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ABSTRACT 

We investigate global temperature data produced by the Climate Research Unit at the University of East Anglia (CRU) 
and the Berkeley Earth Surface Temperature consortium (BEST). We first fit the 1850-2010 data with polynomials of 
degrees 1 to 9. A significant ~60-yr oscillation is accounted for as soon as degree 4 is reached. This oscillation is even 
better modeled as a broken line, more precisely a series of ~30-yr long linear segments, with slope breaks (singularities) 
in ~1904, ~1940, and ~1974 (±3 yr), and a possible recent occurrence at the turn of the 20th century. Oceanic indices 
PDO (Pacific Decadal Oscillation) and AMO (Atlantic Multidecadal Oscillation) have undergone major changes (re- 
spectively of sign and slope) roughly at the same times as the temperature slope breaks. This can be interpreted with a 
system of oceanic non-linear coupled oscillators with abrupt mode shifts. Thus, the Earth’s climate may have entered a 
new mode (a new ~30-yr episode) near the turn of the 20th century: no further temperature increase, a dominantly nega- 
tive PDO index and a decreasing AMO index might be expected for the next decade or two. 
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1. Introduction 

Global surface temperatures are one of the parameters 
most commonly used to discuss the evolution of climate. 
Databases of instrumental temperatures that cover the 
past century and a half have been compiled by four main 
groups (Climate Research Unit at the University of East 
Anglia—CRU, NASA Goddard Institute for Space Stud- 
ies—GISS, National Oceanic and Atmospheric Adminis- 
tration—NOAA, Berkeley Earth Surface Temperature 
consortium—BEST). This is a huge, difficult task and 
these databases are necessarily faced with a number of li- 
mitations: the geographical distribution of stations is far 
from uniform and varies with time; also, there may be 
fundamental difficulties in establishing meaningful glo- 
bal temperatures for the Earth [1]. Climate is generally 
defined as the ~30 year average of weather and since 
only 100 to 150 years of instrumental data are available, 
this places severe limitations on the significance of glo- 
bal temperature trends and multi-decadal oscillations. A 
monotonic (low degree) trend can be fit to all global tem- 

perature data sets over the period from 1850 to the pre- 
sent. This trend amounts to a secular rise of ~1 K over 
the period. Once this trend is removed, a ~60 yr oscil- 
lation stands out in most records. Such an oscillation has 
been discussed for instance by [2] and [3]. Lean and Rind 
[4,5] have built a model curve for 1889-2006 monthly 
mean global temperatures, in which they distinguish con- 
tributions from oceans (using the El Nino Southern Os- 
cillation ENSO), volcanic aerosols, solar irradiance and 
anthropogenic forcing. Both observations and their em- 
pirical curve display the secular rise of approximately 1 
K. But data are lower than model by some 0.2 K around 
1910 and higher by 0.2 K around 1940: this is because of 
the significant ~60 year oscillation identified by previous 
authors, which is not accounted for by [4]. 

In this paper, we first check whether some of the main 
global temperature data sets can be reasonably fit by 
smooth polynomials of increasing degree from 1 (linear 
trend) up to 9, with particular focus on the “~60-yr oscil- 
lation”. We next suggest that this oscillation may be fit 
by a series of ~30-yr long linear segments with rather ab- 
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rupt changes in trend. We find correlations between the 
breaks in the multi-decadal trends in global surface tem- 
perature and changes in sign of the Pacific Decadal Os- 
cillation and slope of the Atlantic Multidecadal Oscil- 
lation indices. We discuss our results in the frame of the 
dynamical mechanism for major climate shifts proposed 
by [6]. 

