions involved in the field expansion in the un- 
bounded region-I, as: 

 20

2 2
0 0

1k
k k


k     


        (14) 

This approximation yields a linear eigenvalue problem 
which is solved employing the Arnoldi algorithm [11] 
which efficiently handles the involved sparse matrices. 
Although, this approximation was expected to work well 
around 0 0k  , however it was proved to perform 
quite well for 0k  up to 0.8 [1]. This makes it a valu- 
able tool for the study of both Surface and Leaky wave- 
guide structures since a single solution of the linear ei- 
genvalue problem yields the entire spectrum of the com- 
plex propagation constants. It will also be shown in the 
numerical results section that the results of the linear 
approximation require improvement using the non-linear 
eigenvalue formulation only around the frequency ranges 
of high leakage (attenuation) constants. The method is 
validated against previously published numerical and ex- 
perimental results and for open waveguiding structures 
first studied by our group.  

Future improvements: The major limitation of the 
above method is related to the high computational cost of 
the “global radiation condition” resulting from the en- 
forcement of the artificial truncation Contour-C trans- 
parency through the DtN approach. One part of this is 
unavoidable which is related to the creation of a dense 
area within the otherwise sparse system matrix and this is 
inherent to global transparency conditions. This is actu- 
ally the cost to be paid for the gain of accurate transpar-  

ent condition. However, most of the additional computa- 
tions devoted to the calculation of the integrals along the 
artificial contour-C, involve far away located linear seg- 
ments which add negligibly to the total numerical sum. 
Hence these will not compromise the numerical accuracy 
when omitted. The question is how to devise a method- 
ology predicting the negligibly contributing terms with- 
out calculating them. One idea is to restrict the integral 
on some certain neighbourhood around each linear seg-
ment. The experience provided by similar approaches 
utilized within Fast Multipole methodologies e.g. [12], 
(which face similar drawbacks) will be exploited in our 
case. It must be noted that the computational cost in the 
2D case is still affordable, but for the 3D open eigen- 
problems these integral truncations are inevitable. Finally, 
note that a similar compromise is made when truncating 
the theoretically infinite number of modes in the un- 
bounded domain field expansion. In any case, terms con- 
tributing to the integral of the same order as the error 
tolerance can be neglected without any actual accuracy 
compromise.  

Another ambitious task refers to the extension to peri- 
odic waveguiding structures, by incorporating a Floquet 
field expansion within FEM formulation and/or enforc- 
ing periodic boundary conditions. This approach may en- 
able the rigorous analysis of numerous periodically lo- 
cated transmission lines (e.g. strips and dielectric rods) 
supporting important electromagnetic band gap pheno- 
mena. 

3. Evaluation of Complex Resonant 
Wavenumber of Electrically Large  
Cavities 

Aiming at the eigenanalysis of electrically large struc- 
tures a reverberation chamber is considered as an indica- 
tive example. The most important aim of this work is to 
accurately calculate the imaginary part of the resonant 
wavenumber, which corresponds to the quality factor of 
each resonant eigenmode. For this purpose two different 
approaches are developed. First a straightforward ap- 
proach is adopted, where the finite walls conductivity is 
taken into account by incorporating into the FEM formu- 
lation the Leontovich Impedance boundary condition. 
This yields a polynomial eigenvalue problem which al- 
though it can be easily linearized, the rank of the eigen- 
problem is increased demanding augmented computer re- 
sources which are proved to be beyond those of an ordi- 
nary desktop computer. To overcome this difficulty an 
alternative novel technique is established. Within this a 
linear eigenvalue problem is formulated and solved as- 
suming all metallic structures as perfect electric conduc- 
tors (PEC). In turn the resulting eigenfunctions (modal 
field distributions) are utilized for the calculation of the 
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metals finite conductivity losses through a post process- 
ing enforcement of the Leontovich boundary condition.  

3.1. 3D Eigenproblem Formulation 

The simplified model of a reverberation chamber shown 
in Figure 2 is considered at the first steps. It is a closed 
metallic cavity containing the antenna the Equipment 
Under Test (EUT) and the metallic mode stirrer. All the 
metallic cavity’s walls, the mode stirrer’s the antenna’s 
and the EUT’s walls are assumed to have finite conduc- 
tivity. The whole structure including the objects’ per- 
turbing the cavity is simulated using FEM, employing 
edge elements.  

