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ABSTRACT 

According to the behavior that the polymer so-
lution has both the characteristics of viscosity 
and elastic properties, the transient flow mathe- 
matical model considered the viscoelasticity of 
the polymer solution has been established. The 
model, in which the variation of the rheological 
parameters during the seepage flow has been 
also taken into consideration, has been solved 
using finite-difference method. The type curves 
have been plotted. The influence of some prop-
erties of polymer solution including the viscoc-
ity, the elastic properties and the rheological 
parameters has been analyzed. Compared with 
the curves of the power-law fluid, it is shown 
that the pressure derivative curve considering 
the elasticity of the polymer solution upwarps 
less at the radial flow regime. Besides, it will 
come down as the variation of the rheological 
parameters, which is quite different from the 
case regarding them as constants. Therefore, in 
well test analysis on pressure of polymer solu-
tion, it’s necessary to consider the elasticity and 
the variation of the rheological parameters. 

Keywords: Polymer Solution; Viscoelastic;  
Relaxation Time; Rheological Parameters 

1. INTRODUCTION 

The polymer solution used in the oil field is a typical 
kind of non-Newtonian fluid and its rheological property 
in the porous media is very complicated because of the 
effect of shear degradation, deconcentration, adsorption 
and entrapment. 

Many domestic and foreign scholars have studied its 
rheological property and established several rheological 
model. The initial researches on the flow behavior of the 
non-Newtonian fluid are mainly focus on the power-law 
fluid. In most well test analysis on pressure of polymer 
solution, it is also assumed that the polymer solution is 
pure viscous fluid, only the shear viscosity is considered 
and the rheological parameters are always treated as 
constants. 

But a large number of experiments have demonstrated 
that polymer solution has viscoelastic behavior and the 
rheological parameters changes in the seepage flow 
process. The viscosity of the polymer solution will de-
cline as the raising of the shear rate at a relatively lower 
Darcy velocity. In the flow event, the viscosity is the 
dominant influential factor and the elastic property can 
be neglected. In addition, the rheological property of 
polymer solution can be expressed by using pseudo-plastic 
power-law model. However, once the Darcy velocity 
exceeds the critical value，the viscosity will raise with 
the increasing of the shear rate, the elastic effect will 
enhance gradually and its influence will be too signifi-
cant to be ignored. 

Reference [1] has declared that the effective viscosity 
of polymer solution is composed of the individual con-
tributions of shear and strain viscosity. The elasticity 
behavior and rheological property of polymer solution in 
porous media under the conditions of reservoir flow rate 
has been studied in [2]. A power-law fluid viscoelastic 
semi-empirical model which could describe the viscoe-
lastic effect of polymer solution in porous media has 
been developed in [3]. The researches on the viscoelas-
ticity have promoted the development of percolation 
theory. Reference [4] has conducted numerical simula-
tion study for improvement of polymer flooding by vis-
coelastic effect. Reference [5] has studied the flow be-
havior of viscoelastic fluid, power law fluid and Newto-
nian fluid in pore throat by numerical method. Differ-
ence mathematical models of viscous-elastic polymer 
solution have been established in [6] and [7] from dif-
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ferent angles. The influence of different factors on the 
pressure of the formation near the injection well is ana-
lyzed too. But the variation of rheological behavior was 
seldom taken into consideration and the consistency co-
efficient and the power-law index were always treated as 
constants. Besides, the researches on the well test of 
viscoelastic polymer solution were seldom. 

Therefore, in this paper, the relationship between elas-
tic viscosity and shear viscosity has been insisted in this 
paper. In addition, the variation of the rheological pa-
rameters in the flow event has been taken into considera-
tion. What’s more, the expression of the apparent viscos-
ity of polymer solution which considered the viscoelas-
ticity and the changing parameters of polymer solution 
has been developed. Then the non-dimensional radial 
instable flow mathematical model has been established 
and solved using finite-difference methods. The pressure 
of different formation points near the bottom of the well 
at different time has been calculated. Then the well test 
analysis curves have been plotted. In the end, the influ-
ence of different factors on the curves has been ana-
lyzed. 