2. Polynomial Fits to the “~60-yr  
Oscillation” in Global Temperatures 

We have used monthly temperature anomaly data from 
the CRU and BEST databases. We chose to use the “raw 
data” rather than other data-derived products that have 
been “homogenized” and have thus undergone rather ex- 
tensive and not always transparent/reproducible data po- 
lishing. The CRUTem4 database is found at  
http://www.cru.uea.ac.uk/cru/data/temperature/. We have 
analyzed the most recent variance-adjusted (version 4) 
CRU data from 1850 through 2010 for the whole globe 
(CRUTem4vGL). We have also analyzed hemispheric 
and global series CRUTem4-SH, CRUTem4-NH, CRU- 
Tem4vSH, HadSST2GL, HadCRU3GL, and CRUTEM- 
3vGL (these series are described in  
http://www.metoffice.gov.uk/hadobs/crutem4/ and [7], and 
http://www.cru.uea.ac.uk/cru/data/temperature/crutem4v
gl.txt), and the Berkeley Earth Surface Temperature (BE- 
ST) monthly global averages (found at  
http://berkeleyearth.org/dataset/, description in [8]). All 
yield similar results and mainly results based on CRU- 
Tem4vGL are shown in this paper. 

We note in passing differences between the long-term 
linear or low-degree trends obtained in the various tem- 
perature anomaly databases (notwithstanding a possible 
overall difference in baseline due to the definition of the 
period with respect to which the anomalies are calcu- 
lated); the CRU and GISS curves are about 0.3 K below 
the NOAA and BEST curves in the 2000-2010 decade, 
whereas all agree to better than 0.1 K between 1920 and 
1970 [8]. We return to this in Section 5. 

In order to check the significance of the “60-yr oscil- 
lation”, we have very simply fit the data sets of monthly 
mean temperature anomalies (using least squares) with 
polynomials of increasing degree (Figure 1). The linear 
(n = 1) trend fit to the CRUTem4vGL data shows the se- 
cular rise of approximately 1 K. For n = 2 and 3 the 
curves fail to account for the “60-yr oscillation” (Figure 
1, purple and blue curves). As soon as the degree of the 
polynomial reaches 4, the fit accommodates the “60-yr 
oscillation”, after which the situation remains stable 
(shown up to n = 9 in Figure 1). Extrapolations of these 
trends outside of the data domain show quick divergence 
and are of course meaningless. A ~60 year oscillation 
would occur only 2.5 times over a 150 yr interval and 
could not be accounted for by a polynomial of degree  

 

Figure 1. Monthly global temperature anomaly averages 
from 1850 to 2010 together with least squares polynomial 
fits with degree from 1 to 9 shown by the color code at 
lower right. Whole Earth, variance adjusted, CRUTem4vGL 
database 
(http://www.cru.uea.ac.uk/cru/data/temperature/crutem4vg
l.txt). 
 
less than ~4. 

In order to quantify the goodness of fit, we have cal- 
culated the adjusted R-squared values not only for poly- 
nomial fits to the data with degrees 1 up to 9 but also for 
an exponential fit. The adjusted R-squared [9] is a statis- 
tically unbiased version (i.e. corrected for the number of 
degrees of freedom) of the R2 “coefficient of determi- 
nation”, whose main purpose is the prediction of future 
outcomes on the basis of prior information. R2 itself is 1 
minus the ratio of variance of errors to variance of obser- 
vations. The adjusted R-squared values take into consid- 
eration the number of free parameters of the model (the 
adjusted R-squared values may be negative when the pa- 
rameters of the model do not improve the fit compared to 
the simple average value of the data, which happened in 
the case of one data set, CRUTem4vSH, that could not 
be adequately fit by an exponential). In the case of CRU- 
Tem4vGL, the adjusted R-squared increases significantly 
from 0.36 (n = 1) to 0.50 (n = 4) and remains stable 
thereafter (0.52 for n = 9). As soon as the degree exceeds 
1 or 2, the adjusted R-squared values for polynomials of 
degree larger than 3 are larger than for any exponential 
fit. 