Aiming at a general formulation, an arbitrarily shaped 
three dimensional computational domain V inhomogene- 
ously loaded with in general anisotropic material de- 
scribed with the aid of tensor permittivity  r  and 
permeability  r , is assumed. Its electromagnetic be- 
havior can be characterized by the electric field vector 
wave equation which in the absence of any exciting 
source, reads: 

2
0 0r rE k E              (14) 

Applying a standard Galerkin procedure the following 
weak formulation can be derived, e.g. [13]: 
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The surface integral is defined over the surface en- 
closing the solution domain (cavity walls) as well as on 
the surface of any object existing within the cavity. It is 
through this integral that general impedance boundary 
conditions are enforced within the FEM formalism. Spe- 
cifically this integral serves to introduce conductor losses, 
according to the Leontovich boundary condition: 
 

 

Figure 2. A simplified reverberation chamber model com- 
prised of an inhomogeneously loaded cavity with the an- 
tenna the EUT (equipment under test) and the metallic 
mode stirrer. 

  ˆ ˆ ˆk k s kn n E Z n H               (16) 

ˆkn  is the inward unit normal vector and Zs is the surface 
impedance of the form [13]: 
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where the metallic walls are considered non-magnetic 
with μ = μ0, σ their conductivity and C the speed of light. 

Substituting condition (16) in the formulation and tak- 
ing into consideration the fact that the inward unit vector 
is ˆ ˆkn n  , Equation (15) becomes: 

     

 
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d d
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V

 (18) 

The resulting system of equations after the discretiza- 
tion of (18) is in turn formulated into a nonlinear gener- 
alized eigenvalue problem, by separating the terms in- 
volving the free space wavenumber k0 (or the circular 
frequency ω, as 0k C ). The final matrix form can 
be formulated as a nonlinear eigenvalue problem for the 
unknown resonant wavenumber (eigenvalues k0) as: 

        2
0 0Stiffness Mass Surf 0e k e j k e    (19) 

where [e] is a vector comprised of the electric field val- 
ues at the middle of element’s edges. The polynomial 
eigenvalue problem obtained above can be solved using a 
symmetric or companion linearization described in Sub- 
section 3.4. 

3.2. Perturbation Technique 

When a magnetic sample or a dielectric material as well 
as any other object is placed in a large cavity, its reso- 
nance frequencies are altered. The amount of resonant 
frequency shift depends on the properties of the material 
and is proportional to the imposed energy variation. For a 
large cavity and a relatively small inserted object the 
phenomenon can be described within a practical accuracy 
by the “Perturbation principle”, which according to Har- 
rington [14] reads: 

 
 

2 2

0 0
0

2 2
0 0 0

d

d

V

V

H E V

H E V


  

  









      (20) 

where 0  is the initial circular resonant frequency of 
the unperturbed cavity, ω is the resonant circular fre- 
quency after the perturbation, δV is the inserted object 
volume and V is the volume of the whole cavity-structure. 
Hence, (20) indicates that the variation in resonant fre- 
quency depends on the object’s position as well. When 
the dielectric and conductor losses of the cavity and the 
introduced objects are considered, then both ω and ω0 
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become complex, as: 

1
2r

j

Q
 


 

 


               (21) 

where r  is the real resonant frequency and Q is the 
quality factor.  

3.3. PEC Eigenanalysis for the Quality Factor 
Evaluation 

In general the quality factor is calculated from the field 
distribution inside the cavity using the equation: 

average energy stored

Power losses
m e

l

W W
Q

P
 

      (22) 

where Wm and We are the magnetic and electric stored 
energy respectively. The power dissipated in any good 
conductor is classically known as the Joule losses (pro- 
portional to J E ), hence the same principle applies for 
the finite conductivity cavity walls as well as for any 
metallic object inserted in the cavity. The material losses 
(objects in the cavity) are accounted through the imagi- 
nary parts of the permittivity  j    


 and the per- 

meability  j      . The totally dissipated power 
reads: 

 2 21
d d

2 2l S V
P J E S E H V

           (23) 