2. APPARENT VISCOCITY OF POLYMER 
SOLUTION 

2.1. The Shear Viscosity 

The viscosity of the power-law fluid can be described 
as: 

    1
v

n rH r r                (1) 

where r is the radius away from the wellbore, m; γ is the 
shear rate, s-1; H (r) is the consistency coefficient, 
mPa·sn; n (r) is the power-law index of polymer solution, 
dimensionless. 

Reference [8] has studied the variation of rheological 
behavior through experiments and developed the basic 
models about the variation of rheological parameters 
along the seepage flow direction. In this paper it means 
that the consistency coefficient and the power-law index 
are changing along the radial direction. 

For the well where the polymer solution is injected 
into, the variation of rheological parameters can be ex-
pressed as: 

     w
w

r rH r H r e             (2) 

     wn r n r r r             (3) 

where rw is the radius of the wellbore, m; α is the varia-
tion factor of the consistency coefficient, dimensionless; 
β is the variation factor of the power-law index, dimen-
sionless. 

According to the researches in [9], the relationship 
between the shearing rate and the seeping rate is as fol-
lows: 

3 1

2 1 2 '

n v
γ

n C K





            (4) 

where v is the flow velocity through porous medium, m/s; 
K is the permeability of the formation, μm2; c’ is the 
factor related to the tortuosity of capillary, 2.08～2.50; 
Φ is the porosity of the formation, dimensionless. 

The flow velocity through porous medium can be ap-
proximately expressed by using the following linear re-
lation: 

2

q
v

rh



                 (5) 

where q is the injection rate of the polymer solution, 
m3/d; h is the reservoir thickness, m. 

Then the expression of shearing rate considering the 
variation of rheological parameters can be derived. 

 
 
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      (6) 

The power-law index changes with the radius. How-
ever, the resulting changes of the shear rate make little 
sense to the viscosity of the fluid at the same point. As a 
result, the variation of the power-law index can be ig-
nored when calculating the shearing rate. Then the 
shearing rate can turn to the expression as follows: 
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       (7) 

where n(rw) is the power-law index of polymer solution 
in the bottom hole, dimensionless. 

Letting  

 
 
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
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
         (8) 

The shearing rate can be eventually simplified as: 
1

sF r                   (9) 

And the final expression of the shear viscosity of the 
polymer solution considering the variation of theological 
parameters can be reached. 

2.2. The Elastic Viscosity 

The relationship between elastic viscosity and shear 
viscosity has been obtained in [10]. 

e f2 v                 (10) 

where, θf is the relaxation time, s. 
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2.3. The Apparent Viscosity 

There are both the shearing deformation and the elas-
tic deformation when the polymer solution seeping in the 
porous medium because of the continuous contraction 
and spreading of the runner. As a result, the apparent 
viscosity is composed of the shear viscosity (μv) and the 
elastic viscosity (μe). 

 a e v f1 2 v                (11) 

According to the expressions of the shear rate and the 
shear viscosity, the final expression of the apparent vis-
cosity can be obtained. 
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3. MATHETICAL MODEL AND ITS  
SOLUTION 

The mathematical model for transient flow of viscoe-
lastic polymer solution is derived with the following 
equations. 