3. Broken Line Fits to the “~60-yr  
Oscillation” in Global Temperatures 

The possibility of fitting ~30-yr long linear segments as 
an alternative to polynomials or a 60-yr sinusoid to the 
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“~60-yr fluctuation” is the topic of this section. Figure 
2(a) shows another display of the CRUTem4vGL monthly 
data set, limited to the period from 1900 to 2010 (the pre- 
vious 50 years have significantly larger variance, which 
is likely due to insufficient, changing station distribution 
and also possibly to lesser data quality). We note that a 
series of continuous linear segments with abrupt changes 
in slope may provide a good fit: such fits have appeared 
in the literature (e.g. Figure 8 of [10], where linear re- 
gression lines are shown for intervals 1901-1934, 1934- 
1979 and 1979-2010). The most recent has been pro- 
posed and discussed by [11], using methods from the dy- 
namics of synchronized chaotic systems. 

The models we are seeking belong to the class of 
“change-point models” [12]. Vasko and Toivonen [13] 
for instance have published quantitative algorithms to es- 
timate the number of linear segments to be fit to a time 
series using permutation tests. We have constructed an 
algorithm that produces such models, paying particular 
attention to the management of secondary minima using 
non-linear simulated annealing. Simulated annealing uses 
the Metropolis algorithm (see [14-16], for description of 
the algorithms and definition of terms; see similar use of 
simulated annealing in [17]). The method is outlined 
briefly in the Appendix. 

We have first tested our method on synthetic data con- 
sisting of N = 2 to 10 linear segments with variable dura- 
tions and slopes and varying noise levels from 5% to 
25% of the total amplitude range of the data. For each 
value of N, and for each step of the control parameter, we 
ran 100 attempts at locating the nodes and displayed the 
histograms of node locations. For 4 segments and 5% 
noise, the 3 nodes are identified to within a year in a 
2000-month (166 yr) long test series; for 15% noise, de- 
tection of the 3 nodes is unambiguous but the histograms 
widen to ~100 months (±4 years uncertainties). For 25% 
noise, the nodes are still detected but less prominently 
and with larger uncertainties (~±8 years). 

We have then applied the method to the 1900-2010 
CRUTem4vGL monthly data, using from 3 to 10 seg- 
ments. Results are shown in Figure 2(a) for the best case, 
i.e. with 5 segments, and in Figure 2(b) with 4 segments 
for comparison. Two nodes are clearly identified at 
~1940 and ~1974. Two other nodes at ~1904 and ~2006 
are near the edges of the data distribution and could be 
artefacts (end-effects), though this has not been observed 
with the tests on synthetic data. The ~1904 node appears 
to be supported by visual inspection of some data pre- 
dating 1900 (but data dispersion is significantly larger 
before 1900 than afterwards; see Section 5). The more 
recent one may require at least a decade of additional 
data to ascertain its validity. In the case of 4 segments 
(Figure 2(b)), the histogram does confirm the same 4 
nodes with the same dates, although of course each indi- 

 

Figure 2. (a) CRUTem4vGL monthly global temperature 
anomaly averages from 1900 to 2010 (red curve) and 500 
fits of curves made of 5 linear segments (4 nodes) deter- 
mined with the simulated annealing method described in 
the text. Below, histogram of node distribution; (b) Same 
with 4 segments and 3 nodes; (c) Same for the Pacific De- 
cadal Oscillation Index (PDO) with 6 segments and 5 nodes. 
 
vidual fit out of the 500 realizations must miss one of the 
4 clusters seen in the histogram, since only 3 nodes are 
allowed. The histogram with 6 segments (not shown) still 
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underlines the same nodes, but with more spread in dates. 
As the number of segments is increased to 10, node dis- 
tributions become more uniform, as segments are used to 
adjust to shorter (sub-decadal) fluctuations in the data. 

The differences in location of the nodes introduce some 
curvature in the “cloud” of 500 fitted broken lines, but 
the linear segments between the nodes are quite clear 
(Figures 2(a) and (b)). We confirm our preliminary hy- 
pothesis that the 1900-2010 data can be fit well by such a 
series of linear segments and that the data argue in favor 
of at least two singular events around 1940 and 1974. 
The slopes of the three main segments are 1.4 K/100 yr 
for 1904-1940 (36 years), −0.9 K/100 yr for 1940-1974 
(34 years) and 3.1 K/100 yr for 1974-2006 (32 years). 
This oscillation appears to be better represented by a se- 
quence of linear segments with rather abrupt slope chan- 
ges at the ~1904, ~1940 and ~1974 nodes (adjusted R- 
squared > 0.62), rather than a sinusoidal or polynomial fit 
(see previous section). Climate shifts close to these dates 
have independently been identified by [11], using me- 
thods from the dynamics of synchronized chaotic sys- 
tems (see Section 5). 