Equation (23) is general and can be used whenever the 
electric and magnetic field within the cavity are available 
either from an analytical or a numerical solution. How- 
ever, even for an empty cavity the exact boundary condi- 
tions on a finite conductivity wall are complicated, de- 
pend on frequency (dispersion) and known as impedance 
conditions. A good approximation usually adopted is that 
of Leontovich given in Equation (16). But, the main dif- 
ficulty with (16) is that it introduces a coupling across 
the walls between the electric and the magnetic field. 
Hence, even for an empty or homogeneously filled cavity 
the electric and the magnetic field wave equations cannot 
be exactly solved separately. Correspondingly, there are 
not pure TE and TM modes any more but those become 
hybrid. An exact analytical solution is in turn very diffi- 
cult and it requires sophisticated techniques or a numeri- 
cal approach. However, this coupling effect is proved to 
be a local phenomenon restricted around the finite con- 
ductivity conductors, while away from them the TE and 
TM mode eigenfunctions are retained. A very rough ap- 
proximation calculates the finite conductivity losses con- 
sidering this local phenomenon as a plane wave incident 
on the metallic walls. This yields a simplified expression 
often used in practice [15], which does not discriminate 
between different modes. A classical approach usually 
used for the eigenanalysis of canonically shaped cavities 

provides each mode quality factor with a sufficient accu- 
racy. This is based on the modal field distributions eva- 
luated analytically considering PEC walls (ignoring me- 
tallic losses). This approach was recently proved by our 
group to perform impressively well for arbitrary shaped 
cavities by utilizing numerical eigenfunctions which are 
calculated assuming PEC metallic surfaces [3]. Besides 
these approximations, including the conductor losses wi- 
thin the formulation as in (18) requires a numerical solu- 
tion of the resulting non-linear eigenvalue problem, but it 
yields the true eigenfunctions and the related accurate 
quality factors. 

PEC versus Exact Non-Linear Eigenproblems 
The finite wall conductivity can be considered as a per- 
turbation of the corresponding PEC situation and the res- 
pective theoretical eigenfunctions can be utilized as good 
approximations. But again to evaluate losses from (23) 
we need both the electric and the magnetic field across 
the wall, where (16) should apply. Recall now that the 
required tangential electric field was enforced to vanish 
across the PEC wall, hence it is not available. Explicitly, 
the PEC and PMC (Perfect Magnetic Conductor) bound- 
ary conditions read: 

ˆ ˆ0 & 0n E n H PEC            (24) 

ˆ ˆ0 & 0n H n E PMC            (25) 

It seems that we are at a dead-end, but a new approxi- 
mation is again proved valid. Explicitly, the normal mag- 
netic field at the surface of a PEC is zero as in (24), but 
the tangential magnetic field becomes maximum. Hence 
the relatively small change in the maximum tangential 
magnetic field caused by substituting PEC with a finite 
conductivity wall would be negligible. The same is also 
true for the normal electric field, but we will focus on the 
tangential magnetic field which is directly involved in 
the Leontovich boundary condition. On the contrary a 
similar change in the zero for PEC tangential electric and 
normal magnetic field would be very significant (Figure 
3). The current density flowing on the finite conductivity 
wall which can be assumed approximately equal to the 
corresponding surface current density flowing on the 
PEC wall, which is also defined by tanH  as: 

tanˆsJ J n H                (26) 

Note that the true current density within a finite con- 
ductivity conductor is proportional to the tangential elec- 
tric field  J Εtan  and is thus exponentially reduced 
inwards from the conductor surface. However, a useful 
engineering approximation as in (26) assumes an equiv- 
alent homogeneous current sheet of thickness equal to 
the skin depth   2   with a value equal to 
the maximum occurring at its free surface  sJ J . 
Now, with the availability of a good approximation for 
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tanH  (Figure 3(b)) the desired tanE can be calculated 
through (16) which can be also written as: 

tan tanˆsE Z n H                (27) 

Substituting (26) and (27) into the first term of (23) the 
conductor losses (PLC) can be estimated solely through 
the tangential magnetic field from the eigensolution with 
PEC walls obtained either analytically or numerically as: 

2

tan d
2

s
LC S

R
P H  S            (28) 

where PEC PEC
tan tanH H H   since PEC 0normH   across the 

PEC wall. Regarding the second term of (23) this can be 
directly evaluated from the PEC eigensolution, which has 
already incorporated the complex permittivity and per- 
meability of the material loading. Note that considering 
complex ε and μ does not add to the problem complexity 
since a linear eigensystem is retained. Thus the total cav- 
ity losses are approximately given by: 

 

2

2 2

d
2

d
2

PECs
L S

PEC PEC

V

R
P H S

E H
  



  