The partial differential equation for transient flow of 
viscoelastic polymer solution: 

L

a

1 Cr p p

r r μ r K

   
    t

          (13) 

Initial condition: 

i0t
p


 p                 (14) 

Inner boundary condition:  
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Outer boundary condition:  

e

0
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Define the dimensionless variable as follows: 
Dimensionless radius 

D
w

r
r

r
                 (17) 

Dimensionless pressure 

D *

2πKh
p p

q B
   ip          (18) 

Dimensionless time 

D * 2
t w

Kt
t

C r
              (19) 

Where μ* is the characteristic viscosity, that is the ap-
parent viscosity of the polymer solution at the bottom of 
the wellbore. 
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where 
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According to the dimensionless variable above, the 
seeping model of the polymer solution considering the 
variation of the rheological parameters was established: 
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The difference equation at the point (i, j) can be estab-
lished by using Implicit Difference Method. 
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And Δx = ln(re/rw)/N, which is the grid spacing; re is 
the radius of the external boundary, m; rw is the radius of 
the wellbore, m; i is the number of the node; N is the 
grid number; pe is the supply boundary pressure, Pa. 
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Then the tridiagonal coefficient matrix equation of the 
dimensionless mathematical model was built up as: 
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The equation has been solved. The pressure and its 
derivative value at the bottom of the wellbore at different 
time have been calculated. 

4. TYPE CURFE OF VISCOELASTIC 
POLYMER SOLUTION 

According to the solution of the mathematical model, 
the type curve has been drawn, as may be seen in Figure 
1. 

As shown in Figure 1, when considering the variation 
of the rheological parameters and the elasticity of the 
polymer solution, the characteristic of the type curve is 
as follows:  

The pressure curve and the pressure derivative curve 
both change along the straight line with the slope of 1 at 
the pure wellbore storage phase. 

In transition section, the pressure curve flattens and 
the pressure derivative curve appears to be a transporta-
tion hump.  

The pressure derivative curve goes up after the transi-
tion regime. This variation is a comprehensive action of 
adsorption, shear, and elastic deformation.  

The pressure derivative curve goes down once the in-
fluence of the changing rheological parameters become 
obviously. 

When the effects of the closed outer boundary play a 
role, the pressure curve and the pressure derivative curve 
both go up. 

5. ANALYSIS OF INFLUENTIAL  
FACTORS 

Some parameters which could influence the charac-
teristics of the type curve have been analyzed. These 
parameters include the relaxation time, the variation 
factor of the consistency coefficient and the variation 
factor of the power-law index, as well as the consistency 
coefficient and the power-law index of the viscoelastic 
polymer solutions. 

The influence of relaxation time is analyzed on the 
basis of Figure 2. As the relaxation time increases, the 
pressure and pressure derivative values increase after the 
pure wellbore storage phase, the “hump” of the pressure 
derivative curve in transition section increases and the  
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Figure 1. The type curve of viscoelastic polymer solution. 
 

0

1

2

3

2 3 4 5 6 7 8 9
lg(t D)

lg
(p

D
),

lg
(p

D
'·t

D
)

10

θ f=0.010s

θ f=0.005s

θ f=0s

 

Figure 2. The influence of the relaxation time. 
 
pressure derivative curve upwarps less at the radial flow 
regime. What’s more, compared with the curves simply 
considered the polymer solution as power-law fluid, it is 
shown that the pressure derivative curve upturns less at 
the radial flow regime considering the elasticity of the 
polymer solution. The larger the relaxation time is, the 
elastic property of the polymer solution is stronger and 
the greater the energy is required, then the larger the 
bottom hole pressure is and the faster it changes. There-
fore, it’s necessary to consider the elasticity in well test 
analysis on pressure of viscoelastic polymer solution. 

The influence of the consistency coefficient at the 
wellbore is analyzed on the basis of Figure 3. It is shown 
that the consistency coefficient of the polymer solution 
at the wellbore has no significant effect on the go-up of 
the pressure derivative curve. However, as the consis-
tency coefficient at the wellbore increase, the apparent 
viscosity of the polymer at the wellbore will increase, 
the pressure and its derivative value of the radial flow 
regime will increase. 