In order to get a further idea of the robustness of in- 
ferences that can be made from Figure 2, we have re- 
sumed the same computations as in Figure 2(a) (5 seg- 
ments, 4 nodes) for all 21 datasets that can be obtained 
from the CRU site  
http://www.cru.uea.ac.uk/cru/data/temperature/#datter 
(i.e. land air temperature anomalies CRUTem3, CRU- 
Tem3v, CRUTem4 and CRUTem4v, sea surface tempe- 
rature anomalies HadSST2 and combined land and ma- 
rine temperatures HadCRUT3 and HadCRU3v, each with 
hemispheric means for the northern and southern hemis- 
pheres and combined global series), and we have stacked 
all corresponding histograms, resulting in Figure 3. There 
is a prominent bimodal cluster of nodes at 1938-1940 and 
1945-1946 and a single mode cluster at 1975-1976, and 
two lesser bimodal clusters around 1904/1908 and 2006/ 
2010. Altogether, most data series are well fit by a se- 
quence of 3 linear segments between the early 1900s and 
the early 2000s, with suggestions for an earlier and a later 
segment that remain to be confirmed. 

4. Comparing Trends in Global  
Temperature and the PDO and AMO  
Oceanic Indices 

We have applied the same method to an oceanic proxy, 
the Pacific Decadal Oscillation (PDO is the leading prin- 
cipal component of monthly sea surface temperature ano- 
malies in the North Pacific Ocean, poleward of 20˚N). The 
optimal number of segments is 6 (Figure 2(c)). Two pro- 
minent doublets of nodes separated by ~33 years are seen, 
one at ~1940 and ~1948, the other at ~1973 and ~1982. 
A less prominent node is located at ~1919 (29 years 

 

Figure 3. A stack of histograms calculated in the manner of 
Figure 2(a) with 4 nodes and 5 segments for 21 data sets 
from site  
http://www.cru.uea.ac.uk/cru/data/temperature/#datter:  
land air temperature anomalies CRUTEM3, CRUTEM3v, 
CRUTEM4 and CRUTEM4v, sea surface temperature 
anomalies HadSST2 and combined land and marine tem- 
peratures HadCRUT3 and HadCRU3v, each with hemi- 
spheric means for the northern (NH) and southern (SH) 
hemispheres and combined global series (GL). v stands for 
“variance adjusted”. 
 
before the 1948 cluster). 

The fitting exercises above suggest a comparison, 
which is illustrated in Figures 4(b) and (c), where the 
monthly values of PDO and global temperature anomaly 
are shown on the same time scale. Periods when the 
multi-decadal slopes of linear segments fitted to the tem- 
perature data, as outlined in Figures 2 and 3, were po- 
sitive and negative have been colored, respectively, in 
pale red and blue. There appears to be a strong correla- 
tion between the sign of the slope of T (i.e. its multi- 
decadal time derivative) and the dominant sign of PDO. 
There is good correspondence between the ~1940 and 
~1974 nodes of CRUTem4vGL and the main changes in 
PDO sign, with PDO shifting from mainly positive (be- 
tween ~1930 and ~1940) to mainly negative (between 
~1950 and ~1976), then back to mainly positive (be- 
tween ~1976 and ~2000). 