V

   (29) 

The analysis presented above arrives at a very impor- 
tant conclusion: The modal eigenfunction of a practical 
loaded cavity are approximately the same with those ob- 
tained from the eigenproblem with PEC walls and inho- 
mogeneous lossy material loading. These can be ex- 
ploited for the evaluation of:  
 The magnetic Wm and electric We stored energy; 
 Both the conductor and material losses through (29); 
 The modal quality factors substituting these quantities 

into (22) or recalling that at resonance 0   the 
energy oscillates (one maximized the other vanishes 
and vice-versa) in time between its electric and mag- 
netic form as    0e mW W 0   then (22) read: 

   0 0 0 0
0

2 2e m

L L

W W
Q

P P

   
         (30) 

Even though classical knowledge is utilized in the 
above reasoning, a very important conclusion is extracted 
 

 
(a)                          (b) 

Figure 3. Electric and Magnetic boundary conditions over a 
metallic wall with (a) infinite and (b) finite conductivity. 

as: “There is no practical need to solve the eigenproblem 
including the non-linear metallic conductor losses, but all 
necessary quantities can be approximately extracted from 
the PEC eigenmode solution”. This is a great simplifica- 
tion since the PEC eigenproblem is linear. On the con- 
trary when conductor losses are incorporated in the for- 
mulation through Leontovich impedance conditions it 
yields a non-linear eigenproblem of fourth order involv- 
ing 0k  and . Solving a linear eigenproblem yields 
directly the whole eigenspectrum, while the non-linear 
one requires sophisticated techniques usually based on 
initial values of a related linear configuration which are 
iteratively updated. If a non-linear eigenproblem is in- 
evitable, it is preferable to adopt linearization techniques 
applicable for polynomial forms and this approach is fol- 
lowed next. 

2
0k

3.4. Linearization of the Non-Linear  
Eigenproblem 

In order to solve numerically the Polynomial Eigenprob- 
lem (PEP), a transformation into a linear Generalized 
Eigenproblem (GEP) of larger dimensions (mxn) is ap- 
plied herein. In general there are two main linearization 
techniques the companion and the symmetric, but they 
are not unique for the given problem. The companion 
linearization is the most used in practice, even though it 
leads into a non positive definite matrix constituting a 
serious problem for the solution procedure. For the case 
of the symmetric linearization there is a lack of GEP 
techniques that can be applied directly. The standard di- 
rect solver fail to manipulate this problem not only due to 
its size but also due to its ill-conditioning. The main dif- 
ficulty in the direct solver is the inversion of the right 
hand side matrix since its determinant vanishes. Thus, 
the only alternative is the use of iterative solvers, which 
are in general most efficient especially for large sparse 
systems of this order, for instance Arnoldi or Jacobi- 
Davidson technique. The problem herein is the type of 
factorization deflation e.g. [16]. Most iterative solvers 
use a Cholesky factorization, for complex eigenvalue 
systems, in order to bring the system in an appropriate 
form before applying the iterative technique and solve it. 
Due to the fact that in “Leontovich problem” the lin- 
earized matrices are not positive definite the Cholesky 
factorization cannot be constructed. This obstacle can 
only be overcome using an iterative algorithm with a dif- 
ferent kind of factorization. The solution procedure we 
use is an initial QR factorization and in turn an Arnoldi 
algorithm with a specific sigma shift, which exploits the 
sparsity of the matrix system [17].  

Examining the form of (19), the polynomial eigen- 
value problem can be manipulated with two different 
techniques. According to the first one the non-linear pro- 
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blem is transformed into an equivalent fourth order linear 
problem, while according to the second one into an equi- 
valent of second order. These linearization transforma- 
tions are defined according to Zhu and Cangellaris ([13], 
pp. 241, 250) as eigenvalue transformation and eigen- 
vector transformation respectively.  