The influence of the power-law index at the wellbore 
is analyzed on the basis of Figure 4. The power-law index 
at the wellbore mainly influences the radial flow regime. 
As the power-law index at the wellbore decreases, the 
upturned level of the pressure derivative curve increases. 
It means that the fluid is Newtonian fluid when the value 
of the power-law index is 1. The more the power-law 
index at the wellbore deviated from the value of 1, the 
more obviously of the non-Newtonian flow characteris-
tic is, the greater the flow resistance is and the more ob-
viously the pressure derivative curve goes up. 
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Figure 3. The influence of consistency coefficient at the well-
bore. 
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Figure 4. The influence of power-law index at the wellbore. 
 
The influence of variation factor of the consistency 

coefficient is analyzed on the basis of Figure 5. As the 
variation factor of the consistency coefficient increases, 
the radial flow regime disappear earlier, the pressure 
derivative curve goes down earlier and deeper instead of 
going on turning up. It is mainly for the following rea-
sons: The smaller the variation factor of the consistency 
coefficient is, the faster the consistency coefficient 
changes and the faster the apparent viscosity of polymer 
solution decreases. In the same period of flowing time, 
the smaller the apparent viscosity of the polymer solu-
tion is, the smaller the flow resistance is. As a result, the 
pressure derivative curve goes down earlier, the recessed 
part is wider and the radial flow period stopped earlier. 

The influence of variation factor of the power-law in-
dex is analyzed on the basis of Figure 6. As the variation 
factor of the power-law index increases, pressure and 
pressure derivative values are smaller in the same period 
of flowing time, the pressure derivative curve upwarps 
less obviously at the radial flow regime and the radial 
flow period become shorter. What’s more, the Concave 
appears earlier and deeper. It is mainly for the following 
reasons. The greater the variation factor of the 
power-law index is, the faster the power-law index 
changes, the sooner the apparent viscosity of polymer 
solution decreases, then the smaller the apparent viscos-
ity is and the lower the flow resistance is. It is the reasons  
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Figure 5. The influence of the variation factor of consistency 
coefficient. 
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Figure 6. The influence of variation factor of the power-law 
index.  
 
above make the pressure derivative curve falls earlier. 

6. CONCLUSIONS 

According to the behavior that the polymer solution 
has viscoelasticity and its rheological parameters are not 
constants along the seepage flow direction, the transient 
flow mathematical model has been established. It has 
been found that the type curve is different from the 
curves without considering the viscoelasticity and the 
rheological parameters’ variation. 

Compared with the curves simply considered the 
polymer solution as power-law fluid, the pressure curve 
of viscoelastic polymer solution is higher and the pres-
sure derivative curve upturns less in the radial flow re-
gime.  

The greater the relaxation time is, the greater the elas-
tic viscosity of polymer solution is and then the greater 
the seepage resistance the fluid encountered is. It means 
that the energy required in the seepage flow is higher. So 
the injection pressure required is higher and the pressure 
at the other point of the formation is higher.  

The smaller the power-law index of polymer solution in 
the bottom hole is, the more seriously the non-Newtonian 
behavior is. Hence, at the same rate, the apparent viscos-
ity of the polymer solution near the bottom hole is 
smaller. This will make the pressure changes more slow- 
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ly and make the pressure derivative curve upturns more 
at the radial flow regime. The consistency coefficient of 
polymer solution in the bottom hole has no significant 
influence on the upturned degree of the pressure deriva-
tive curve. It mainly has impact on the value of the 
pressure and the pressure derivative. The larger the con-
sistency coefficient of polymer solution in the bottom 
hole is, the larger the value of the pressure and the pres-
sure derivative is. 

Openly accessible at   

Because of the variation of the rheological parameters, 
the apparent viscosity of polymer solution reduces con-
tinuously in the flow process, which makes the pressure 
derivative curve declines after the upturned section in 
the radial flow and make a concave section appears be-
fore the upturned section caused by the closed outer 
boundary. The more seriously the rheological parameters 
changes, the more obviously the concave will be. 
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