The Atlantic Multidecadal Oscillation index (AMO cha- 
racterizes the average sea surface temperature over the 
northern Atlantic; it is defined as the SST averaged over 
0˚N - 60˚N, 0˚W - 80˚W, minus SST averaged over 60˚S 
- 60˚N) also correlates well with global mean surface 
temperature anomalies (as for instance already pointed 
out by [8]), and therefore also with the dominant multi- 
decadal sign changes of PDO, as seen in Figure 4(d): a 
decreasing linear segment prior to ~1920, an increasing 
one from ~1920 to ~1940, a decreasing one from ~1950 
to ~1975, an increasing one after ~1975, generating a 
strong “~60-yr oscillation”. 

5. Discussion 

The above analysis suggests the possibility of causal 
links between some multi-decadal (~60-yr) changes in  
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Figure 4. (a) Monthly global average temperature anomaly HadCRUT3GL 1850-2011; (b) Monthly global average tempera- 
ture anomaly CRUTem4vGL 1850-2011; (c) Monthly values of PDO index 1900-2011 (positive in red, negative in blue); (d) 
Monthly values of AMO index 1900-2010 and annual values 1861-2007. Vertical bands shaded in pale red (respectively blue) 
emphasize the correlation between periods of linearly increasing (resp. decreasing) temperature, dominantly positive (resp. 

egative) PDO index and increasing (resp. decreasing) AMO (see text). n 
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oceanic indices PDO (and AMO) and in global surface 
temperature since the early 20th century, more precisely 
a causal connection between changes in the modes of 
oceanic circulation and changes in multi-decadal (linear) 
trends of global surface temperature. Given the respec- 
tive masses, impedances and time constants involved, it 
is reasonable to argue that the oceanic system forces the 
atmospheric system on these time scales rather than the 
opposite. 

Tsonis et al. [6] have proposed a dynamical system 
approach of major climate shifts, such as the ones iden- 
tified by the nodes at ~1940 and ~1974. These authors 
define a network of oceanic indices (PDO, the El Nino 
Southern Oscillation ENSO, the North Atlantic Oscilla- 
tion NAO and the North Pacific Oscillation NPO). They 
find that over the period 1900-2000, this network syn- 
chronized several times. [6] define the coupling strength 
between indices and find that “where the synchronous 
state was followed by a steady increase in the coupling 
strength (···), the previous synchronous state was de- 
stroyed, after which a new climate state emerged”. The 
dates of the events they find are near 1910, 1940 and 
1975, i.e. essentially identical (given data variance and 
uncertainties in node locations) to the dates we have 
identified for CRUTem4vGL temperature anomalies and 
also most other temperature data sets (Figure 3). 

[6] find the same features in models of “systems with 
nonlinear coupled oscillators, caused by bifurcations as 
the coupling parameter changes”. They cannot conclude 
(nor can we) whether changes are triggered by some ex- 
ternal forcing or are generated within the chaotic system 
itself. Their figure 2(d) illustrates the shifts in the glo- 
bal-SST ENSO index: this is in essence the same “box- 
car” correlation that can be observed in our Figure 4 be- 
tween T and PDO; in the present paper, we believe we 
provide stronger and more quantitative observational evi- 
dence of the reality of these shifts and when they occur. 

A recent (~2006) shift of the temperature anomaly 
slope is suggested by Figures 2 and 3. In the early 2000s, 
the PDO turned back to a negative-dominated mode (Fig- 
ure 4(c)) and the slope of the multidecadal linear trend in 
AMO may have become flat, as had happened towards 
the end of the ~1920-1940 episode (Figure 4(d)). Also, 
the succession of ~30 yr long quasi-linear segments in 
the temperature anomaly curve (Figure 4(b): possibly 
1860-1880 (?) and 1880-1910 (?), then 1910-1940, 1940- 
1970 and 1970-2000) could itself suggest that the ~60 yr 
oscillation, whatever its source, may continue as a ~2000- 
2030 segment. 