3.4.1. Eigenvalue Transformation 
The form of (19) can be easily characterized as a fourth 
order eigenvalue problem, by simply setting 0k  . 
Thus it can be written in a more general form as: 

  4
4 3 2 10 0C C C C C            0     (31) 

where 4 1 0 . After 
the companion linearization the form obtained becomes: 

Mass, Surf and StiffnessC C j C   

   A e B e                (32) 

where: 

0 0

0 0

0 0 0

Stiffness Surf 0 0

I

I
A

0

0

I

j

 
 
 


  








       (33) 

0 0 0

0 0 0

0 0 0

0 0 0 Mass

I

I
B

I

 
 


 

 

           (34) 

The solution procedure of this kind of problem pro- 
duces two pairs of complex conjugate eigenvalues of the 
form: 

e j
i tj 

                     (35) 

Only eigenvalue with both real and imaginary positive 
values can be accepted as representing physical resonant 
modes. An eigenvalue with negative real part (negative 
resonant frequency) has no physical meaning and could 
only be defined as the image of the corresponding posi- 
tive in frequency domain. The desired complex wave- 
number is then calculated as: 

0
22

0 0 0 0e ,jk k k 2              (36) 

3.4.2. Eigenvector Transformation 
After a little manipulation formula (19) is reformulated 
to: 

     
  

3 2
0 0

0

Stiffness Mass

Surf 0

e k k e

j k e



 
        (37) 

By setting the quantity    0k e u  a new eigen- 
vector is introduced and Equation (37) is transformed to: 

        3 2
0Stiffness Mass Surf 0e k u j u     (38) 

Assuming now that the quantity 3 2
0k   is the ei- 

genvalue, the final system reads: 

        Stiffness Mass Surf 0e u j u     (39) 

In a compact form can be written as: 

   u u
A B

e e


  



   
   

              (40) 

where the matrices A and B are correspondingly: 

Surf Stiffness
 

0

Mass 0
and

0

j
A

I

B
I

  
   

 
  
 

          (41) 

The desired complex wavenumber k0 from the result- 
ing eigenvalue λ is evaluated as: 

2 32 3
0 0 0, 2k k 3               (42) 

From the physical point of view 0 0   thus 0   
and eigenvalues λ should have both positive real and 
imaginary parts. 

4. Future Extensions 

The formulation presented above can be extended to 
three possible directions with valuable applications. The 
first refers to a domain decomposition approach but 
adapted to eigenproblems, in order to address not only 
the analysis but also the design of large structures based 
on eigenvalues and numerical eigenfunctions. For exam- 
ple to devise the appropriate antenna, offering the desired 
field distribution, within an arbitrarily shaped and loaded 
reverberation chamber. The main idea within this effort 
is to combine analytically available canonical-subdomain 
numerical eigenfunctions expansions with numerical ei- 
genfunctions, formulated within complicated subdomains. 
For this purpose we are in the road toward the establish- 
ment of novel orthogonality relations.  

The second direction of substantial importance is the 
eigenanalysis of open-radiating three dimensional struc- 
tures. A formulation based on the combination of FEM 
and spherical harmonics is already prepared, but we are 
facing major computational challenges along with the 
difficult non-linear character of this eigenproblem. The 
former challenge can be possibly addressed through a 
truncation of the boundary integrals in a manner similar 
to that utilized in Fast Multipole approaches [12]. For the 
latter challenge numerous approximate linearization tech- 
niques are currently considered, starting from an equiva- 
lent closed cavity with losses as the one already studied. 
Note that this could be very useful since the final “global 
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radiation conditions” for the open structure will finally 
yield an equivalent impedance condition, where the ma- 
jor part of the losses will represent energy leakage 
through radiation. 

The third extension refers to the formulation of an ei- 
genproblem more appropriately suited for the study of 
radiation phenomena. For this purpose the “internal FEM 
degrees of freedom” will be eliminated through algebraic 
manipulations to yield an eigenproblem involving only 
the outer surface degrees of freedom. This could be char- 
acterized as “numerical Green’s functions approach”, 
since it will provide a complex system matrix similar to 
that obtained by a Moment Method. The direct eigen- 
analysis of this complex eigensystem will yield the so- 
called “complex external eigenmodes”. Besides that, a 
discrimination of the complex quantities into real and 
imaginary parts may provide a real valued eigenproblem 
providing the so called “characteristic modes”, which best 
describe the structure radiation properties. The strength 
of such an approach over the traditionally utilized Mo- 
ment Method lies in the FEM ability to conveniently de- 
scribe complicated three dimensional structures, e.g. a 
mobile phone in the neighbourhood of a human head. A 
possible success of such an approach may open vast new 
horizons in the “characteristic modes” eigenanalysis. For 
example, approaches retaining only the degrees of free- 
dom over metallic surfaces will yield electric eigencur- 
rents. Likewise, retaining only certain apertures degrees 
of freedom may provide a type of magnetic eigencurrents. 
Both of them can provide valuable analysis and design 
tools, but mostly will offer the physical insight to devise 
novel radiators or microwave devices.  

5. Numerical Results 

Indicative results presenting the capabilities of the above 
methodologies are given next, while extensive valida- 
tions and more complete representations can be found in 
our previous publications specific for each method, e.g. 
[1-3]. Both the two dimensional and three dimensional 
finite element analysis techniques were developed in our 
laboratory from Dr. Allilomes and Mr. Zekios respec- 
tively. 

5.1. The Hybrid Finite Element Results 

An indicative example for the two dimensional eigen- 
analysis is the leaky wave antenna shown in Figure 4. It 
consists of a rectangular waveguide with an axial slot, 
eccentrically located at one of its large walls. A stub or a 
parallel plate waveguide section is attached to this slot, 
which ends up to asymmetrical flanges placed at an angle 
φ. From the engineering point of view the question is to 
estimate the stub dimensions (a’, c) and the flange angle 
φ in order to get the desired radiation characteristics. It is 

by now well established, e.g. [18,19], that these radiation 
characteristics are uniquely defined by the complex pro- 
pagation constant of the leaky wave. 

Lampariello et al. [18] have also analyzed this leaky 
wave antenna using an equivalent Transverse Resonant 
network (TRE network). In Figure 5 the longitudinal 
propagation constant is plotted versus frequency, where a 
very good agreement is observed between the proposed 
technique and the measurements [18]. 

Comparing the results with the corresponding of the 
TRE method an existent mismatch appears. However as 
it seems, this happens because of the approximate nature 
of the TRE method which presents a large deviation from 
the measurements given by Lampariello [18]. Further- 
more the agreement between the linear and the non linear 
FEM-DtN is very good for any frequency of Figure 5.  

Let us now present the behaviour of the leaky wave 
antenna from the engineering point of view. The most 

 

 

Figure 4. Leaky wave antenna (a = 23.00 mm, b = 11.95 mm, 
a’ = 11.95 mm, c = 15.64 mm, d = 4.55 mm, F1 = 21.50 mm, 
F2 = 15.00 mm). 
 

 
(a) 

 
(b) 

Figure 5. Normalized longitudinal propagation constant of 
the leaky wave antenna of Figure 4. (a) Phase constant (β); 
(b) Leakage constant (α). 
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interesting aspect of these types of antennas is to exam- 
ine the variation of the radiation pattern with respect to 
the increase of the flanges angles. In Figure 6 a typical 
radiation pattern of the leaky wave antenna is shown in 
the case where the two flanges have an arbitrary angle 
with respect to the main body of the waveguide [18]. 

In Figure 7 both the phase (see Figure 7(a)) and leak- 
age (see Figure 7(b)) constants are observed for different 
flange’s angles and frequencies of 8, 9, 10, 11, 12 GHz. 
Of critical importance is the fact that the phase constant 
(Figure 7(a)) is almost constant for the different angles 
and for every tested frequency. This means that the maxi- 
mum of the radiation pattern at x-z plane is unchanged in 
respect to the different flange angles (for more details see 
Frezza et al. [20,21]). On the other hand studying the lea- 
kage constant (Figure 7(b)) there is an increase around 
the 42˚. The increase of the leakage constant from the 
 

 
(a) 

 
(b) 

Figure 6. A three dimensional view of the leaky wave an- 
tenna and typical radiation patterns at (a) x-y plane and (b) 
x-z plane for the case the two flanges are in an arbitrary 
angle with respect to the horizontal direction. 

 
(a) 

 
(b) 

Figure 7. Normalized longitudinal propagation constant 
versus the angle of the flanges of the leaky wave antenna of 
Figure 4. (a) Phase constant; (b) Leakage constant. 
 
physical point of view refers to the decrease in the beam- 
width of the radiation pattern, thus the increase of the di- 
rectivity. The reason that the maximum appears at 42˚ 
and not at 45˚ (at its symmetrical point) is that the two 
flanges have different lengths. More details are given in 
the Allilomes’ PhD [22] (in Greek). 