We point out the puzzling fact that an earlier CRU 
global temperature dataset, HadCRUT3GL, displayed the 
alternating segments better than the latest version CRU- 
Tem4vGL (Figures 4(a) vs (b)). The annual variability 

of the monthly averages increased by a factor of 2 in the 
recent revision. So did the amplitude of the temperature 
anomaly since 1975, that changed from 0.5 K to about 
1.0 K. The segment with negative slope prior to ~1910- 
1920, and more importantly the segment with flat or even 
negative slope after 2000, are particularly conspicuous 
on HadCRUT3GL (Figure 4(a)). [8] discuss the fact that 
the four available global temperature anomaly curves 
start diverging in the past two decades (their Figure 8): 
there is close agreement from 1900 to the late 1980s, but 
after that GISS and HadCRU display a plateau, whereas 
the NOAA and BEST curves continue to rise to values 
that are 0.25 K above the GISS and HadCRU plateau. It 
is awkward that it is the most recent part of the data 
compilation that displays this divergence. The plateau 
after the late 1990s has been the topic of much recent dis- 
cussion; the previous HadCRUT3 data display this pla- 
teau much more clearly than CRUTem4vGL that seems 
to have suppressed it. 

The shift in dominant sign of PDO (Figure 4(c)), the 
flattening in AMO (Figure 4(d)), and the plateau in sev- 
eral global temperature anomaly data (e.g. Figure 4(a)) 
taken together would support the hypothesis of a regime 
change having occurred near the end of the 20th century 
or early in the 21st century. A ~2000 regime change 
would complement the series of events at ~30-yr in- 
tervals (~1910-1920, ~1940, ~1970, ~2000). This change, 
if real, could imply that a ~15 year long period with no 
further warming lies ahead. Klyashtorin and Lyubushin 
[2], de Jager and Duhau [18], Scafetta [3] and Russell et 
al. [19] are among several authors who have suggested 
decades of future cooling: these authors argue for ex- 
ternal forcings due to solar or planetary effects (see also 
the recent paper by [20]), when the mechanism of [6] en- 
visions the chaotic result of interaction between oceanic 
non-linear dynamical systems. Tsonis et al. [6] conclude 
that the 1970 to 2000 warming may not be (wholly) due 
to the radiative effect of greenhouse gases overcoming 
shortwave reflection effects due to aerosols and that the 
climate may indeed have shifted to a different state. 

Our analysis strongly argues for the presence of a ~60- 
yr oscillation in the climate system (at least over the li- 
mited time interval—100 to 150 years—covered by relia- 
ble instrumental observations). More precisely, global 
temperature data can be interpreted as a series of linear 
segments interrupted by rather fast changes in slope, i.e. 
abrupt changes in regimes. Each episode or regime main- 
tains itself for approximately 30 years. We favor the oce- 
anic system as a driver of atmospheric temperatures on 
these multi-decadal time scales. It remains to be seen 
whether abrupt changes in climate mode are a result of 
internal chaotic dynamics of the ocean system only or 
could be forced by external factors. 

Copyright © 2013 SciRes.                                                                                  ACS 



V. COURTILLOT  ET  AL. 370 

6. Acknowledgements 

We acknowledge financial support from IPGP as part of 
the IEPT RAS-IPGP cooperation. IPGP Contribution NS 
3391. 

REFERENCES 
[1] C. Essex, R. McKitrick and B. Andresen, “Does a Global 

Temperature Exist?” Journal of Non-Equilibrium Ther- 
modynamics, Vol. 32, No. 1, 2007, pp. 1-27.  
doi:10.1515/JNETDY.2007.001 

[2] L. B. Klyashtorin and A. A. Lyubushin, “On the Coher- 
ence between Dynamics of the World Fuel Consumption 
and Global Temperature Anomaly,” Energy and Envi- 
ronment, Vol. 14, No. 6, 2003, pp. 773-782.  
doi:10.1260/095830503322793641 

[3] N. Scafetta, “Empirical Evidence for a Celestial Origin of 
the Climate Oscillations and Its Implications,” Journal of 
Atmospheric and Solar-Terrestrial Physics, Vol. 72, No. 
13, 2010, pp. 951-970. doi:10.1016/j.jastp.2010.04.015 