5.2. The Resonant Cavity Results 

This simulation procedure aims at the overall examina- 
tion of an electrically large structure. The proposed me- 
thodology is validated against analytical solution for the 
empty cavity and the observed deviation was less than 
2% [3]. The topology we study is a reverberation cham- 
ber loaded with its main objects (mode stirrer, control 
base and device under test) as shown in Figure 8. The 
scope of this test is to examine the variations of the re- 
sonant frequencies for an increasing complexity after the 
successive addition of each object. The mode stirrer pro- 
duces the main variation of the resonant frequency both 
in its real and imaginary part. It is a typical cylindrical 
metallic stirrer consisting of four paddles as shown in 
Figure 9. The cylindrical axle height is h = 0.1 m and 
has a radius of r = 0.025 m meters. Each planar scatterer 
has dimensions l = 0.085 m and w = 0.065 m, while its 
thickness is d = 0.005 m. The whole structure is metallic 
and modelled assuming the true finite copper conductiv-  
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Figure 8. Reverberation Chamber a = 0.2 m, b = 0.4 m, d = 
0.5 m loaded with the mode stirrer (given in detail in Figure 
9), the control base (0.05 m height) and a mobile phone as 
the device under test (finite conductivity σ = 58 × 106 S/m). 
 

 

Figure 9. Metallic (σ = 58 × 106 S/m) mode stirrer with cy- 
lindrical axis and four parallelepiped paddles transverse to 
each other. Typical dimensions gare assumed as: l = 0.085 
m, w = 0.065 m, d = 0.005 m, r = 0.025 m, h = 0.1 m, h1 = 
0.0175 m, h2 = 0.0175 m. 
 
ity . Table 1 depicts the frequency 
shift of the first ten resonances with respect to the empty 
cavity, while Table 2 shows the corresponding quality 
factor shift. The increase or decrease can be easily ex- 
plained with the energy change and more specifically 
with the energy form (electric or magnetic) at the specific 
position of each scatterer, using the perturbation theory 
of Section 3.2. 

 6
Cu 58 10 S/m   

2

The decrease of the resonant frequencies can be also 
explained by the example of any ridged waveguide. The 
introduction of a metallic ridge in a region of maximum 
electric field decreases the cutoff frequency or the cutoff 
wavenumber kc and analogously the resonant frequency 
in cavities, since it is 2 2 2

r r ck k     . 
After the mode stirrer the metallic control base (a table 

with surface 0.15 × 0.2 m2 and height 0.05 m) is intro- 
duced. Recalling that reverberation chambers are utilized 
for electromagnetic compatibility and immunity testing 
as well as for MIMO antenna measurements, in all cases 
the equipment under test (EUT) should be exposed to 

Table 1. Shift in resonant frequencies of the reverberation 
chamber when loaded with the mode stirrer of Figure 9. 

Frequency GHz 

Mode Empty-RC 
analytical 

Loaded-RC Freq. shift %

TE011 0.478 0.311 −34.93 

TE012 0.698 0.558 −20.06 

TE021 0.792 0.571 −26.77 

TE101 0.807 0.591 −26.77 

TM110 0.835 0.680 −18.56 

TM111 0.883 0.714 −19.14 

TE111 0.896 0.812 −9.38 

TE022 0.937 0.911 −2.77 

TE102 0.942 0.922 −2.12 

TE013 0.960 0.927 −3.44 

 
Table 2. Quality factor shift of the reverberation chamber 
when loaded with the mode stirrer of Figure 9. 

Quality factor 

Mode Empty-RC 
analytical 

Loaded-RC Qual. fact. shift %

TE011 34,499 15,416 −55.31 

TE012 43,359 19,489 −55.05 

TE021 43,598 20,390 −53.23 

TE101 36,836 19,148 −48.02 

TM110 39,825 22,517 −43.46 

TM111 34,728 32,283 −7.04 

TE111 31,281 34,937 11.69 

TE022 48,789 34,145 −30.01 

TE102 46,153 32,541 −29.49 

TE013 51,638 31,119 −39.74 

 
maximum and homogeneous field intensity. Hence the 
EUT should be placed at a location where multiple 
modes resonating at about the same frequency (to build 
field at the operating source frequency) present construc- 
tive interference. Regarding the horizontal b × d = 0.4 × 
0.5 m2 cross section, all odd order modes (TEmnl, TMmnl, 

, 1,3,5,n l   ) present field maximum intensity at its 
center, as shown for example in Figure 10 for the first 
TE011 mode. Concerning the table height it is more prac- 
tical for the EUT to be located at the a/4 where even 
modes present intensity maximum  while 
odd modes have significant field concentration. 

 2, 4,m  
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The resulting variations in resonant frequencies and 
quality factors are tabulated in Tables 3 and 4 respec- 
tively. The table introduction causes some fluctuations in 
the resonant frequencies along with an additional de- 
crease of the order of 5% - 7% the quality factor due to 
additional losses. 

To accomplish the full simulation for the reverberation 
chamber the EUT is assumed as a metallic box with di- 
mensions 0.013 m, 0.05 m, 0.11 m (a typical mobile 
phone), Figure 8. This step is important, since it informs 
the controller about the frequency response after the in- 
troduction of the EUT. This is useful especially for the 
calibration procedure in practical structures. As shown in 

 

 

Figure 10. Electric field distribution of the first TE011 mode 

 ˆ x E E x  over a horizontal cross section at height x = 

0.05 m. 
 
Table 3. Shift in resonant frequencies of the reverberation 
chamber when loaded with the mode stirrer and the control 
base. 

Frequency GHz 

Mode Empty-RC 
analytical 

Loaded-RC 
stirrer-table 

Freq. shift %

TE011 0.478 0.278 −41.84 

TE012 0.698 0.564 −19.20 

TE021 0.792 0.598 −24.50 

TE101 0.807 0.616 −23.67 

TM110 0.835 0.693 −17.01 

TM111 0.883 0.713 −19.25 

TE111 0.896 0.785 −12.39 

TE022 0.937 0.880 −6.08 

TE102 0.942 0.907 −3.72 

TE013 0.960 0.926 −3.54 

Tables 5 and 6 respectively, there is no significant shift 
in the resonant frequencies (less than 2%) nor in the 
quality factor (less than 3%). 

6. Conclusion 

A review of an effort on the eigenanalysis of open two 
dimensional arbitrary shaped waveguides as well as 
closed three-dimensional electrically large structures is 
presented. The strengths as well as the limitation of the 
elaborated methodologies are identified. Indicative nu- 
 
Table 4. Quality factor shift of the reverberation chamber 
when loaded with the mode stirrer and the control base. 

Quality factor 

Mode Empty-RC 
analytical 

Loaded-RC 
stirrer-table 

Qual. fact. shift %

TE011 34,499 15,430 −55.27 

TE012 43,359 16,143 −62.77 

TE021 43,598 16,824 −61.41 

TE101 36,836 17,286 −53.07 

TM110 39,825 30,884 −22.45 

TM111 34,728 19,877 −42.76 

TE111 31,281 31,308 0.08 

TE022 48,789 27,497 −43.64 

TE102 46,153 28,325 −38.63 

TE013 51,638 27,540 −46.67 

 
Table 5. Reverberation chamber’s resonant frequencies 
loaded with the mode stirrer, the control base and the de- 
vice under test. 

Frequency GHz 

Mode Loaded-RC 
Stirrer-table 

Loaded-RC  
stirrer-table-DUT 

Freq. shift %

TE011 0.278 0.268 −3.60 

TE012 0.564 0.561 −0.53 

TE021 0.598 0.602 0.67 

TE101 0.616 0.622 0.97 

TM110 0.693 0.701 1.15 

TM111 0.713 0.713 0.00 

TE111 0.785 0.794 1.15 

TE022 0.880 0.877 −0.34 

TE102 0.907 0.907 0.00 

TE013 0.926 0.926 0.00 
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Table 6. Reverberation chamber’s quality factor loaded 
with the mode stirrer, the control base and the device under 
test.  

Quality factor 

Mode Loaded-RC 
Stirrer-table 

Loaded-RC  
stirrer-table-DUT 

Freq. shift %

TE011 15,430 15,318 −0.73 

TE012 16,143 15,877 −1.65 

TE021 16,824 16,575 −1.48 

TE101 17,286 16,739 −3.16 

TM110 30,884 30,124 −2.46 

TM111 19,877 19,752 −0.63 

TE111 31,308 29,809 −4.79 

TE022 27,497 27,810 1.14 

TE102 28,325 28,352 0.09 

TE013 27,540 27,978 1.59 

 
merical examples show the capabilities of these method- 
ologies. Possibilities and attractive research challenges 
calling for the extension of both two- and three-dimen- 
sional eigenanalysis are discussed. The extension towards 
open 3D geometries including characteristic mode eigen- 
analysis constitutes one of our priorities. 
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