[4] J. L. Lean and D. H. Rind, “How Natural and Anthropo- 
genic Influences Alter Global and Regional Surface Tem- 
peratures: 1889 to 2006,” Geophysical Research Letters, 
Vol. 35, No. 18, 2008, Article ID: L18701.  
doi:10.1029/2008GL034864 

[5] J. L. Lean and D. H. Rind, “How Will Earth’s Surface 
Temperature Change in Future Decades?” Geophysical Re- 
search Letters, Vol. 36, No. 15, 2009, Article ID: L15708.  
doi:10.1029/2009GL038932 

[6] A. A. Tsonis, K. Swanson and S. Kravtsov, “A New Dy- 
namical Mechanism for Major Climate Shifts,” Geophy- 
sical Research Letters, Vol. 34, 2007, Article ID: L13705.  
doi:10.1029/2007GL030288 

[7] P. D. Jones, D. H. Lister, T. J. Osborn, C. Harpham, M. 
Salmon and C. P. Morice, “Hemispheric and Large-Scale 
Land Surface Air Temperature Variations: An Extensive 
Revision and an Update to 2010,” Journal of Geophysical 
Research, Vol. 16, No. 1, 2012, pp. 206-223. 

[8] R. Rohde, J. Curry, D. Groom, R. Jacobsen, R. A. Muller, 
S. Perlmutter, A. Rosenfeld, C. Wickham and J. Wurtele, 
“Berkeley Earth Temperature Averaging Process,” 2011. 
http://berkeleyearth.org/available-resources/ 

[9] H. Theil, “Economic Forecasts and Policy,” North Hol- 
land, Amsterdam, 1961. 

[10] H. J. Lüdecke, R. Link and F. K. Ewert, “How Natural Is 
the Recent Centennial Warming? An Analysis of 2249 
Surface Temperature Records,” International Journal of 
Modern Physics, Vol. 22, No. 10, 2011, pp. 1139-1159.  
doi:10.1142/S0129183111016798 

[11] K. L. Swanson and A. A. Tsonis, “Has the Climate Re- 
cently Shifted?” Geophysical Research Letters, Vol. 36, 
2009, Article ID: L06711. doi:10.1029/2008GL037022 

[12] I. A. Eckley, P. Fearnhead and R. Killick, “Analysis of 
Change-Point Models,” In: D. Barber, A. Taylan Cemgil 
and S. Chiappa, Eds., Bayesian Time Series Models, Cam- 
bridge University Press, Cambridge, 2011.  
doi:10.1017/CBO9780511984679.011 

[13] K. Vasko and H. Toivonen, “Estimating the Number of 
Segments in Time Series Data Using Permutation Tests,” 
The 2002 IEEE International Conference on Data Mining 
(ICDM’02), Maebashi City, December 2002, pp. 466-473. 

[14] S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, “Opti- 
mization by Simulated Annealing,” Science, Vol. 220, No. 
4598, 1983, pp. 671-680.  
doi:10.1126/science.220.4598.671 

[15] G. Bhanot, “The Metropolis Algorithm,” Reports on Pro- 
gress in Physics, Vol. 51, No. 3, 1988, pp. 429-457.  
doi:10.1088/0034-4885/51/3/003 

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. 
Flannery, “Section 10.12. Simulated Annealing Meth- 
ods,” In: Numerical Recipes: The Art of Scientific Com- 
putting, 3rd Edition, Cambridge University Press, New 
York, 2007. 

[17] D. Gibert and J.-L. Le Mouël, “Inversion of Polar Motion 
Data: Chandler Wobble, Phase Jumps, and Geomagnetic 
Jerks,” Journal of Geophysical Research, Vol. 113, 2008, 
Article ID: B10405. doi:10.1029/2008JB005700 

[18] C. de Jager and S. Duhau, “Forecasting the Parameters of 
Sunspot Cycle 24 and Beyond,” Journal of Atmospheric 
and Solar-Terrestrial Physics, Vol. 71, No. 2, 2009, pp. 
239-245. doi:10.1016/j.jastp.2008.11.006 

[19] C. T. Russell, J. G. Luhmann and L. K. Jian, “How Un- 
precedented a Solar Minimum?” Reviews of Geophysics, 
Vol. 48, 2004, Article ID: RG2004.  

[20] J. A. Abreu, J. Beer, A. Ferriz-Mas, K. G. McCracken 
and F. Steinhilber, “Is There a Planetary Influence on So- 
lar Activity?” Astronomy & Astrophysics, Vol. 548, 2012, 
Article ID: A88. doi:10.1051/0004-6361/201219997 

 

Copyright © 2013 SciRes.                                                                                  ACS 

http://dx.doi.org/10.1515/JNETDY.2007.001
http://dx.doi.org/10.1260/095830503322793641
http://dx.doi.org/10.1016/j.jastp.2010.04.015
http://dx.doi.org/10.1029/2008GL034864
http://dx.doi.org/10.1029/2009GL038932
http://dx.doi.org/10.1029/2007GL030288
http://dx.doi.org/10.1142/S0129183111016798
http://dx.doi.org/10.1029/2008GL037022
http://dx.doi.org/10.1017/CBO9780511984679.011
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1088/0034-4885/51/3/003
http://dx.doi.org/10.1029/2008JB005700
http://dx.doi.org/10.1016/j.jastp.2008.11.006
http://dx.doi.org/10.1051/0004-6361/201219997


V. COURTILLOT  ET  AL. 371

Appendix 

In order to generate broken-line models that fit the data, 
we have constructed an algorithm that uses two im- 
bricated loops. 

The first, internal, loop uses the Metropolis algorithm 
(e.g. [16]), that generates a suite of models distributed 
according to a given probability law p. At iteration n the 
model m(n) has probability p(n). This is perturbed (see 
below) in order to test a new model m(test) with 
probability p(test). The new model is accepted if p(test) 
≥ p(n) and becomes m(n + 1), replacing m(n); if p(test) < 
p(n) the model is accepted with probability p(test)/p(n). 

The perturbation from one step to the next is done in 
the following way. If N is the (given) number of seg- 
ments in the broken line to be fitted to the data, there are 
N − 1 free nodes (the ends being assumed fixed in ab- 
scissa, i.e. time, not in ordinate). In an individual cal- 
culation, the positions of the N − 1 nodes are first drawn 
by assuming each node to be uniformly distributed on the 
full data interval. The N + 1 ordinates that define the best 
fit broken line (model m(1)) to the data are then cal- 
culated and the misfit evaluated. One of the N − 1 nodes 
is then selected at random and replaced by a new node 
with uniform probability over the data interval, and the 
fitting process is carried out again. This is repeated a 
large number of times, generating a large suite of models 
distributed following probability p. There are many mo- 

dels where p is large, few where p is small. Residuals to 
the fit are modeled as a generalized Gaussian statistics, 
from which the model posterior probability p is derived. 

The second, external loop is that of simulated an- 
nealing. The Metropolis algorithm is run with a control 
parameter α (see below) that slowly transforms the a po- 
steriori probability distribution exp(log(p)/α) from a uni- 
form law (in principle α = ∞) to the desired a posteriori 
law (α = 1). It allows convergence of the models towards 
regions of maximum probability. The acceptance criter- 
ion for a new model becomes [p(test)/ p(n)]1/α. 

In practice, in this paper, the process was iterated 300 
times (inner loop), for each value of the control parame- 
ter α. The process was repeated starting with the final 
model of the previous (inner) loop, with a new, decreased 
value of the control parameter 0.98α (external loop). This 
was done starting with α = 0.1 and decreasing it to α = 
0.001, i.e. about 350 steps (values of α less than 1 are 
due to the fact that probabilities are not normalized). 
This is what allows the model to escape from secondary 
minima. The process described above provides one “op- 
timized” model fit, which is based on some 100,000 cal- 
culations. The whole process is repeated 500 times, with 
a new drawing of the N − 1 free nodes each time, to yield 
finally 500 “optimized” broken-line fits with N − 1 free 
nodes. Histograms of the node dates can then easily be 
calculated from this set. 
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